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Kinematic-based Markerless Human Tracking in 3D

Probabilistic Occupancy Grids
Rodrigo de Bem, Maurı́cio Goulart, Gisele Simas and Silvia Botelho

Abstract—Markerless human motion tracking can be employed
in many applications such as automatic surveillance, motion
capture, human-machine interface and activity recognition. This
problem has been extensively studied in the computer vision
research community in the last years. In this context, the present
paper presents an approach for 3D markerless human motion
tracking based on a skeletal kinematic model of the human body.
This method is applied over a 3D probabilistic occupancy grid
of the environment, which is constructed by means of a Bayesian
fusion of images from multiple synchronized sensoring cameras.
Although the use of kinematic models in 3D human tracking is
widely employed, its use over 3D probabilistic occupancy grids
still was not vastly investigated in the literature. The experiments
were performed using a public dataset with video sequences of
people in motion. The results show that the method is capable
of dealing adequately with the 3D markerless human motion
tracking problem.

Index Terms—skeletal kinematic model, 3D probabilistic occu-
pancy grid, 3D markerless human tracking.

I. INTRODUCTION

Visual tracking, which is the recursive detection and loca-

tion of objects (or more generally, visual patterns) in videos

[1], is a classical computer vision problem. In this context, the

visual tracking of people has been studied extensively in the

literature [2], [3]. Among many applications, one could men-

tion automatic surveillance, motion capture, human-machine

interface and activity recognition, as examples of relevant

problems where the visual tracking of people is employed.

Tracking articulated targets, such as the human body, using

2D images is a difficult problem to be treated mainly due

to: i) the complex nature of 3D movements; ii) the loss of

information in images because of 2D space restriction; iii)

the color changes caused by luminosity variations; iv) the

existence of others objects moving into the scene. Thus, to

minimize some of these issues, multiple synchronized cameras

can be used to sensor the environment where people are

moving. From the set of images captured by the cameras a

3D reconstruction of the environment can be performed.

The reconstruction technique used in the present approach

is called 3D probabilistic occupancy grid [4]. This technique
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was proposed as a way to overcome some problems, for

instance, the existence of phantom volumes and holes in the

reconstructions. These problems occur when other popular

methods are employed, such as the shape-from-silhouette. In

the 3D probabilistic occupancy grid approach, the images

obtained by the multiple synchronized cameras are fused by

means of a Bayesian inference [5]. Doing so, the decision

about the occupancy or not of a position (voxel) into the 3D

space is taken accounting all the information coming from

each camera, allowing a better inference compared with shape-

from-silhouette, which takes the decision accounting each 2D

image separately.

Although one can find some model-free proposals in the

literature [6], many 3D motion tracking methods employ pre-

defined representation models of the targets [7], [8]. Usually,

the object appearance model is associated with the object

kinematic model that describes the possible movements and

valid poses [9]. The main contribution of the present work,

which is still not vastly investigated in the literature, is the

use of a human body skeletal kinematic model to perform

the markerless visual tracking of people in a 3D probabilistic

occupancy grid. Experiments were performed with videos

sequences from a public dataset [10]. The results show that

the method is capable of dealing adequately with the 3D

markerless human motion tracking problem.

II. RELATED WORK

Markerless human tracking and motion analysis have been

studied for some years and remarkable achievements were

already accomplished [2], [3]. Several approaches can be

found in the literature, which deal with many different ap-

plication’s scenarios, data acquisition approaches and tracking

methodologies. A vast review of works can be find in [12],

[13], [14], [15].

In this context, it is hard to establish a sufficiently general

taxonomy that could be used to classify and analyze the works

in the field. Thus, some relevant attributes must be chosen

in a way that some extent of comparison among different

approaches is allowed. It can be noticed, for instance, that

many methods focus on the recovery of human poses from

monocular images or videos. Agarwal and Triggs [16] propose

a learning-based method along with a histogram-of-shape-

context silhouette shape descriptor which allows the recovery

of 3D human body pose from monocular images. Urtasun et al.

