On the Uniqueness of the Quasi-Moment-Method Solution to the Pathloss Model Calibration Problem
DOI:
https://doi.org/10.14209/jcis.2022.12Abstract
Investigations in this paper focus on establishing the uniqueness properties of the Quasi-Moment-Method (QMM) solution to the problem of calibrating nominal radiowave propagation pathloss prediction models. Nominal (basic) prediction models utilized for the investigations, were first subjected to QMM calibrations with measurements from three different propagation scenarios. Then, the nominal models were recast in forms suitable for Singular Value Decomposition (SVD) calibration before being calibrated with both the SVD and QMM algorithms. The prediction performances of the calibrated models as evaluated in terms of Root Mean Square Prediction Error (RMSE), Mean Prediction Error (MPE), and Grey Relational Grade-Mean Absolute Percentage Error (GRG-MAPE) very clearly indicate that the uniqueness of QMM-calibrations of basic pathloss models is more readily observable, when the basic models are recast in forms specific to SVD calibration. In the representative case of calibration with indoor-to-outdoor measurements, RMSE values were recorded for QMM-calibrated nominal models as 5.2639dB for the ECC33 model, and 5.3218dB for the other nominal models. Corresponding metrics for the alternative (rearranged) nominal models emerged as 5.2663dB for the ECC33 model and 5.2591dB for the other models. A similar general trend featured in the GRG-MAPE metrics, which for both SVD and QMM calibrations of all the alternative models, was recorded as 0.9131, but differed slightly (between 0.9138 and 0.9196) for the QMM calibration of the nominal models. The slight differences between these metrics (due to computational round-off approximations) confirm that when the components of basic models are linearly independent, the QMM solution is unique. Planning for wireless communications network deployment may consequently select any basic model of choice for QMM-calibration, and hence, identify relative contributions to pathloss by the model’s component parts.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CC BY-NC 4.0 (Attribution-NonCommercial 4.0 International) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
___________
Accepted 2022-06-28
Published 2022-07-01