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Abstract—This is the second part of the introductory tutorial
about information theoretic learning, which, after the theoretical
foundations presented in Part I, now discusses the concepts
of correntropy, a new similarity measure derived from the
quadratic entropy, and presents example problems where the
ITL framework can be successfully applied: dynamic modelling,
equalization, independent component analysis and cluster anal-
ysis.
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I. INTRODUCTION

IN this second half of the two-part tutorial on information

theoretic learning, we analyze a number of key ITL criteria

and methods and also discuss their use on some important

applications. The discussion starts from the notion of cor-

rentropy, an interesting higher-order statistical extension of

the classical concept of correlation, and also includes a brief

survey of pertinent works and case studies. In the following,

a representative selection of supervised and unsupervised

applications is presented, and is used as a background for

the exposition of important methods, like those based on

error entropy, unsupervised kernel criteria and independence.

It is our belief that this presentation will provide the reader

with a complete view on canonical ITL strategies and on its

potentialities.

The work is structured as follows: Section II brings the

definition of correntropy and discusses several instances of

application; Section III analyzes the use of ITL methods in

dynamic modeling, supervised and unsupervised equalization,

independent component analysis — including recent formu-

lations concerning finite fields and clustering; finally, Section

IV summarizes our conclusions and final remarks.

II. CORRENTROPY

The great majority of classical adaptive equalization meth-

ods and also of those based on ITL consider that the available
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data is independently distributed, which, in many cases, is not

true. Thus, Santamaria et al. [1] proposed a new measure that

is able to take into account both the statistical and temporal

structures of the signals. The proposed generalized correlation

function was termed correntropy, since it is directly related to

Rényi’s quadratic entropy estimated using the Parzen window

(see Section IV.B of Part I). Mathematically, correntropy is

defined as

v(t1, t2) = E[K(xt1 , xt2)], (1)

where xt is a stochastic process and K(·) is a kernel func-

tion. Likewise other ITL measures (see Part I), the Gaussian

function is usually employed as the kernel:

v(t1, t2) = E[G(xt1 |xt2 , σ
2)]. (2)

In this case, for a non-zero lag, the value of correntropy

asymptotically tends to the information potential [1], [2].

Correntropy can also be straightforward redefined for a pair

of random variables, X and Y

v(X,Y ) = E[G(X |Y, σ2)], (3)

which is formally denoted as the cross-correntropy between

X and Y .

There are two main interpretations for correntropy. The first

one associates it with a feature space interpretation that relates

nonlinearly with the input space, hence, using correntropy as

a Parzen kernel is equivalent to having a linear kernel in

a high-dimensional space (Hilbert Space) with reproducing

properties [3]. The second interpretation is that it is the integral

over the line xt1 = xt2 of the joint pdf estimated with Parzen

window, which powerfully indicates that correntropy can be

viewed as a measure of probability that the random variables

xt1 and xt2 are equal. Such view supports the notion of

correntropy as a generalized similarity measure.

Using a series expansion for the Gaussian kernel, equation

(2) may be rewritten as:

v(t1, t2) =
1√
2πσ

∞
∑

n=0

(−1)n

2nσ2nn!
E
[

‖xt1 − xt2‖2n
]

(4)

which involves all the even-order moments of the random

variable ‖xt1 − xt2‖. Through (4), it is possible to see that

this new measure includes the information provided by the

conventional covariance function. Furthermore, the authors

of [1] demonstrate that, in order to obtain the property

v(t, t − τ) = v(τ), the stochastic process must be strictly
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stationary. In this case, the definition presented in (2) can be

estimated in terms of a sample mean:

v̂(m) =
1

N −m+ 1

N
∑

n=m

G(x(n)|x(n −m), σ2) (5)

where N is the number of available signal samples.

A careful analysis of (4) was considered in [4], where

the authors show that the series may diverge depending on

the distribution of the signal being considered. However, for

shorter-tailed distributions such as the uniform, it is also

possible to derive certain conditions for which the series

converges [4]. Nevertheless, it is not necessary that the series

exist in order that correntropy exist. As demonstrated in an

equalization scenario, correntropy performs well even when

the series diverges.

