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High Level Event Detection based on Spatial
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Abstract—This paper describes a new approach for event
detection in video sequences. A tracking algorithm for oblique
camera setups is initially used to extract trajectories in a training
period, and a map of spatial occupancy of the scene is built. In the
test stage, Voronoi Diagrams are used to obtain some information
regarding interpersonal relationships, such as distances from
neighbors, formation and classification of groups. A variety of
complex events can be detected through a query formulated by
the user, that may combine concurrent or sequential occurrences
of simpler events based on either spatial occupancy or interper-
sonal relationships (e.g. group formation in a region with small
spatial occupancy). These queries can be used to detect events
on-the-fly as the video is processed, or applied to stored video
databases.

Index Terms—People tracking, event detection, spatial occu-
pancy, interpersonal relationships.

I. INTRODUCTION

W ITH the decrease in price and increase in quality

of video acquisition systems, the analysis of human

motion from video sequences has become an important topic

of research in the computer vision and pattern recognition

communities, with several applications [1]–[3]. Among these

applications, automatic or semi-automatic algorithms for video

surveillance have gained increased attention in the past year,

aiming to prevent criminal actions or terrorist actions.

In general, a suspect behavior can be characterized by

several different aspects, such as motion (spatial occupancy),

interaction with other people and the environment, gait analy-

sis and gesture analysis, among others. This paper focuses on

event detection based on two main aspects: spatial occupancy

and interpersonal relationships. In a training period, people

captured by a static camera are tracked using computer vision

algorithms, and they are expected to follow designated pedes-

trian paths in structured environments. Based on the extracted

trajectories, a Spatial Occupancy Map (SpOM) [4] of the scene
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is obtained, and it provides the location of expected flows

of people. In the evaluation stage, we explore the temporal

evolution of Voronoi Diagrams (VDs) to extract aspects related

to interpersonal relationships, such as distance from neighbors

across time, group formation and classification [5]. Simple

events regarding either the spatial occupancy or interpersonal

relationships can be easily detected, such as the detection

of people walking on an unoccupied portion of space, or

the formation of a voluntary group. The user can then use

a specific grammar that allows the combination of these

simple events to formulate more complex queries, and a finite

automaton is used to match occurrences of these queries in

video sequences. Such match can be performed on-the-fly, as

the video is executed, or in stored databases.

The remainder of this paper is organized as follows. Sec-

tion II presents some related works concerning event detection,

while the proposed approach is presented in Section III. Some

experimental results are provided in Section IV, Finally, the

conclusions are presented in Section V.

II. RELATED WORK

Several authors have presented methods for understanding

the motion/behavior of people filmed by static cameras. There

is a great variety of approaches and applications, ranging

from global (crowd behavior) to local analysis (tracking of

individual trajectories or body parts). Within this range of

applications, there are methods that explore the coherence of

tracked trajectories for unusual behavior detection, and others

that rely on people interactions for motion understanding.

Some of these techniques are briefly revised next (a more

comprehensive review on human motion understanding and

surveillance can be found in the survey papers [3], [6], [7]).

A. Motion Analysis

Part of existing method focus on trajectory coherence.

Junejo et al. [8] proposed a method for detecting noncon-

forming trajectories of objects as they pass through a scene

by comparing spatial similarity, velocity characteristics of

trajectories and curvature features.

Fuentes and Velastin [9], [10] proposed event detection al-

gorithms based on trajectories and foreground blobs designed

for closed-circuit television (CCTV) surveillance systems. In

their approach, some pre-defined events involving two or more

persons can be detected (such as fights, attacks and vandalism),

but the concept of grouping was not explicitly used.

Weiming et al. [11] presented a system for automatically

learning motion patterns for anomaly detection and behavior



JOURNAL OF COMMUNICATIONS AND INFORMATION SYSTEMS, VOL. 30, NO. 1, MARCH 2015. 61

prediction. To learn motion patterns, trajectories are clustered

hierarchically using spatial and temporal information and then

each motion pattern is represented with a chain of Gaussian

distributions. In a similar approach [12], trajectories are clus-

tered hierarchically using spatial and temporal information, to

learn activity models. The proposed retrieval framework sup-

ports various queries including queries by keywords, multiple

object queries, and queries by sketch.

Jung et al. [13] used motion displacement vectors to charac-

terize trajectories, and proposed a clustering approach based on

mixtures of Gaussians (where each component of the mixture

represents one cluster). Their approach also includes a 4D

histogram that models the position and the local velocity

of each cluster, allowing the detection of transition points

between clusters, bifurcation points and confluence points.

The group of Wang [14] proposed a technique for trajectory

analysis that simultaneously learns activities and semantic

regions1, which are jointly modeled using Dual Hierarchical

Dirichlet Processes. With the detection of the semantic regions,

other information can be obtained such as entry and exist

points.

