Brillouin Effect Impact in RoF Systems with Photonic-Assisted RF Amplification
DOI:
https://doi.org/10.14209/jcis.2020.17Abstract
This work reports the impact of the stimulated Brillouin scattering (SBS) in a radio-over-fiber (RoF) system with photonic-assisted radiofrequency (RF) amplification. Such photonically amplified RoF systems employs long pieces of highly nonlinear fibers (HNLFs) for stimulating the four-wave mixing (FWM) nonlinear effect, in conjunction with appropriate management of the optical modulation index, aiming to provide RF gain. Numerical and experimental results demonstrate SBS might reduce the FWM nonlinear efficiency and limit the overall system power efficiency. We propose using only 35 m of HNLF for ensuring high photonic-assisted RF gain and increasing the SBS threshold in 14 dB. The digital performance of the photonically amplified RoF system is investigated in terms of root mean square error vector magnitude (EVMRMS), before and after mitigating SBS. The 35-m HNLF piece implies in enhancing the system digital performance and reducing in 6 dB the required optical power for attaining 19 dB of photonic-assisted RF gain.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CC BY-NC 4.0 (Attribution-NonCommercial 4.0 International) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
___________
Accepted 2020-05-12
Published 2020-06-24