Moreover, the choice of the kernel size σ is crucial. If

its value is too large, correntropy will basically rely on

second-order properties. On the other hand, if the value is

too small, an undesirable behavior can be observed, in which

the correntropy is dominated by moments of extremely high-

order [4]. In that sense, σ plays a different role in correntropy,

being related to weights on the statistical moments, while, in

the information potential, σ is closely related to the shape of

the distributions. It is also worth mentioning that, although

correntropy asymptotically converges to information potential

when Gaussian kernels are used, the computational complexity

of correntropy is one order below the cost associated with

information potential, as it encompasses a single sum operator

over the kernel argument.

Comparing correntropy to the conventional autocorrelation

function, it is possible to observe that the mean value of

the former changes for different source distributions, whereas

the autocorrelation function remains basically the same. This

characteristic may be useful in eliminating the bias on the

estimation of entropy from finite data sets using the Parzen

window method (recall Section IV.B of Part I).

If correntropy is used to design an optimal equalizer for a

digital communication system, it is possible to show that the

performance will be better than that of a Mean Square Error

(MSE)-based receiver if the noise PDF has its global maximum

at the origin [5]. Furthermore, it presents great robustness to

impulsive noise. On the other hand, MSE-based estimation is

biased if the noise PDF has non-zero mean, which leads to

performance degradation when in the presence of impulsive

noise. Thus, correntropy may be very useful in nonlinear and

non-Gaussian signal processing [5]. Such characteristic also

comes from the fact that correntropy may be viewed as a

localized similarity measure, related to the probability of how

similar two variables are in a neighborhood of the joint space

controlled by the kernel size.

In the last few years, correntropy has been used successfully

in a large variety of applications when compared to classi-

cal techniques. In [6], correntropy is used in a supervised

scenario with impulsive noise, outperforming LMS in system

identification and noise cancellation. In [1], [7], correntropy

is used to perform blind equalization (which is discussed in

detail in Section III-C), outperforming classical methods like

Fig. 1. Prediction scheme with a time-delayed MLP.

the CMA [8] in the case of correlated sources. Nonetheless,

CMA may have a better performance if the sources are iid [7],

[9]. In [10], correntropy is used as a unifying instantaneous

blind source separation criterion, capable of separating iid

sources, which requires higher-order statistics (HOS), and

also of separating temporally-correlated Gaussian sources with

distinct spectra, which demands temporal information. In [11],

it is shown that, since correntropy is capable of quantifying

nonlinear statistical relationships, it is suitable as a measure

for identifying nonlinear dynamic systems.

III. ITL APPLICATIONS

ITL was proposed with a practical emphasis, aiming at the

solution of complex signal processing problems that require

a significant amount of information about the available data.

As consequence, it is possible to form a representative set of

applications of the algorithms into different tasks, employing

different criteria, filtering structures and optimization proce-

dures. In the following, some examples are provided to the

reader, in order to give a general idea of the potentialities of

this paradigm in dealing with modern, data-driven, engineering

problems.

A. Dynamic modeling

The aim of dynamic modeling is to build a mathematical

representation of the functional relationship between input and

output variables. This is the case, for example, when one is

interested in building a model that predicts the behavior of an

unknown dynamical system. This is a problem often studied

within neural network theory, for which a recent and successful

approach has been the application of deep neural networks [12]

or, alternatively, the popular and well-established multilayer

perceptron (MLP) [13] in the role of predictor. The inputs are

time-delayed measures of a state variable of the system and

the model should provide an estimate of the current state value

(see Figure 1).