[17] also present a method for 3D pose recovery from monoc-

ular videos, but this method employs a strong motion model

in the tracking process and do not use a learning approach.
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Bourdev and Malik [18], as well as Yang and Ramanan [19],

focus on the identification of body parts to pursue the pose

estimation. The former propose the concept of poselets, which

maps the appearance of body parts to their 3D pose; while

the latter learn the different body parts based on the HOG

descriptor [20]. More recently, deep neural networks have also

been applied to the monocular pose estimation problem, as

presented by Toshev and Szegedy [21] and Tompson et al.

[22].

Another extremely relevant methods are the ones based on

depth images. The advent of low cost devices, such as the

Microsoft Kinect, called attention of the research community

for such kind of input data. Certainly a remarkable work in

this subject is the approach presented by Shotton et al. [23] in

which deep decision random forests [24] are used to recover

the 3D human pose in real-time from a single depth image.

In more recent works, Vemulapalli et al. [25], also recover

3D human poses from depth images, in the context of action

recognition, by mapping the skeletons models to a Lie group;

and Ionescu et al. [26] estimate the 3D human pose classifying

body parts using SIFT [27] and random forests.

Multiple views methods are another kind of approach which

still achieves the highest accuracy among the markerless

methodologies [28]. In this context, Sigal et al. [29], [30]

present a probabilistic graphical model to represent and track a

human body in a multiple camera environment. Simas et al. [6]

propose a method based on nonparametric belief propagation

which can be applied to track people and other previous

unknown moving objects. In the works of Starck and Hilton

[31] and De Aguiar et al. [32], the employed human body

representation model is a mesh-based surface. More recently,

Elhayek et al. [28] and Belagiannis et al. [33] proposed

approaches in multiple views scenarios facing challenging

situations, such as self-occlusions, moving cameras, outdoor

scenes and cluttered background. In this context, despite the

several methodologies found in the literature concerning the

markerless human motion tracking, the use of a kinematic

model over a 3D probabilistic occupancy still was not well

explored.

III. PROPOSED METHODOLOGY

A typical visual tracking system is formed by four main

components: the observation model, the representation model,

the movement model and the tracking algorithm. In the pro-

posed approach the target (a moving person) is observed by

means of a 3D probabilistic occupancy grid. The represen-

tation model is composed of two parts: a set of Gaussian

blobs, modeling the volume occupied by each rigid body

part (appearance model); and a kinematic hierarchical model

(human body skeletal model), representing the spatial relation

between the rigid body parts. In this work no movement model

has been used. Finally, the tracking algorithm is based on the

Expectation-Maximization (EM) algorithm and on the Cyclic-

Coordinate Descent (CCD) inverse kinematic method. The

proposed approach is summarized by the diagram shown in

the Fig. 1. Each one of the components will be explained in

further details in the following sections.

Fig. 1. Diagram showing the main building blocks of the proposed metho-
dology.

A. Observation Model

The observation model defines which kind of sensor infor-

mation about the targets is extracted from the environment. In

the present method, the environment is sensored by multiple

synchronized and calibrated cameras. The captured images

are used to build a probabilistic volumetric reconstruction of

the scene. This reconstruction is composed of voxels, which

present a probability to be occupied by the interested objects.

Many volumetric reconstruction methods use a simple binary

background segmentation of each image and analyze those

images individually. Despite being simple and broadly used,

these methods can lead to some problems in the determination

of the object’s volume and position, such as phantom volumes

and holes into objects.

To deal with these difficulties Franco and Boyer [4] propose

to obtain a fusion of all image information using a 3D

probabilistic occupancy grid. This technique tackles some

difficulties presented by a number of uncertainties associated

to the image capturing stage, like sensor noise, calibration

errors and lightning changes.

