On the Quasi-Moment-Method as a Rain Attenuation Prediction Modeling Algorithm

Authors

  • Sulainman Adeniyi Adekola, Professor Department of Electrical and Electronics Engineering, University of Lagos, Akoka, Lagos, Nigeria
  • Ayotunde Abimbola Ayorinde, Dr. Department of Electrical and Electronics Engineering, University of Lagos, Akoka, Lagos, Nigeria
  • Hisham Abubakar Muhammed, Engr. Department of Electrical and Electronics Engineering, University of Lagos, Akoka, Lagos, Nigeria
  • Francis Olutunji Okewole, Engr. Department of Electrical and Electronics Engineering, University of Lagos, Akoka, Lagos, Nigeria
  • Ike Mowete, Professor Department of Electrical and Electronics Engineering, University of Lagos, Akoka, Lagos, Nigeria https://orcid.org/0000-0002-8335-6170

DOI:

https://doi.org/10.14209/jcis.2023.22

Keywords:

ITU-R models, Normalized percentages of time, Quasi-Moment-Method, Rain attenuation prediction

Abstract

A computationally inexpensive, analytically simple, and remarkably efficient rain attenuation prediction algorithm is presented in this paper. The algorithm, here referred to as the Quasi-Moment-Method (QMM), has only two main requirements for its implementation. First, rain attenuation measurement data (terrestrial or slant path) for the site of interest must be available; and second, a model, known to have predicted attenuation for any site to a reasonable level of accuracy (base model), and whose analytical format can be expressed as a linear combination of its parameters, is also required. An important novelty introduced by the QMM algorithm is a normalization scheme, through which a modelling difficulty concerning exceedance probabilities outside a 0,01 – to -1 range, is eliminated. Model validation and performance evaluation using a comprehensive set of data available from the literature clearly demonstrated that the QMM models consistently improved base model performance by more than 90%; and outperformed all published ‘best fit’ models with which they were compared.

Downloads

Download data is not yet available.

Downloads

Published

2023-12-11

How to Cite

Adekola, S. A., Ayorinde, A. A., Muhammed, H. A., Okewole, F. O., & Mowete, I. (2023). On the Quasi-Moment-Method as a Rain Attenuation Prediction Modeling Algorithm. Journal of Communication and Information Systems, 38(1). https://doi.org/10.14209/jcis.2023.22

Issue

Section

Regular Papers
Received 2023-08-20
Accepted 2023-11-23
Published 2023-12-11

Most read articles by the same author(s)