Morris and Trivedi [15] proposed a framework for live video

analysis in which the behaviors of surveillance subjects are

described using a vocabulary learned from recurrent motion

patterns, for real-time characterization and prediction of future

activities, as well as the detection of abnormalities. A three-

stage process was used: learning interesting nodes by Gaussian

Mixture Modeling, connecting routes using trajectory clus-

tering, and encoding spatio-temporal activities using Hidden

Markov Models (HMMs). Hu and colleagues [16] presented

an incremental DPMM (Dirichlet Process Mixture Model)

to cluster, model and retrieve trajectories. Each trajactory

extracted by trackers is represented in the frequency domain,

and clustered using an incremental DPMM that learns the

number of clusters and can be updated on-the-fly (temporal

changes in each trajectory can be detected as well, by using

smaller tracks to build each trajectory). Also, a sketch-based

scheme can be used to retrieve trajectories stored in a database

based on similarity.

B. Human interactions

Another class of approaches focus on people interactions.

Buxton and Gong [17] described a method to determine

individual people behavior using Bayesian networks. In their

approach, the objects dynamics are tracked and their behaviors

are described as Bayesian networks, which contain information

such as time and events. To classify events, the system

classifies agents proximity as: not near, nearby, close, very

close and touching.

Hosie and collaborators [18] proposed a method for group

behavior detection that relies on pair primitives, which are

pre-defined movements that can occur between two targets in

the scene over one time sample. Oliver et al. [19] explored

Coupled Hidden Markov Models (CHMMs) to model and

recognize human tasks. Du and collaborators [20] proposed a

1In [14], semantic regions are the intersections of paths commonly taken
by objects.

similar approach using Dynamic Bayesian Networks (DBNs)

instead of CHMMs. These approaches are able to detect some

kinds of pre-defined human interactions (such as follow, or

approach + talk + continue together), but are also limited

mostly to interactions between two persons only.

Gong and Xiang [21], [22] explored Dynamic Probabilistic

Networks (DPNs) for modeling temporal relationships among

a set of different object events in the scene for a coherent and

robust scene-level behavior interpretation. Although grouping

is embedded in their approach, the main focus is activity

recognition. Also, psychological aspects are not considered

for grouping purposes. Wang and collaborators [23] proposed

an approach for unsupervised activity perception in crowded

scenes. Their method models atomic activities as low-level fea-

tures, and multiagent interactions are modeled as distributions

over atomic activities, using hierarchical Bayesian models

based on Dirichlet processes. The whole model is based on

motion cues, and not individual tracking.

Liu and Chua [24] presented a new method for modeling

and classifying multi-agent activities based on observation de-

composed hidden Markov models (ODHMMs), also proposed

by the authors. In their approach, pre-defined activities with

interacting people can be trained, using the relative distances

between any two people as feature vectors. Despite the good

results achieved for detecting “Snatch Thefts”, the proposed

method presents a high computational cost as the number

of agents increases. Furthermore, tests were performed using

manual tracking of people, making its practical application

difficult to evaluate.

Wang and collaborators [23] proposed an approach for

unsupervised activity perception in crowded scenes. Their

method models atomic activities as low-level features, and

multiagent interactions are modeled as distributions over

atomic activities, using hierarchical Bayesian models based

on Dirichlet processes. The whole model is based on motion

cues, and not individual tracking. Although such approach may

be adequate for crowded scenes (where individual tracking is

very difficult), the lack of temporal coherence of motion cues

can inflict in some errors.

Ryoo and Aggarwal [25] presented a methodology for au-

tomated recognition of complex human activities, recognizing

high-level human actions and human-human interactions. In

their approach, the user encodes the structure of a high-level

human activity as a formal representation using a context-free

grammar, and human activities are recognized by semantically

matching constructed representations with actual observations.

Their methodology allows the representation and recognition

of complex human activities with a high recognition rate, but

limited to two-person interactions. Ge et al. [26] proposed a

method to discover pedestrian groups in a video sequence,

using trajectories that projected into the ground plane and

hierarchical clustering approach to identify and merge/split

small groups of people. Cheng et al. [27] represented the prob-

lem of group activity recognition by a three-layered approach

that gathers information about the individuals performing the

actions, the possible pairs between two people and small

groups.

Despite the existence of several approaches for event de-
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tection based on trajectory coherence or simple interactions

among people (mostly, between two persons), as far as we

know there is no method that combines these two criteria in

an efficient manner. This paper proposes a new method that

explores Spatial Occupancy Maps (SpOMs) and interpersonal

relationships to detect a broad variety of events, that can be

formulated through queries using a grammar that contains

simpler individual events. The proposed method is described

next.

III. THE PROPOSED APPROACH

A. People Tracking

The first step for automatic event detection is to obtain the

trajectory of each person captured by the camera (tracking).

Even though there are many approaches for people track-

ing [28]–[36], there is no gold standard that works well in all

situations, with particular problems in the presence of shadows

and people walking together. Although the focus of this paper

is not on tracking itself, a new approach for people tracking

considering specific camera setups (position and orientation of

the camera) was developed, and it is briefly presented next.