In this method, every pixel of a camera is treated as a

statistical sensor susceptible to uncertainties. The problem

is then treated as a Bayesian estimation. The 3D space is

discretized into volume elements, called voxels. The Bayesian

estimation is used to calculate the probability of each voxel

to be occupied by the object of interest.

In the determination of a voxel’s occupancy status, the value

of the projected pixels are taken into consideration along

with a statistical background model for those pixels [35].

The background model is obtained using a video sequence of

the background scene without moving objects. The projection

between pixels and corresponding voxels is done using the

cameras’ calibration matrices. A brief review of the method

is presented below, while a detailed explanation can be found

in [4].

1) Occupancy Grid Theory Review: The voxel occupancy

inference is performed using the Bayes’ rule. The probability

of each voxel of the grid to be occupied is given by

p(GX |I,B, τ) =

∏

i,p p(I
i
p|GX ,Bi

p, τ)
∑

GX

∏

i,p p(I
i
p|GX ,Bi

p, τ)
, (1)

where I is the set of n current images, and Ii
p is the image

data at pixel p in the image of camera i, i = 1...n. It is



JOURNAL OF COMMUNICATIONS AND INFORMATION SYSTEMS, VOL. 30, NO. 1, MARCH 2015. 102

assumed that the image data corresponding to the set of m

observed background images can be summarized into a single

statistical model Bi
p for each pixel p in the image of each

camera i, i = 1...n. τ symbolizes the prior knowledge about

the scene, about the sensor characteristics and the general

knowledge about the system. Finally, G is the space occupancy

grid. For each space point X in the grid discretization the voxel

occupancy probability is inferred according to the Bayes’ rule

shown in the Equation (1).

a) Generic sensor model: is the term p(Ii
p|GX ,Bi

p, τ)
used to define the Bayes’ rule Equation (1). This term di-

rectly relates the pixel’s color observation to voxel occupancy,

using the image formation p(Ii
p|F

i
p,B

i
p, τ) and silhouette

formation p(F i
p|GX , τ) terms, that will be presented after, and

marginalizing over silhouette detection F i
p as expressed below:

p(Ii
p|GX ,Bi

p, τ) =
∑

Fi
p

p(F i
p|GX , τ)p(Ii

p|F
i
p,B

i
p, τ), (2)

where F i
p is a binary silhouette detection variable for the pixel

p in the image i, i = 1...n. F i
p = 1 if the pixel sensor p in

image i reports the presence of an object of interest anywhere

along its viewing line, and F i
p = 0 otherwise.

b) Silhouette formation term: models the silhouette de-

tection response of a single pixel sensor (i, p) to the occupancy

state of the analysed voxel GX . The silhouette formation term

is defined by two expressions, considering the case when the

voxel is occupied (GX = 1) and when it is not (GX = 0):

p(F i
p|[GX = 1], τ) = p(S = 0|τ)U(F i

p) (3)

+ p(S = 1|τ)Pd(F
i
p),

p(F i
p|[GX = 0], τ) = p(S = 0|τ)U(F i

p) (4)

+ p(S = 1|τ)[p(R = 1|τ)Pd(F
i
p)

+ p(R = 0|τ)Pf (F
i
p)],

where S and R are hidden variables. S, the sampling variable,

is equal to 1 if the voxel X is on the viewing line of pixel

(i, p) and equal to 0 if it is not. The external detection cause R
equals to 1, accounts for the possibility that some other object

lies on the same viewing line as the voxel, and it is equals

to 0 if no other object obstructs the viewing line. U(F i
p) is

the uniform distribution for the silhouette detection, when the

voxel and pixel are not aligned (S = 0), while Pd(F i
p) and

Pf (F i
p) are respectively, the detection and the false alarm

probability distributions (when S = 0) defined as:

Pd([F
i
p = 1]) = PD, Pd([F i

p = 0]) = 1− PD, (5)

PD ∈ [0; 1],

Pf([F
i
p = 1]) = PFA, Pf([F i

p = 0]) = 1− PFA, (6)

PFA ∈ [0; 1].

