GTDM-CSAT: an LTE-U self Coexistence Solution based on Game Theory and Reinforcement Learning
DOI:
https://doi.org/10.14209/jcis.2019.17Abstract
There is substantial literature covering both problems and solutions related to the operation of Long Term Evolution (LTE) networks in unlicensed spectrum (LTE-U) while in coexistence with other technologies, such as Wi-Fi. However, a seldom explored scenario is the coexistence between multiple LTE-U networks. Within this scenario, a big issue is establishing optimal configurations that take into account fairness among different operators coexisting in the same unlicensed spectrum coverage area. Solutions to this problem could, for instance, react to changes in the environment by "tuning" different system configurations. We propose a game theoretical reinforcement learning algorithm, called GTDM-CSAT, aiming to maximize the LTE-U aggregated throughput while keeping channel access fairness among different access points. GTDM-CSAT uses the relative data rate offered by the system to adapt the LTE-U ON-OFF time . For this, we formulate the problem as a Markovian game, where the LTE-U operators coexist on a two-zero-sum game. The solution for the best ON-OFF time ratio is defined by applying a modified Minimax Q-learning algorithm for finding the game equilibrium. We perform simulations following 3GPP specifications using the ns-3 simulator for evaluating GTDM-CSAT under different traffic load scenarios. Results indicate gains in the system aggregated throughput, and improved performance regarding individual data rate by each operator.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CC BY-NC 4.0 (Attribution-NonCommercial 4.0 International) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
___________
Accepted 2019-05-22
Published 2019-06-05