While the most extensively used criterion in this context

is the mean squared error, the typical ITL approach is based

on the Minimum Error Entropy (MEE) criterion [14], which

consists in the minimization of the error entropy with respect

to the MLP synaptic weights. The ideal condition in this case

is to have the error signal always at zero, i.e., e(n) should

have a distribution in the form of a delta function centered at

zero.
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Since the quadratic entropy, in association with the use of

Gaussian kernels, yields a simple calculation of the required

integral, as seen in Section IV.B of Part I, the authors argue

in favor of its use in this scenario, arriving at an optimization

problem with the following cost function, to be minimized via

a gradient descent method1

Jh2
= ĥ2(e) = − log V̂ (e). (6)

Recall that V̂ (·) is the information potential estimator, and

we can drop the − log(·) operation to simplify the expression,

converting (6) into a cost function to be maximized. Hence,

the gradient vector with respect to the weights is calculated

and it is possible to apply the backpropagation algorithm [13]:

∂V̂ (e)

∂w
=

1

2N2σ2

N
∑

i=1

N
∑

j=1

(ej − ei)·

·G(ei|ej , 2σ2) ·
(

∂x̂j

∂w
− ∂x̂i

∂w

)

. (7)

Observe that the expression has a computational cost pro-

portional to N2 — instead of O(N), as the MSE-based

training —, which is a direct consequence of adopting the

information-theoretic criterion and its associated information

potential estimator.

Simulations in chaotic time series prediction and nonlinear

identification [14] have shown that the MEE criterion gave rise

to an error PDF more concentrated around zero, while the PDF

of the output signal was closer to that of the desired signals, in

comparison with the corresponding results of an MSE-based

neural network. Moreover, a sequence of this pioneering work

indicated that the dynamic adjustment of the kernel size in

the training, by means of an annealing process, increases the

chance of escaping from locally optimal solutions [15].

Zupanc [16] gives additional support to the observations

of previous works, through the comparative analysis between

MSE and MEE in the prediction of a chaotic dynamic system

and modeling of a polymer mixing process. The results indi-

cated that the MEE criterion achieves a better generalization

capability, is more robust to outliers and better approximates

the PDF of the state variable under observation. However, the

higher computational cost in comparison with an MSE training

algorithm and the sensitivity to the kernel size adjustment are

issues that the user must take into account.

Prediction of power generated by a wind park was an-

other domain where the effectiveness of ITL criteria has

been verified. This scenario is interesting because the error

distribution is non-gaussian, and [17] showed that the MEE

and the maximum correntropy criterion (MCC) are better than

the MSE in providing accurate predictions for the offline and

online training modes.

B. Classification

Classification is an important machine learning problem

with a vast range of models, criteria and approaches. It can be

1For simplification reasons, we shall also consider lowercase letters to
represent the arguments of probabilistic / information-theoretic operators.

represented in several ways, one of the most useful involves

the definition of a set of discriminant function

gi(x), i = 1, ..., c, (8)

where x represents an m-dimensional feature vector of a given

phenomenon to be classified into one of c possible classes. The

classifier is said to assign a feature vector x to class ωi if

gi(x) > gj(x), ∀j 6= i. (9)

One of the key aspects is, hence, the definition of the

functional mapping gi(·) and its optimal parameters. Consider

an indicator function 1ωi
(x), which is 1 if x belongs to class

ωi and 0 otherwise; gi(·) should approximate the respective

class indicator function and, hence, the error vector is defined

as e = [g1(x)−1ω1
(x), ..., gc(x)−1ωc

(x)]T . This formulation

allows a straightforward application of MEE as optimization

criterion, according to Shannon’s

JS = ĥ(e), (10)

or Rényi’s definition:

Jh2
= ĥ2(e). (11)

From the training perspective, a linear discriminant function

can be adapted via the Stochastic Information Gradient al-

gorithm [18] or artificial neural networks such as the MLP

architecture can be adjusted via the gradient-based search

with the backpropagation technique — recall the expressions

derived in Section III-A.

But, regardless the training method, and since MSE is well-

known due to the robustness and wide adoption as a criterion

for classification, a fundamental question that arises when

adopting MEE is: does it leads to a smaller classification error

probability, for a given model?

Interestingly, whether Shannon’s or Rényi’s definition is em-

ployed, [19] shows that, for a perceptron-based classifier, MEE

may not lead to solutions close to the minimal misclassification

error. Moreover, there are theoretical situations where entropy

maximization leads to the ideal configuration. Nevertheless,

when the Parzen window entropy estimators are considered,

their smoothing property can overcome such limitations, as

long as an appropriate kernel size is defined.

