Channel Equalization Based on Decision Trees
DOI:
https://doi.org/10.14209/jcis.2020.16Abstract
This paper analyzes the application of decision trees to the problem of communication channel equalization. Decision trees are interesting structures because they are nonlinear and relatively simple from a computational standpoint. They are tested for channel models that give rise to classification tasks of different complexity and compared to the Bayesian equalizer and the Wiener linear equalizer. The results are quite encouraging, as they show that the tree-based equalizer reaches, in many cases, a performance similar to that of the Bayesian filter at a lower computational cost.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CC BY-NC 4.0 (Attribution-NonCommercial 4.0 International) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
___________
Accepted 2020-05-12
Published 2020-06-22