Performance of the Gerschgorin Radii and Centers Ratio Detector for Cooperative Spectrum Sensing under Burst Control Channel Errors
DOI:
https://doi.org/10.14209/jcis.2019.15Abstract
In centralized cooperative spectrum sensing (CSS), cognitive radios (CRs) monitor the spectrum and send the related data to a fusion center (FC) via a control channel in order to more efficiently detect possible idle bands for opportunistic occupation. In centralized cooperative spectrum sensing (CSS), cognitive radios (CRs) monitor the spectrum and send the related data to a fusion center (FC) via a control channel in order to more efficiently detect possible idle bands for opportunistic occupation. In practice, such data must be quantized prior to transmission, which can lead to loss of the global spectrum sensing performance due to quantization errors. Additionally, wireless control channel impairments, such as the multipath fading, further contributes to performance degradation. In many researches, the control channel is considered error-free. Even when errors are considered, they usually affect the transmitted symbols independently, that is, the control channel is assumed to be memoryless. Error bursts come from the memory effect of the channel, and are typically found in wireless communications. In this paper we consider the effects of burst errors in the control channel as well as the problem of signal distortion caused by three methods of quantization in centralized CSS with sample fusion. The Gerschgorin Radii and Centers Ratio (GRCR) detector is used as the test statistic for spectrum sensing. Our findings show that: i) the GRCR is robust in the scenarios taken into consideration, ii) the uniform quantization may be preferred in some cases when the control channel is considered perfect, iii) the nonuniform quantization attains better performance under errors in the control channel, and iv) the effect of memory in the control channel may produce, in some situations, performance gains with respect to the memoryless channel, when both have the same average bit error rate.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CC BY-NC 4.0 (Attribution-NonCommercial 4.0 International) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
___________
Accepted 2019-04-27
Published 2019-05-03