Still in the Equations 3 and 4, it is needed to define the

parametric forms of p(R|τ) (external detection term) and

p(S|τ) (sampling term). Both terms are considered uniforms.

Concerning the external detection term it means that the de-

tection is equally likely to be triggered by the voxel occupancy

or by other causes anywhere along the viewing line of p.

Considering the sampling term, the uniform sampling means

that all the voxels that fall within a k× k window around the

pixel p have equal weight.

c) Image formation term: seeks to explain the color

information of a pixel (i, p), given the knowledge of the

background color model at this pixel and whether or not a

silhouette detection occurred at this pixel. This term is defined

as by two expressions, the first one for the case of silhouette

detection at pixel (i, p), and second for the case when no

silhouette detection occurred:

p(Ii
p|[F

i
p = 1],Bi

p, τ) = U(Ii
p), (7)

p(Ii
p|[F

i
p = 0], [Bi

p = (µi
p, σ

i
p)], τ) = N (Ii

p|µ
i
p, σ

i
p), (8)

where U i
p is the uniform distribution over the observed colors

when the silhouette is detected, since there is no knowledge

about the color of the objects of interest. And N (Ii
p|µ

i
p, σ

i
p)

is a normal distribution in (Y,U,V) space for each pixel,

that defines the color background model. The parameters

µi
p and σi

p are estimated from a set of background sample

images. Considering the brief presentation until here, the voxel

occupancy inference algorithm can be defined as shown in the

Algorithm 1.

Algorithm 1 Voxel occupancy inference

for each voxel X in the grid do

for each image i from each one of the cameras do

- calculate the X voxel projection in the image i

for each pixel p in the k × k window around the

projection of the voxel X do

p(GX |I,B, τ)∗ =
∏

i,p
p(Ii

p|GX ,Bi
p,τ)∑

GX

∏
i,p

p(Ii
p|GX ,Bi

p,τ)

end for

end for

end for
* Sum of log probabilities

B. Representation Model

The representation model defines how the interested objects

are ”seen” by the motion tracking method. It is composed

of two main parts: the appearance model and the skeletal

kinematic model.

The appearance model is composed of a set of associated

Gaussian blobs [36]. As the human body is an articulated

object composed of rigid parts, each blob models a rigid body

part of the tracked person. A blob is a Gaussian distribution

in tree dimensions often represented by an ellipsoidal shape.

Its mean position is given by

µX =
(

µx µy µz

)T
, (9)

while the surface is defined by a standard deviation around

the mean, defined by

σX =







α̂2
x αxy αxz

αxy α̂2
y αyz

αxz αyz α̂2
z






. (10)
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These geometric shapes enclose the occupied voxels belong-

ing to objects’ rigid parts. The relation between the occupied

voxels of the grid and the blobs is given by the Mahalanobis

distance: closer voxels have greater probabilities of belonging

to a certain blob. The basic components of the representation

model are illustrated in Fig. 2.

(a) Ellipsoid (b) Ellipsoid attached to
a bone

Fig. 2. Representation model: (a) the appearance model is composed of
ellipsoidal geometric shapes (Gaussian blobs), which represent the human
body rigid parts; (b) the skeletal kinematic model is composed of a set of
joints and limbs with the ellipsoids attached to it.

This statistical approach is good to model body parts and fits

well with the probabilistic reconstruction method employed,

however it carries no information about the relationship be-

tween connected body parts, e.g. the position of the hand

depends on the position of the arm, which depends on the

chest. To tackle these difficulties the skeletal kinematic model

is introduced.

The skeletal kinematic model, adapted by the authors from

the model presented by Caillette [36], is shown in Fig. 3. It

describes the kinematic relationship between rigid body parts.