This idea is reinforced in [20], where an extensive experi-

mental simulation is performed comparing MSE, MEE (with

both Shannon’s and Rényi’s definition), Cross-Entropy [21]

and the generalized exponential risk in the context of MLP

training for 35 different classification public datasets. The

results indicate that MSE generally under-perform the other

criteria, including MEE. Cross-Entropy and Exponential Risk

achieved most of the highest classification rates among the

datasets and, remarkably, MEE with Renyi’s quadratic entropy

obtained the poorest generalization capability.

To summarize, MEE criteria presents strong empirical ev-

idences that is beneficial as a surrogate for MSE in classi-

fication tasks, however, there is a sensitive dependence on

the database and the problem domain that suggests a careful

analysis to the designer, in order to choose MEE or a different

criteria.
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Another promising (and recent) classification criterion

comes from the notion of correntropy, where the model can

be adapted via the maximization of a cross-correntropy-based

criterion [22]:

Jv = v(gi(x),1ωi
(x)), (12)

i.e. the functional mapping is defined in order to maximize the

correntropy between the classifier output and the class labels.

Recent works [23], [24] on image pattern recognition add

to (12) a regularization term derived from sparsity analysis,

to define a linear representation of a test image y such that

Jvl1 = v(y,Xw)− λ|w|l1 (13)

is maximized with respect to w, where X represents the train-

ing dataset and | · |l1 is the l1-norm of a vector. The solution

of this problem is obtained by half-quadratic optimization

techniques, and it provides a vector basis for each class of

objects to be recognized, which is subsequently adopted to

classify the new image as belonging to the particular class

basis that reconstructs the most similar (in the correntropy

sense) prototype of y.

The experimental results considering severe distortions,

such as pixels occlusions and non-Gaussian noise, demon-

strated a very good effectiveness of the method in such

scenarios. Furthermore, the aforementioned correntropy-based

criteria are being employed also in the context of deep learning

and extreme learning classifiers [25], [26], with promising

results as well.

C. Equalization

In bandlimited and high data rate digital communication

systems, equalizers are important devices. Their function is to

restore the transmitted information, i.e. the information at the

channel input, mitigating or eliminating channel interference.

In order to do so, a large variety of techniques have been

developed in the last 70 years [27].

Equalization may be considered in two scenarios: super-

vised or unsupervised. Supervised methods are traditionally

based on the MSE criterion, while unsupervised methods rely

exclusively on HOS of the involved signals. Under the classical

assumption of linearity and Gaussianity, the above mentioned

methods are known to provide a reliable performance. How-

ever, with respect to non-classical scenarios, e.g., for sparse /

correlated signals or even in presence of non-Gaussian noise,

the same assertion cannot be hold.

In light of this, as ITL has the potential of extracting

the complete statistical information present in signals, a very

interesting option emerged: to employ new criteria based on

this field to the problem of channel equalization, especially in

non-classical scenarios. Hence, let us start by presenting the

problem formulation.

Consider a source signal s(n) being transmitted through

a linear time-invariant channel. The channel output can be

expressed as:

x(n) =
∑

i

his(n− i) + η(n) (14)

where hi are the channel coefficients and η is the additive

noise.

The equalizer, designed to remove the intersymbol inter-

ference introduced by the channel, is generally modeled as a

finite impulse response (FIR) filter. Its output may be written

as:

y(n) =

D−1
∑

i=0

wix(n− i) = wT x(n) (15)

where wi are the values of the D filter coefficients.

In the sequel, we will present several ITL-based equalization

algorithms.

1) Supervised Equalization: The application of ITL to

supervised equalization started with the analysis of the use

of the minimum quadratic Rényi’s entropy of the error, MEE,

between the desired signal and the equalizer output, instead

of using the classical MSE criterion [28], [18]. Recalling that

entropy minimization is equivalent to information potential

maximization, as already mentioned in Section III-A, and using

the Parzen window method to estimate the error PDF, the

associated criterion results in:

JV =
1

N2

N
∑

i=1

N
∑

j=1

G(ej |ei, 2σ2) (16)

where ei = d(i−τ)−y(i), being d the desired signal and τ the

equalizer delay. The kernel size σ is a parameter to be adjusted

according to the given scenario. Note that (16) considers the

relationship between each pair of error samples. A gradient

based method can be employed in order to maximize (16),

being called stochastic information gradient for MEE (MEE-

SIG) [18].