1) Background Subtraction: As in most tracking algorithms

with static cameras, the initial step of our algorithm is back-

ground subtraction. We adopted a simple and fast approach

that includes shadow/highlight removal [37] to extract fore-

ground blobs. In summary, the temporal median of each pixels

is adopted as the background model, and the standard deviation

of each pixel across time is computed. The distribution of the

standard deviations for all pixels is used to obtain an estimate

of the camera noise, and local spatial coherence is explored

for foreground/background discrimination. Then, an approach

for shadow and highlight detection based on pixel ratios is

applied to remove foreground blobs generated by illumination

changes.

The adopted background subtraction procedure can indeed

prevent light shadows from being detected as foreground

pixels, but strong (dark) shadows are still wrongly classified as

foreground pixels, which may produce persons with very large

blobs or connect different persons into the same blob. To iden-

tify each individual person from extracted blobs, the expected

vertical position of a standing person in the projected image

is searched, as explained next. With the proposed approach,

cast shadows that are not aligned with the expected body

orientation in image coordinates can be effectively discarded.

2) Camera Calibration: In this work, we assume that

people walk on an approximately flat region. Given a set of 3D

world coordinates (x, y, z), the mapping2 to image coordinates

(u, v) is given by a function (u, v) = fi(x, y, z) given by [38]:

u =
c1x+ c2y + k1z + c3
c7x+ c8y + k3z + 1

,

v =
c4x+ c5y + k2z + c6
c7x+ c8y + k3z + 1

.
(1)

Fig. 1 illustrates the coordinate axis uv (image) and the xy
axis (world) adopted in this work. The z axis is orthogonal to

the xy plane.

2In this work, radial distortion was not considered.

y

x

u

v

Fig. 1: Image axis in image (uv) and world (xy)

coordinates for our environment.

To obtain the parameters ci, i = 1, ..., 8, we first use the

plane-to-plane mapping at z = 0 (i.e., the ground). We select

Nc ≥ 4 points on the ground, measure their coordinates in

both world coordinates (x, y, 0) and image coordinates (u, v),
and solve Equation (1) for ci. If Nc > 4, an overdetermined

system arises, and it is solved by minimum squares. In fact, it

is advisable to use Nc > 4, to account for measurement errors

(we used Nc = 6 in our calibration).

Once the ground plane is calibrated, it is possible to use the

expected height and geometry of standing people to estimate

the values for ki, i = 1, 2, 3. For that, a set of frames

containing people is selected, and Nk ≥ 2 persons distributed

in different positions of the ground plane are selected. The

position of the feet corresponds to a point (uf , vf ) in image

coordinates, that relates to a position (xf , yf , 0) in world

coordinates. If a certain position (u, v) in image coordinates

is known to be in a certain height z in world coordinates,

then it is possible to solve Equation (1) for (x, y), so that

(x, y) = fw(u, v, z). In particular, when z = 0, the function

fw(u, v, 0) is given by

x =
(c8c6 − c5)u+ (c2 − c3c8)v + c3c5 − c2c6

(c5c7 − c4c8)u+ (c1c8 − c2c7)v + c2c4 − c1c5

y =
(c4 − c6c7)u+ (c3c7 − c1)v − c4c3 + c1c6

(c5c7 − c4c8)u+ (c1c8 − c2c7)v + c2c4 − c1c5

, (2)

and then (xf , yf) can be computed from (uf , vf ).

The position of the head (in pixel coordinates) is given by

(uh, vh), and assuming that the person is standing straight,

it corresponds to a position (xf , yf , h) in world coordinates,

where h is the height of the person. To simplify the procedure,

we assume that all persons have an average height hm = 1.7m,

and then solve Equation (1) for ki, using (u, v) = (uh, vh),
(x, y, z) = (xf , yf , hm). Again, to cope with measurement

errors, it is advisable to use Nk > 2 (we used Nk = 10), and

then solve Equation (1) by minimum squares.

It is important to note that this calibration procedure is

manual, but it is performed only once (assuming that the

camera is stationary). The measurement of control points on

the ground in world coordinates must be carried out on site,
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Fig. 2: Orientation field o(u, v) used to detect standing

people for tracking.

and the procedure to compute ki can be achieved by mouse

clicking on the feet and head of selected subjects.

3) Head estimation: One way to track each individual

person across time is through head tracking. To detect the

head, we assume that people move in a standing position, and

the head is the uppermost portion of the body. To estimate

the orientation of a standing person in image coordinates,

we first retrieve the lowermost point of the foreground blob

(which will be probably close to the ground plane). Given

this position (u, v) in image coordinates, we compute the

corresponding point (x, y) = fw(u, v, 0) in world coordinates

using Equation (2), making the assumption that it lies on the

ground plane (i.e., z = 0).

Assuming a standing person, the top of the head will

have world coordinates (x, y, h), where h is the height of

the person (again, we assume that all persons have an av-

erage height hm = 1.7m). Such point relates to a position

(u′, v′) = fi(x, y, hm) in image coordinates, that can be

computed directly from Equation (1). Hence we have a vector

field

o(u, v) = (u′, v′)−(u, v) = fi (fw(u, v, 0), hm)−(u, v) (3)

that provides the expected orientation in image coordinates

for a standing person whose bottom (foot) is located at pixel

(u, v).

