Modeling Noise as a Bernoulli-Gaussian Process
DOI:
https://doi.org/10.14209/jcis.2023.20Keywords:
Bernoulli-Gaussian parameters, Noise modeling, Non-Gaussian stochastic process, Power line communicationAbstract
Transmission medium is always perturbed by noise with a random nature which can be characterized by taking a sequence of noise samples and, after analyzing the sequence, attributing a probabilistic model to represent the randomness of the noise. If thermal noise (receiver generated) is the only noise impairing the transmission (our only focus is digital transmission) the memoryless stationary discrete-time Gaussian process is the best model to probabilistically represent the noise. The mathematical representation of the transmission medium in such a situation yields the well known Gaussian Channel. As Information Theory points out, for a fixed noise power, the Gaussian channel is the worst channel to send information through. If thermal noise is not the only noise impairing the transmission (as in sonar communication and power line communication) finding the probabilistic model other than the single-parameter Gaussian process, which best match the noise can much improve the communication system design. The Bernoulli-Gaussian process, a three parameters model, is a common considered option. Finding the three parameters of the Bernoulli-Gaussian model (from known noise samples) is a formidable task that can be made simpler by considering the (original) results presented in the current paper. The Bernoulli-Gaussian model can be characterized, analytically, by using the noise power and two additional quantities: the expectation of the absolute value of the noise process plus the expected value of the third power of the absolute value. In practice the parameters would be calculated using estimates of the mentioned expected values. The communication system design can be much improved if a well fit Bernoulli-Gaussian stochastic process is selected to model the noise. This is an alternative to model the communication using power lines which is often modeled as Middleton Class-A. The rate harvested when modeling the medium as a Bernoulli-Gaussian channel, it is shown, is increased when compared to modeling the medium with the easily obtained Gaussian channel.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Weiler Alves Finamore, Marcelo da Silva Pinho, Manish Sharma, Moisés Vidal Ribeiro
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CC BY-NC 4.0 (Attribution-NonCommercial 4.0 International) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
___________
Accepted 2023-10-31
Published 2023-11-15