Deep Reinforcement Learning for QoS-Constrained Resource Allocation in Multiservice Networks

  • Juno Vitorino Saraiva Federal University of Ceará (UFC)
  • Iran Mesquita Braga Junior Federal University of Ceará (UFC)
  • Victor Farias Monteiro Federal University of Ceará (UFC)
  • Franciso Rafael Marques Lima Federal University of Ceará (UFC)
  • Tarcisio Ferreira Maciel Federal University of Ceará (UFC)
  • Walter da Cruz Freitas Junior Federal University of Ceará (UFC)
  • Francisco Rodrigo Porto Cavalcanti Federal University of Ceará (UFC)

Abstract

In this article, we study a Radio Resource Allocation (RRA) that was formulated as a non-convex optimization problem whose main aim is to maximize the spectral efficiency subject to satisfaction guarantees in multiservice wireless systems. This problem has already been previously investigated in the literature and efficient heuristics have been proposed. However, in order to assess the performance of Machine Learning (ML) algorithms when solving optimization problems in the context of RRA, we revisit that problem and propose a solution based on a Reinforcement Learning (RL) framework. Specifically, a distributed optimization method based on multi-agent deep RL is developed, where each agent makes its decisions to find a policy by interacting with the local environment, until reaching convergence. Thus, this article focuses on an application of RL and our main proposal consists in a new deep RL based approach to jointly deal with RRA, satisfaction guarantees and Quality of Service (QoS) constraints in multiservice celular networks. Lastly, through computational simulations we compare the state-of-art solutions of the literature with our proposal and we show a near optimal performance of the latter in terms of throughput and outage rate.

Published
08-04-2020
How to Cite
Saraiva, J., Braga Junior, I., Monteiro, V., Lima, F. R., Maciel, T., Freitas Junior, W., & Cavalcanti, F. R. (2020). Deep Reinforcement Learning for QoS-Constrained Resource Allocation in Multiservice Networks. Journal of Communication and Information Systems, 35(1), 66-76. https://doi.org/10.14209/jcis.2020.7
Section
Regular Papers