Fig. 2 illustrates the vector field o(u, v) overlaid to a frame

captured by our camera. It can be observed that o(u, v) is

effectively aligned with the orientation of standing people in

the image.

On a frontal/lateral camera setup, we can assume that the

head of the person is at the center-top of the foreground blob

of the person. In this case, to estimate the head position,

a histogram of the person’s foreground blob (where each

histogram bin corresponds to one column of the person’s blob

image) can be computed. The center-top of the head estimation

will be given by the peak of this histogram, and the coordinates

will be the bin (column) of the peak and the corresponding

peak value (row).

Although this works well in some cases, such basic proce-

dure does not work when a camera is positioned obliquely to

a scene - which is our case. Fig. 3(c) shows an example were

this technique erroneously estimates the head at the person’s

backpack. In the case of oblique cameras the body orientation

must be estimated for every pixel of the image (see Fig. 2).

Once the body orientation is computed, the head position

can be estimated by a similar procedure as the one described

above, but rotated by the corresponding body orientation

angle. Fig. 3(d) shows an example where the use of the body

orientation information generates a correct estimation of the

head. If blobs with large areas are detected, they are probably

related to more than one person in a close distance. In such

cases, local peaks of the histogram are used to extract the top

of the heads. When two persons enter the scene in a close

distance, only one foreground blob may be detected. In such

cases, local maxima of the oriented projection that present a

minimum height (1.4 meters) and are enough distant from each

other (1 meter) are retrieved as different heads.

(a) (b) (c) (d)

Fig. 3: Top of head estimation. a) Original object; b)

Background blob computed for the object; c) Top of head

estimation with no orientation estimation; d) Top of head

estimation with orientation estimation.

4) Tracking metric: One the head is estimated when a

person enters the scene, it must be followed in the adjacent

frames. There are several tracking algorithms using different

strategies for characterizing and following the desired tar-

get, such as kernel-weighted histograms [39], [40], multiple

fragments and histograms [28], or covariance matrices [29].

However, the desired targets in the proposed camera setup

can be considerably small (particularly in the far field), and

there are not enough pixels to estimate reliably the covariance

matrix or the histogram. Instead, a simple template matching

based on the Sum of Squared Differences (SSD) presented

good results. To reduce computational time and tracking errors,

the search region for the template T is reduced to a circular

region computed based on the maximum displacement for each

person in consecutive frames. This maximum displacement

is set in meters, and then converted to image coordinates

according to Equation (2).

To cope with appearance and illumination changes, the

template T is updated every Mf frames (we used Mf = 5 for

sequences acquired at 15 FPS). As a result of the tracking pro-

cedure, we have trajectories (xi(t), yi(t)), for t = 1, ..., Nf(i),
where Nf(i) is the duration (in frames) of the ith trajectory.

The proposed approach for people tracking presented good

results, but still presents problems when strong shadows are

aligned with the body’s orientation, when groups enter the

scene in nearby positions, and when persons with low-contrast

with respect to the background appear. However, it should
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be noticed that the main contribution of this work is not the

tracking procedure itself (which can be easily replaced by

other algorithms), but the analysis of tracked persons for event

detection, as explained next.

B. Event Detection

1) Spatial Occupancy Maps: As described in [4], a Spatial

Occupancy Map (SpOM) is an array that represents the spatial

occupancy of an observed region. In fact, the SpOM is

basically a 2D histogram that counts how many times each

image pixel (u, v) was occupied by a person at some time

during the training period.

The tracking algorithm described in this paper returns only

the center of the template that represents each person at

each frame t. To account for the dimension of the body, as

well as inaccuracy in the tracking procedures, we estimate

the histogram using an approach similar to Kernel Density

Estimation (KDE) [41]. In KDE, a kernel centered at each

observation is used to obtain an estimate of the Probability

Density Function (PDF) that models the data. In this work,

we employ a Gaussian kernel with standard deviation σ,

where σ is selected based on the expected dimensions of

a person. In [4], top-view cameras were employed, and the

camera calibration procedure was trivial (and the assumed

dimension of a person was the same at all positions). In this

work, however, oblique cameras are employed, and the size

of a person in image coordinates is highly dependent on the

position of the person, so the KDE-like procedure is applied

to world coordinates.

Let us consider N tracked people in the training stage, and

let Nf (i) denote the length of the ith trajectory (in frames).

Also, let (ui(t), vi(t)) denote the trajectory of ith person

in image coordinates. This trajectory is converted to world

coordinates (xi(t), yi(t)) = fw(ui(t), vi(t), 1.7), where fw is

the function defined by Equation (2), and 1.7m represents the

expected height of the template position in world coordinates.