In situations where the channel is linear and the additive

noise is gaussian, a linear equalizer that maximizes (16) will

present a performance similar to that of an equalizer trained

to minimize the MSE, since their solutions tend to be close to

each other or even equivalent, under certain specific conditions

[28]. However, this will not be the case for non-Gaussian

noise, where the MEE-SIG algorithm tends to be more robust

than that based on the MSE. Furthermore, the difference

between the MEE and the MSE becomes more pronounced

in nonlinear scenarios [14], [15]. As an example, when the

channel is composed of a linear distortion followed by a

nonlinear function and the equalizer is modeled as a multilayer

perceptron neural network, by minimizing the entropy, it is

possible to obtain an improved performance in equalization

[28].

Another strong branch in supervised ITL criteria is that

based on correntropy (Section II). Since this entity can be seen

as a nonlinear similarity measure between random variables,

one can apply it to the equalization problem by maximizing the

correntropy between the transmitted and the equalizer output

signals, giving rise to the maximum correntropy criterion

(MCC) [6]:

Jv =
1

N

n
∑

i=n−N+1

G(di|yi, σ2), (17)

where the kernel size σ, in this case, determines the length

of the neighborhood of di to be considered. Hence, a suitable
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choice of σ can improve the robustness of the MCC against

outliers and impulsive noise. With respect to the MEE, the

MCC presents the advantages of requiring a lower computa-

tional cost (note that there is a single summation operator for

MCC) and being less sensitive to variations in σ. On the other

hand, it can demand a larger number of samples N to provide

a good estimate.

From (17), it is possible to derive a simple Least Mean

Squares (LMS) like algorithm, called MCC-SIG [18]. In the

presence of impulsive noise, such method has shown a better

performance than the original LMS in system identification

[6]. An interesting aspect is that, for a very large kernel size,

the solution will be very close to the one obtained through the

MSE criterion. An alternative algorithm for the optimization

of (17) was proposed in [29], based on a fixed point solution,

which presents a fast convergence when compared to the well-

known Recursive Least Squares (RLS) algorithm [27], also

being independent of the eigenvalue spread of the data.

2) Unsupervised Equalization: The use of the ITL frame-

work in the task of unsupervised equalization is a very attrac-

tive possibility, in view of the natural availability of higher

order statistical information required to solve the problem. In

that sense, one of the first unsupervised ITL-based criteria

[30] brings together Rényi’s α-entropy and the idea behind the

well-known blind constant modulus (CM) criterion [31], which

penalizes deviations of the equalizer output from a constant

modulus, to form the following criterion:

JSFA = hα

(

|y(n)|2 −R2

)

= hα

(

|y(n)|2
)

(18)

where R2 =
E[|s(n)|4]
E[|s(n)|2] . The last equality comes from the fact

that entropy does not depend on the mean of the signal. By

assuming α = 2 and using the IP estimator, the cost function

to be maximized becomes:

ĴSFA =
1

N2

N−1
∑

i=0

N−1
∑

j=0

G(|yn−j |2||yn−i|2, 2σ2). (19)

The steepest descent algorithm resulting from (19) was named

stochastic fast algorithm (SFA) [30]. It should be noted that

some kind of constraint with respect to the equalizer taps has

to be added in order to avoid the trivial solution — which can

be done, for instance, by fixing one of the taps to unity or by

admitting a unit norm constraint to the equalizer taps.

