A New Approach for FSS Design in 3.5GHz Based on General Neural Network Model by using Multi-objective Sailfish Optimization Algorithm
DOI:
https://doi.org/10.14209/jcis.2022.9Abstract
This work approaches a bioinspired hybrid multiobjective optimization technique associated with a general regression neural network as a proposal to synthesize the geometry and the dimensions of a frequency selective surface (FSS) for electromagnetic wave filtering in 5G applications. This new hybrid technique associates the bio-inspired algorithm known as the Sailfish Optimizer (SFO), together with a GRNN net to obtain the parameters for constructing the filter.In this study, the focus is on the application of the technique as a tool for the design and the synthesis of FSS, which has the shape of a square spiral unitary cell, printed on a fiberglass substrate plate (FR4). The objectives of the optimization process are to set the resonant frequency of the FSS to 3.5 GHz and the perating bandwidth to 0.8 GHz. It is reported a good agreement between the simulated and measured results.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CC BY-NC 4.0 (Attribution-NonCommercial 4.0 International) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
___________
Accepted 2022-03-11
Published 2022-05-29