Clearly, not all persons have the same height. To access

the error when using 1.7m as a default height, we analyzed

the error for all possible positions (u, v) in the image, and

varying z in the range of plausible heights [1.4, 2.0]. Thus,

the maximum error for each pixel (u, v) is given by:

E(u, v) = max
z

‖fw(u, v, 1.7)− fw(u, v, z)‖, (4)

where ‖ · ‖ denotes the Euclidean distance. For the scenario

analyzed in this work, such error varies from 0.07m to 0.90m,

the mean error (along all pixels) was 0.32m and the standard

deviation was 0.17m.

The 2D histogram in world coordinates estimated through

KDE is then given by

Sw
σ (x, y) =

N
∑

i=1

Nf (i)
∑

t=1

gσ (x− xi(t), y − yi(t)) , (5)

where gσ(x, y) is a truncated discrete bidimensional Gaussian

kernel, given by

gσ(x, y) =

{

1
c
e

−x2
−y2

2σ2 , if − 2σ ≤ x, y ≤ 2σ
0 otherwise

, (6)

and c is a normalization constant. In this work we used σ =
1m, which is a rough estimate of the body diameter.

Positions where the SpOM Sw
σ (x, y) is large may be con-

sidered “valid walkable regions”. In fact,it is possible to build

a binary map I(x, y) such that I(x, y) = 1 in valid positions,

and I(x, y) = 0 otherwise. This binary map is given by

I(x, y) =

{

1 if Sw
σ (x, y) ≥ Tspom

0 otherwise
, (7)

where Tspom is a threshold that informs the minimum spatial

occupancy for a valid region. As proposed in [4], Tspom is

computed adaptively from the SpOM by removing a portion

r of the smallest values of Sw
σ (x, y) (such discarded values

are associated with the spread produced by the tail of the

Gaussian, and a suggested value is r = 0.4).

Our hypothesis is that trajectories (or portions of the tra-

jectory) that are considerably far from the valid walkable

region may be considered unusual. Given a test trajectory

obtained with the tracking procedure (u(t), v(t)), we compute

the counterpart (x(t), y(t)) in world coordinates. We then

compute the minimum distance

di(t) = D (xi(t), yi(t)) , (8)

from the test trajectory to the valid region I(x, y) across

frames, and unusual portions of the trajectory are detected

when di(t) > Tdist. Here, Tdist is the maximum allowed

distance from the trajectory to the valid occupied region, and

D(x, y) is the Distance Transform [42] of the binary map

I(x, y). Although we believe that Tdist is context-dependent, a

suggested value is Tdist = 2m.

An example of the SpOM is illustrated in Fig. 4. Fig. 4(a)

shows the filmed environment along with captured trajectories,

and Fig. 4(b) illustrates the SpOM. Figs. 4(c) and 4(d) show,

respectively, the binary SpOM I and the Distance Map D.

In Figs. 4(b)-(d), the functions Sw
σ (x, y), I(x, y) and D(x, y)

were mapped to image coordinates for a better visualization.

Two analysis of trajectories are illustrated in Fig. 5.

Figs. 5(a) and 5(b) show two examples of trajectories overlaid

to the Distance Map, while Fig. 5(c) show the distance

function di(t) for Fig. 5(b). Again, in Figs. 5(a) and (b) all

functions were mapped to image coordinates for clarity. The

first trajectory was considered usual at all points, since its

distance from the valid region was always lower than Tdist,

hence its function plot is not shown. On the other hand, the

second trajectory was considered unusual near to the end. This

happened because the subject has entered an invalid region (the

grass patch at the left side of the camera image).

2) Interpersonal Relationships: The method described in

the previous section captures unusual behavior only based

on the spatial occupancy of a given trajectory, but does not

consider the possible relationships among tracked people. In

this work, we explored interpersonal relationships by ana-

lyzing the formation and classification of groups based on

sociological concepts, such as proxemics, comfort distances,

etc, as described in [5].

The term proxemics has been firstly proposed by Edward

Hall [43] in order to describe the social use of space (in

particular, personal space). Personal space is related to the
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(a) (b) (c) (d)

Fig. 4: (a) Filmed environment and tracked trajectories, (b) SpOM, (c) Binarized SpOM, (d) Distance Transform of (c).
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Fig. 5: (a)-(b) Trajectories overlaid to the Distance Transform, (c) Distances along the trajectory shown in (b).

area with invisible boundaries surrounding an individual’s

body. This area states as a comfort zone during interpersonal

communication, and can disappear in specific environments or

situations (e.g. elevators, dense crowds). Hall proposes four

main distances (see Table I) observed in American interac-

tions. Each distance has a particular meaning, in terms of the

kind of interaction that is expected to happen. Hall argues

that those meanings depend on culture, and also shows how

distance constrains the types of interaction that are likely to

occur.

In our approach, the position of each person (in world

coordinates) is used as a site to compute a Voronoi Diagram

(VD). As people move, the positions of the sites are modified

in time, generating a temporal evolution of Voronoi polygons

(called in this work Dynamical Voronoi Diagram, or DVD).