In the human body the moving parts are the limbs which

are hold together by joints. A hierarchical skeletal kinematic

model is used, in which the bones are attached to joints in a

tree structure. These joints are linked one to another from the

root of the skeleton (in the pelvis) to the leaves (hands and

feet). The kinematic skeleton presents two important functions:

it is used to constrain the movement of the blobs to valid poses;

and it can be used to interpret the resulting poses of the body.

Into the present approach only the main parts of the human

body are represented in the skeletal model, such as torso, arms

and legs. Smaller parts, e.g. hands and fingers, are neglected,

since the resolution of the 3D reconstruction is not high

enough to allow the effective observation of these tiny parts.

Another important issue related to the model is the definition

of the joints. The interdependence between the adjacent body

parts movements creates complex constraints in the rotation

of the joints.

Basically, a kinematic model can be employed in direct or

inverse kinematic problems. In the first scenario the model

state is determined according to a defined set of joints param-

eters. In the latter situation, the set of joints’s angles must

be found as a function of a determined model pose. The

inverse kinematic problem is usually solved as an optimization

problem.

The global position of the model, concerning the root of the

kinematic hierarchical tree, is defined by 6 parameters (i.e. 3

for translation and 3 for rotation). The position of each node

(joint) is defined according to the position of the parent node.

Considering this, the position of a leaf (e.g. foot) is obtained

through the application of recursive transformations from the

root to the leafs. The Euler angles were used to encode the

joints’ configurations.

The joints of the model are represented by {J1, J2, ..., J21}
and the root is located in the pelvis region. All the joints

are modeled with 1 degree of freedom (rotation around a

fixed axis) because simplicity and performance reasons. More

complex joints are indeed ensembles of single joints. To exem-

plify the functioning of the kinematic model, a transformation

between a joint Jti−1 and its child joint Jti is defined by

a rotation θi around the axis wi in the Jti−1 coordinate

system. The rotation is followed by a translation li which is

correspondent to the length of the bone which link both joints.

The global and final position of the joint Jti is defined by Pi

after the applied rotation and translation. The maximum and

minimum possible values for each joint angle θi are in the

interval [θ−i , θ
+
i ].

Fig. 3. Skeletal kinematic model, with the root and the other joints
{J1, J2, ..., J21}.

C. Tracking Algorithm

The tracking algorithm matches the representation model

to the 3D occupancy grid at each time instant, finding the

most likely pose of the tracked person in a given frame.

The proposed approach is composed of four steps: i) ini-

tialization, ii) updating blobs’ parameters using Expectation-

Maximization (EM), iii) kinematic model pose estimation by

the means of Cyclic-Coordinate Descent (CCD) method, and

iv) realignment of the blobs with the kinematic model (bones).

Each of the steps is detailed below and shown in diagram of

Fig. 4.

i) Initialization: In the first frame of the video sequence

the pose of the representation model needs to be initialized.

In this work a manual adjustment of the model has been

employed. The user must adjust the pose of the skeletal

kinematic model, along with the associated Gaussian blobs,

to the reconstructed 3D volume in the first frame of the

sequence. The defined pose is saved and can be reused in other

videos without the necessity of repeating the process. This

mechanism, although manual, allows the tracking of people in

any initial pose.

ii) Updating Blobs with EM: From a previous frame of a

video sequence, the representation model needs to be matched

to the current human body pose. To perform this iterative

matching through the frames, the EM algorithm is used [37]. In

this process the Gaussian blobs’ parameters are updated from



JOURNAL OF COMMUNICATIONS AND INFORMATION SYSTEMS, VOL. 30, NO. 1, MARCH 2015. 104

Fig. 4. The tracking process is summarized by the diagram showing all
algorithm’s steps.

the previous 3D reconstruction frame. In the Expectation step,

each voxel of the current frame is associated with the blob

with the highest probability of representing that body part,

given by the minimal Mahalanobis distance between the voxel

and the blob. Then, in Maximization step, the mean vector and

covariance matrix of the blobs are estimated according to the

associated voxels.

