Coupling Impact Between a Radial Antenna and Guided Modes on Twisted-Pair Systems Operating in Millimeter-Wave
DOI:
https://doi.org/10.14209/jcis.2021.8Abstract
Recent research points out that transmission at terabits per second (Tbps) is feasible over copper cables if they were used as millimeter waveguides. The challenge is how to efficiently couple signals to the higher-order modes of twisted-pairs. This paper investigates the effectiveness of radial antennas on the coupling of near-terahertz signals to twisted-pairs. For that, the scattering parameter of the proposed antenna and the intensity of the electric field around the pairs are evaluated from numerical simulations. We also present the attenuation coefficients of four guided modes in a twisted-pair with typical constructive parameters and evaluate aggregate data rate results through Shannon's capacity. The results indicate the coupling efficiency may reach up to 71.62%, yielding an aggregate data rate over copper cables up to 0.17 Tbps at 10 m.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CC BY-NC 4.0 (Attribution-NonCommercial 4.0 International) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
___________
Accepted 2021-03-03
Published 2021-03-08