Then, the geometry of Voronoi polygons is explored to ex-

tract and quantify sociological and psychological individual

characteristics, which are used to detect the possible kinds of

interactions proposed by Hall [43]. As described in [5], the

evaluated characteristics are:

• The personal space (PS) for an individual is defined as the

area of the corresponding Voronoi polygon. In fact, such

choice matches the psychological principle of personal

space, since all the points in the interior of a Voronoi

polygon are closer to the site that generated this polygon

than to any other site.

• The Perceived Personal Space is defined as the area of

the region formed by the intersection of the vision field

and the corresponding Voronoi polygon. It provides an

estimate of the level of comfort, because it takes into

account the field of vision of the individual and his/her

PS.

• The distances from any person to neighbors is computed

using the VDs. In fact, the orthogonal distance from the

TABLE I: Hall’s classification for Personal Space.

Hall’s Classification Approximate distance Kind of interaction

Intimate distance up to 0.5 meters Comforting, threatening

Personal distance 0.5 to 1.25 meters Conversation between friends

Social distance 1.25 to 3.5 meters Impersonal business dealings

Public distance more than 3.5 meters Addressing a crowd

site of a VD to its polygon edges represents half of

the distance between this site and a neighboring site. It

should be noticed that the VD for a set of N sites can be

computed with complexity O (N logN) using a divide

and conquer algorithm [44], which is much cheaper than

performing an exhaustive search to compute pairwise

distances.

To detect group formation, we keep track of the distance

from each person to his/her neighbors (such distances are

provided directly by the VD) across time. If two or more

people keep short distances among them in a certain period of

time (let us denote this time period Tg, measured in frames,

and called grouping period), we consider that they form a

group. In practice, even a very strong group (e.g. a married

couple) can be apart during some frames, when avoiding

obstacles and/or other people, but still keeping the group link.

To cope with this kind of situation, we consider that two

individuals form a group if they keep an intimate distance

for at least a fraction p of the grouping period Tg, where

0 ≤ p ≤ 1.

Formally, let us consider two individuals Ii(t) and Ij(t) at

frame t, and define a binary function:

g(i, j, t) =

{

1 if d(Ii(t), Ij(t)) ≤ Dintimate

0 otherwise
, (9)

where d(Ii(t), Ij(t)) represents the distance between agents

Ii and Ij at frame t, and Dintimate = 0.5 meters is the distance
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for intimate relationship, as defined in Table I. Then Ii(t) and

Ij(t) are considered a group at frame t if:

t
∑

k=t−(Tg−1)

g(i, j, k) ≥ pTg. (10)

Our experimental results indicated that 5 seconds is enough

time for group formation (leading to Tg = 75 frames in video

sequences acquired at 15 frames per second), and p = 0.8.

However, such parameters can be fine tuned for specific

applications.

We also impose our grouping property to be transitive,

meaning that if Ii and Ij are grouped and Ij and Ik are also

grouped, then Ij and Ik must be also grouped. In this case, Ii,
Ij and Ik will be in the same group. Such transitive property

is important, because we can detect large groups using only

pairwise comparisons.

After detecting the formation of a group, we want to

characterize it as voluntary or involuntary. Group formation

may occur mainly in two situations: people can form a group

whether because they want to (e.g. friends) or because they

are forced to, due to lack of space (e.g. exiting a crowded

football stadium). It is reasonable to think that such group

characterization is related to the perceived personal spaces of

the individuals in the group: friends walking together in a non-

crowded environment may have plenty of PPS, but they choose

to stay close. On the other hand, if several people approach a

door at the same time then their PPS will be small, and they

will have no choice but to stay close to other people.

To characterize a group as voluntary or involuntary, we

evaluate the PPSs of all individuals of the group (which is

equivalent to evaluating the comfort of individuals). It is ex-

pected that, in voluntary groups, most people should have large

PPSs during the grouping time Tg. However, some individuals

may walk a little behind others, and consequently their PPSs

would be small, even if they belong to a voluntary group.

Therefore, to detect voluntary group formations, we check if

at least half of the persons in the group have sufficiently large

PPSs.

More specifically, let us consider a group with N persons,

formed by individuals I1, I2, · · · , IN . Let ci(t) be a binary

“comfort” function with respect to the public distance, which

returns 1 if person i is comfortable (large enough PPS), and

0 otherwise. Individual Ii(t) is said to be comfortable in the

previous Tg frames if:

t
∑

k=t−(Tg−1)

ci(t) ≥ pTg, (11)

where p is the same parameter used in Equation (10). The

group is qualified as voluntary at frame t if at least N/2
elements of the group satisfy Equation (11). Otherwise, the

group is characterized as involuntary.

An example of dynamic group formation can be illustrated

by the following: a person rapidly approaches and reaches

another person. Then he/she reduces his/her speed, so that the

two persons walk side by side at an intimate distance. After

some time (grouping time), a voluntary group is detected. A

higher-level interpretation of this grouping behavior could be

simply two friends meeting, or maybe a kidnapping situation.