iii) Kinematic Model Pose Estimation: Using the new

position of the blobs, given by the EM algorithm in the

previous step, the skeletal kinematic model is updated in two

phases. First, goal unconstrained positions for the joints are

obtained from the associated blobs parameters. Second, which

is an inverse kinematic problem, the joints’ parameters (joints’

angles) must be determined, given the goal positions defined

by the blobs in the previous step. A simple approach for the

problem is the Cyclic-Coordinate Descent (CCD) algorithm,

an iterative local optimization method [36]. Each joint of the

skeleton is optimized in an independent way, from leaves to

the root. The optimization consists in minimizing the error

between the joint positions and their goal positions. Joint

angular limitation is applied by clamping the resulting angle.

As shown in Fig. 2, each blob is attached to a bone in

the skeletal model. This attachment can be seen as a virtual

spring, which pulls the bone towards the blob’s position and

orientation; the former is defined by the mean, while the latter

is given by the biggest axis of the blob. The Algorithm 2

calculates the goal positions for the kinematic model joints. It

typically needs only a few iterations to generate a satisfying

solution. Further details are provided in [36].

After the goal joints positions calculation, the inverse kine-

matic problem must be solved, which means that the global

configuration of the skeletal model needs to be determined

according to the goal positions and to the models’ constraints.

In this context, the global position and orientation of the root’s

kinematic tree is defined by the ordered pair (P0, R0); ri
defines the local rotation of θi over the local axis wi, and

ti the translation of length li along the first axis of the local

coordinate system. The global position Pi of the joint Jti is

calculated recursively in the kinematic chain {Jt1, ..., JtNJ
}

as follows:

Algorithm 2 Calculation the goal joints positions

while the sum of the squared distances between the goals

from the last iteration and the current ones is below a pre-

defined threshold do

1. compute the goal position for the tip of the current

joint using the base of the joint as a fixed rotation point;

2. translate the goal positions of the base and tip of each

joint so as to minimize the projection error of the mean

of the blobs onto the bone;

3. optimize the goal position of the base of the joint using

this time the goal position of the extremity of the joint

as a fixed rotation point;

4. the goal position coming from both the current joint

and its parent are merged into a single goal position;

end while

Pi = Pi−1 +Ri.ti (11)

where,

Ri = Ri−1.ri. (12)

Considering these two equations, the direct kinematic for-

mulation is defined by

Pi = P0+R0.r1(t1+r2(t2+(...+ri−1(ti−1+riti)))). (13)

This is the formulation for the definition of the entire

skeletal kinematic model. The intermediate and recurrent

calculations are stored to reuse, avoiding unnecessary com-

putation. Another important optimization adopted was the

implementation of the local rotations ri using quaternions [38],

which allow the speed up of rotations calculations, specially

when ti is null.

Considering this formulation of the direct kinematic, the in-

verse kinematic problem is solved using the Cyclic-Coordinate

Descent (CCD) approach. The CCD is a local iterative opti-

mization method. In this method each joint of the kinematic

skeletal model is optimized independently, from the leafs up

to the root of the hierarchical tree. The CCD method tries

to minimize the distance between each joint, and its children

joints, and their goal positions calculated in the previous step.

In this context, lets consider a joint Jti and its chil-

dren joints {Jti,1, ..., Jti,n}, with global position given by

{Pi, Pi,1, ..., Pi,n} and goal positions {Gi, Gi,1, ..., Gi,n}.

Considering the simplest optimization problem, which would

be the optimization of the joint Jti alone or just with one child,

the unique degree of freedom of such joint is the rotation θi
over the axis wi. Thus, the aim is to calculate the variation

∆θi which minimize the distance between the joint position

Pi,1 and the goal position Gi,1.