In fact, as we shall describe in Section III-B3 that a finite

automaton could be easily implemented in the proposed model

to detect sequences of events that could be related to suspect

behavior, such as “approach” followed by “voluntary group”.

Moreover, the spatial occupancy of each tracked person could

be evaluated according to the method described in Section

III-B1, such that we could detect if the grouping was per-

formed in an usual or unusual portion of space.

It is important to note that the DVD can be explored to

compute several other interpersonal parameters. For instance,

the temporal analysis of distances between neighboring agents

can be used to detect approach or leave behaviors, and the

velocity vectors can be explored to detect what kind of

approach/leave is happening (e.g. from the front or behind). In

fact, these simpler events can be combined for the detection

of more complex behavior, as explained next.

3) Query Grammar and Finite Automaton: Sections III-B1

and III-B2 described different approaches for event detection

based on spatial occupancy and interpersonal relationships,

respectively. However, a combination of them may provide a

powerful tool for video analysis, where a variety of complex

events can be detected based on concurrent or sequential

combinations of simpler events. For instance, a possible theft

alarm could be issued when two people approach (one from

behind), group for a while, and then one of them leaves. It

should be noticed other recent papers [25], [45] also explore

grammars and complex activity recognition based on simpler

events, but as far as we know the present approach is the

first one to combine information about spatial occupancy and

interpersonal relationships (in particular, grouping effects).

The core of the proposed method is the detection of sim-

ple events (e.g. the formation and classification of groups,

approach or leave movements, permanence on valid or in-

valid regions), and to search for concurrent or sequential

combinations. Generally speaking, each kind of event can be

formally described through a grammar, which should have

enough flexibility to allow us to depict behaviors considering

the issues commented in Section III-B2. Hence, we represent

each simple event as a symbol, as illustrated in Table II. It is

important to note that the list of symbols shown in Table II

is not exhaustive, and can be complemented by other user-

defined symbols.

In order to represent more complex behaviors, these sym-

bols can also be combined through operators: concurrency

(+), sequence (−) and alternation (|). Using these operators,

it is possible to describe behaviors in a way very similar to

how we would describe them in real life, and assign a semantic

meaning to them. For instance, the expression (P )− (N), that

means an approach behavior followed by intimate grouping,

could be an indicative of a kidnapping situation (or just friends

meeting). We note that the construction of a composite behav-

ior is somewhat subjective, according to one’s interpretation

of it. For example, theft could be described by two distinct

expressions:

• approaching from behind, involuntary intimate grouping

and leaving to an invalid SpOM region: (P +A)− (N +
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TABLE II: Symbol table for the grammar.

Behavior Symbol

Approach/leave P/F

From the front/behind E/A

Valid/Invalid SpOM V/I

Valid/Invalid DT T/D

Social/Intimate Grouping C/N

Public/Personal Grouping L/S

Voluntary/Involuntary Grouping O/R

R)− (F + I)
• approaching from behind, then a combination of either

leaving to an invalid SpOM region or leaving to an invalid

DT region: (P +A)− ((F + I)|(F +D))

In order to look for such behaviors within a video sequence,

the expression is automatically converted to a finite deter-

ministic automaton through a semantic analyzer. In each new

video frame, the behavior of each subject is inferred, including

his/her own behavior in relation to other people. As the

automaton is a state machine, it “reads” the current behavior

of a subject and updates its state through a function depending

on the current state and behavior. When the automaton reaches

its final state, an alarm is triggered, causing the system

to highlight the related trajectories. Each unique complex

behavior corresponds to a different automaton. Moreover, we

can carry out additional queries to recorded video history.

IV. EXPERIMENTAL RESULTS

This section illustrates some behaviors that can be detected

using the proposed approach. All experiments were performed

in the same calibrated environment, and the maps used for the

spatial occupancy test (both SpOM and DT) are those shown

in Fig. 4.

In the first example, a query ((P + E) − O) + V was

formulated, aiming to detect meetings of two friends. With

this query, the systems looks for pairs of tracked people that

approach frontally and form a intimate group, at the same

time keeping in a valid region according to the SpOM. Fig. 6

illustrates some key frames of this event. Figs. 6(a) and 6(b)

illustrate frames related to “approach from the front while in

a valid SpOM region” ((P + E) + V ), while the frames in

Figs. 6(c) and 6(d) relate to “form an intimate group while in

a valid SpOM region” (O + V ).

A similar query was formulated in the second experiment,

aiming to detect group formation and splitting. The search

query was P − O − F , that relates to an approach behavior

(either from the front or behind), followed by voluntary

grouping, and then separation. Figs. 7 and 8 illustrate frames of

two video footages in which the desired behavior was detected.

In Fig. 8, one subject approached from behind, while the

scenario shown in Fig. 7 relates to a frontal approach. It is

interesting to note that the initial query could be refined to

detect the two situations separately: (P +A)−O− F would

retrieve only the first situation, while (P +E)−O−F would

retrieve only the second one.