The position of the joint Jti base is Pi−1, thus lets consider
~P =

−−−−−→
Pi−1Pi,1 and ~G =

−−−−−→
Pi−1Gi,1. In this context, the angular

variation ∆θi which minimizes the distance between Pi,1 and

Gi,1 also maximizes the scalar product between ~P and ~G,

having the following expression [39]:
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∆θi = arctan
wi.(~P ∧ ~G)

~G. ~P − (~G.wi).(~P .wi)
. (14)

The Equation 14 find a solution in the interval ∆θi ∈
[

− π
2 ,

π
2

]

. To allow a smooth movement between all the

joint of the kinematic tree, an attenuation coefficient η is

introduced. This attenuation also limits undesirable oscillations

while all the joints are being optimized simultaneously towards

contradictory goal positions. In each iteration the angle θi is

updated according to the following equation:

θi = θi + η.∆θi, (15)

where the coefficient η controls the convergence rate. The

employed value was determined empirically as η = 0.3.

From this point, lets consider the existence of more than

one child of the joint Jti with goal positions to be achieved.

The analytical calculation of ∆θi becomes a complex task.

Thus, a heuristic is employed to combine all the individual

optimizations of the the joints. Lets denote {∆θi,1, ...,∆θi,k}
as the variations calculated in the Equation 14. The angular

variation for the current joint Jti is the weighted summation

of the individual angles, as follows:

∆θi =
1

∑k

j=1 λi,j

.

k
∑

j=1

λi,j∆θi, (16)

where {λi,1, ..., λi,k} are the weights which gave more im-

portance to the goals closer to the root of the kinematic tree.

If the weights were uniform, the goal positions closer to the

root of the kinematic model would just be partially optimized,

while the the goal positions near to the kinematic chain’s

extremities would be favored by their more frequent updates.

Considering this, λi,j is equal to the inverse of the number of

joints separating Jti to the joint associated with the goal Gi,j .

iv) Realignment of the Blobs with the Bones: The last step

is to realign the blobs with the bones of the skeletal model.

Since the blobs’ shapes are supposed to remain the same

through the tracking, the regeneration of the blobs consists

in a series of rotations and translations along the skeleton

kinematic tree. According to [36], lets assume that the blob

B is attached at an offset α̂ along a bone of the skeletal

model, lets denote by P the global position of this bone

obtained after application of the kinematic constraints, and

lets denote by R the associated rotation matrix. The corrected

mean µ′
X is computed as a simple conversion from local to

global coordinates given by

µ
′

X = P +R.





α̂

0
0



 , (17)

while the corrected covariance matrix σ
′

X of blob B is given

by

σ
′

X = R.







α̂2
x 0 0

0 α̂2
y 0

0 0 α̂2
z






. (18)

IV. IMPLEMENTATION

The proposed methodology was implemented using the C++

programming language and OpenCV and OpenGL libraries.

The developed software executes all the stages of the method,

from the 3D reconstruction until the markerless human track-

ing. The software tool includes a visualization functionality,

as can be observed in Fig. ??, and it also allows the entire

configuration of method’s parameters by the means of the

graphical interface shown in Fig. ??. Besides this, the software

is also fundamental in the initialization of the representation

model, which is performed as a interactive process. The user

should select each joint and visually adjust the approximated

angles between articulations. The blobs must also be attached

to the bones of the skeleton. The initialization defined by the

user can be saved by the software tool and reloaded to be used

as the initial configuration of other videos sequences.

Fig. 5. Data visualization interface.

Fig. 6. Parameters configuration interface.

V. EXPERIMENTS AND RESULTS

Several experiments were performed to assess all the differ-

ent parts of the proposed methodology. The video sequences

of moving people were obtained in the public online dataset

4D Repository [10]. The repository contains a set of live and

dynamic events, such as human activities, captured using the

multi-camera platform GRImage [11]. The dataset provides,

for each sequence: i) the calibration information for the multi-

camera set up, ii) images acquired from multiple cameras,
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iii) silhouettes extracted from these images by eliminating the

background, iv) reconstructed mesh geometry at different time

frames. Fig. 7 shows a 3D probabilistic occupancy grid, while

a isosurface showing only the voxels with a defined probability

of occupancy is shown in Fig. 8.

Fig. 7. Four frames of the 3D occupancy grid of the observed environment
where a person moves. The red regions represents the higher probabilities of
the voxels to be occupied. Visualization performed with the Vis5D software
[34].

Fig. 8. The isosurface of probability 0.70 in the occupancy grid. Visualization
performed with the Vis5D software [34].

Concerning the tracking process, experiments were realized

to evaluate the effectiveness of the pipeline shown in Fig. 4.

The iterative tracking process is initiated by the EM algorithm

which adjust the Gaussian blobs to the new frame voxels. From

this step the goal positions for the kinematic model joints are

obtained, as shown in Fig. ??(a). These positions are the input

of the kinematic model pose estimation, where the inverse

kinematic problem is solved using the CCD method, shown

in Fig. ??(b). Finally the Gaussian blobs are realigned to the

skeletal model, which is shown in Fig. ??(c).

(a) New goal positions
denoted by the (red)
dots.

(b) Kinematic model
pose estimation with the
CCD method.

(c) Realignment of the
blobs to the kinematic
model.

Fig. 9. Kinematic-based tracking process.

The CCD algorithm functioning is illustrated in Fig. 10.

From a initial state of the kinematic model and a set of goal po-

sitions, the method iteratively minimizes the distance between

the joint and the goal positions. It can be noticed that in the

final configuration some of the joints are not exactly located

over the goal position. It happens because the optimization

is performed considering the kinematic constraints over the

global model.

Fig. 10. Four iterations of the Cyclic-Coordinate Descent (CCD) algorithm,
from the goal positions (red dots) and the initial model state (left), to the
optimized final configuration (right).

Besides the evaluation and the experiments performed with

some of the individual parts of the methodology, an overall

assessment was realized. To this purpose a video sequence was

used, which consists of a dancer performing dance movements

captured by eight synchronized and calibrated RGB cameras

positioned around the environment, shown in Fig. 11. In

Fig. 12 a volumetric reconstruction of the human body is

shown, along with the correspondent representation model.

The tracking process was executed over the sequence and

Fig. 13 shows three frames of the volumetric reconstruction

from the eight cameras’ views. Fig. 14 shows the tracked

representation model pose for the same frames presented in

Fig. 13. As can be observed, the kinematic model imposes

restrictions to the body pose. Doing so, the tracking process

became more robust, once the model cannot assume invalid

poses. The appearance model just along with the tracking

algorithm is not capable of achieve such performance, because

it does not present the semantic information concerning the

human body configuration embedded in the skeletal kinematic

model.
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Fig. 11. Sample input images from eight synchronized cameras at a given
instant.

Fig. 12. Sample results: the 3D probabilistic reconstruction of the tracked
human body (left), the resulting pose of the human body representation model
(skeletal kinematic model and associated Gaussian blobs) (right).

Fig. 13. 3D probabilistic reconstruction.

Fig. 14. Dancer representation model pose, composed of the skeletal
kinematic model and the associated Gaussian blobs.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented an approach for the visual 3D mark-

erless human body tracking in an environment monitored by

multiple cameras. The method employ the volumetric recon-

struction of the environment obtained by means of a 3D proba-

bilistic occupancy grid. The markerless 3D tracking of human

body is achieved by the use of a skeletal kinematic model

associated to Gaussian blobs. Such representation model is

iteratively updated by the Expectation-Maximization method,

along with the Cyclic-Coordinate Descent algorithm, which

solves the inverse kinematic problem. The main contribution

of the proposal is to employ a kinematic model over a 3D

probabilistic occupancy grid, what is still not extensively

investigated in the literature. The tracking algorithm performed

successfully as shown by the obtained results. The kinematic

model limit the blobs positions to valid human body poses,

besides adding semantic meaning to the representation model.

As future works, a quantitative evaluation of the results is de-

sirable. More experiments also must be performed to precisely

determine strengths and limitations of the methodology.
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