The final example is presented in Fig. 9. In this example,

the formulated query (I|D) − (P + A) − O − F was fed to

the system, aiming to detect possible snatch thefts. This query

tries to find a person that starts in an invalid region (either

according to the SpOM or the Distance Transform regions),

follows another from behind, forms a voluntary group, and

leaves. Fig. 9(a) shows the first frame of the event defined by

the query, where a person is located in an invalid region. The

frame in Fig. 9(b) illustrates the approach from behind, and

the one in Fig. 9(c) the grouping. Finally, Fig. 9(d) relates to

a frame in which the possible thief is running away from his

victim.

It is important to note that a great variety of higher-level

events can be detected using appropriate query sentences. In

fact, a semantic meaning could be assigned to one ore more

sentences. For instance, the sentences (I|D)−(P+A)−O−F
or (P +A)−O−(F +(I|D)) could be related to snatch thefts

(the second sentence related to a escape in an unusual region

according to the SpOM or Distance Transform tests).

V. CONCLUSIONS AND FUTURE WORK

This paper described a new approach for event detection

based on spatial occupancy and interpersonal relationships.

A tracking algorithm suited for an oblique/tilted camera was

introduced to compute the trajectories of people, which are

used to build a Spatial Occupancy Map of the scene in a

training period. In the test period, several interpersonal events

are computed, and they can be combined with the spatial

occupancy criterion through a search query for the detection

of a wide variety of events.

Although we did not focus on any specific application, we

believe that the proposed approach may be applied to different

scenarios, from surveillance to the understanding of group for-

mation and classification. However, we believe that the main

problem for using our approach in widespread environments

is the limitation caused by tracking issues, particularly in

crowded scenes. Despite the relative efficiency of the proposed

tracking algorithm, there are still situations in which the

tracking will fail, and the use of multiple cameras [46] might

improve tracking results.

It is also important to note that the grouping algorithm

requires the computation of distances in world coordinates,

which is highly dependent on the accuracy of the tracking

algorithm. Nevertheless, these errors will usually show for

people far from the camera, hence not being a significant

concern.

As future work, the grammar could be extended in a number

of ways. For instance, at present we do not consider group at-

tributes, such as number of people, group area, approximation

and leaving time, etc. With these, we could determine, for

instance, if the approach was very quick or in a rather slow

way, or whether there are many people involved or not.

Another possibility is to also consider the body position of

individuals. Similarly to other papers (e.g. [25], [47], we could

analyze if an individual is standing, sitting, standing still, lying

down or even fighting with other(s). This could also be fed

into the grammar, in order to better portray some behaviors.

Finally, we envisage the use of additional acquisition equip-

ment to assist in the SpOM building process. For instance,

night vision cameras could greatly help during evenings, where
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(a) Frame 252 (b) Frame 280 (c) Frame 312 (d) Frame 430

Fig. 6: Grouping behavior: (a)-(b) two individuals are approaching; (c) individuals are in intimate distance; (d) individuals

keep moving together.

(a) Frame 133 (b) Frame 160 (c) Frame 272 (d) Frame 312

Fig. 7: Grouping behavior (frontal): (a)-(b) two individuals are approaching; (c) individuals meet and stay in intimate

distance for a while; (d) individuals are moving away from each other.

(a) Frame 150 (b) Frame 170 (c) Frame 200 (d) Frame 292

Fig. 8: Grouping behavior (from behind): (a)-(b) two individuals are approaching; (c) individuals meet and stay in intimate

distance for a while; (d) individuals are moving away from each other.

(a) Frame 147 (b) Frame 193 (c) Frame 217 (d) Frame 250

Fig. 9: Possible theft behavior: (a) note the individuals coming from the bottom of the frame and from an invalid SpOM

region - this can indicate that the second individual adopts a suspect behavior; (b) the two individuals are approaching; (c)

the individuals are in intimate distance and have stopped; (d) after a short period, the individuals start to go in different

directions and one of them is running.

traditional tracking methods usually fail due to the excessive

noise present in the camera image. These additional sources

could enhance the system reliability.
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EPFL (École Polytechnique Fédérale de Lausanne)
- Switzerland in 2000 supervised by Prof. Daniel
Thalmann. Her research interests include crowd
simulation, virtual humans animation and computer
vision. She is an Associate Professor in Computer
Science at PUCRS, where she supervises Posdocs
researchers as well as PhD, Master and undergrad-

uate students. She currently coordinates VHLab (Virtual Human Lab) where
projects supported by private companies and the Brazilian government are
developed. She has been a reviewer of important journals such as IEEE
TVCG, ACM TOG and CG&A, and conferences such as ACM SIGGRAPH
and Eurographics. Together with Prof. Daniel Thalmann, she is the co-author
of the book ”Crowd Simulation” firstly published by Springer-Verlag in 2007
and the second edition in 2012. She has authored and co-authored almost 30
peer refereed journal articles in the field of computer graphics and computer
vision and more than 80 papers in conferences.
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