A parallel development based on the Benveniste-Goursat-

Ruget theorem [32] — one of the milestones in blind equal-

ization — was also reached for blind ITL criteria, which

gravitates around the notion of matching the PDF of the

equalizer output to that of the transmitted signal. As pointed

out by [33], [34], [35], this idea can be translated into the

following cost function

JQD =

∫ ∞

−∞

(fY 2(v) − fS2(v))
2
dv

=

∫ ∞

−∞

(

f2
Y 2(v) + f2

S2(v) − 2fY 2(v)fS2(v)
)

dv, (20)

where fY 2 and fS2 are the PDFs of the random variables

Y 2 and S2, which, in turn, are associated with the signals

|y(n)|2 and |s(n)|2, respectively. In [35], all terms of (20)

depending on the equalizer output are considered and, once

again, the PDFs associated with the signals are estimated

using the Parzen window method, resulting in a simplified

cost function:

ĴQD =
1

N2

N−1
∑

i=0

N−1
∑

j=0

G(|yn−j |2||yn−i|2, 2σ2)

− 2

LN

L
∑

i=1

N−1
∑

j=0

G(|yn−j |2||si|2, 2σ2), (21)

where L is the cardinality of the transmitted symbol alphabet

and si its ith symbol. The associated gradient-based algorithm

was named stochastic quadratic distance (SQD). A slight

modification was also proposed in [34], in which the PDF

associated with the transmitted signal was evaluated in some

specific target values. Still aiming at matching the PDFs, we

also highlight the work of [33], where it is suggested the use of

only the last term of (20) — the other terms simply work as a

normalization factor between the PDFs and can be neglected.

In this case, the estimation of PDFs via Parzen window results

in the last term of (21), which we call ĴMQD .

Very interestingly, as presented in [36], the estimates of

these blind criteria can be interrelated as:

ĴQD = ĴSFA + ĴMQD. (22)

From this, we point out that these criteria will differ mainly

in its computational complexity and robustness. While ĴQD is

considered the more complex and robust — as it encompasses

a richer statistical information about both yn and sn —, the

ĴMQD offers a good trade-off and is an attractive option, since

ĴSFA, due to the necessity of imposing a constraint to the

equalizer coefficients, tends to be more susceptible to local

convergence.

It is also important to indicate the points of contact that these

ITL criteria establish with the classical CM criterion. JSFA

can be seen as a direct extension of the CM formulation to the

ITL framework. ĴMQD uses as kernel argument the deviations

of the squared equalizer output from a fixed term, just like the

CM criterion. Finally, since ĴQD gathers contributions from

both of these blind ITL criteria (22), it is expected that the

quadratic distance criterion also preserves some elements of

the CM approach. Indeed, by comparing the surface contours

of ĴQD and the CM cost, as illustrated in Figure 2 for the

channel with impulse response H(z) = 1 + 0.6z−1, there are

some similarities between the minima. Besides that, for linear

equalizers and under the hypothesis of Gaussianity, the blind

ITL criteria behave similarly to the CM, but, for impulsive

noise models, the latter loses performance. Similar ITL blind

methods for deconvolution can be found in [37],[38] and [39].

Although the criteria discussed above begin with distinct

hypothesis, they all assume a common feature: the transmitted

signal are composed of iid samples. However, in practical

scenarios, the sources may exhibit temporal dependence, in

consequence, for instance, of the application of codes before

signal transmission and the handling of analog discrete-time

signal processing (e.g. in audio-related scenarios). In that
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sense, as initially proposed in [1], the ITL measure of corren-

tropy can be used to statistically evaluate the time structure

of the signal in a blind context. The objective is to make the

correntropy of the equalizer output as close as possible to the

correntropy of the transmitted source, known a priori:

Ĵcorr =

P
∑

m=1

(vs(m)− v̂y(m))
2

(23)

where vs is the correntropy of the source, v̂y is the estimated

correntropy of the equalizer output and P is the number of lags

considered. Since correntropy takes into account the statistical

and temporal structures of the signals, it has shown a good

performance when treating correlated sources, a situation that

classical methods fail to equalize [7]. Another advantage of the

correntropy-based method is its reduced computational com-

plexity in comparison with the PDF matching-based criteria

— although it can demand an elevated number of samples for

estimation.

D. Independent Component Analysis

Independent Component Analysis (ICA) has been origi-

nated as a natural extension of Principal Component Analysis

(PCA), and both techniques are unsupervised signal processing

paradigms. They are also very useful tools in the context of

factor analysis [40].

One of the most representative problems to which ICA is

applied is Blind Source Separation (BSS), a task in which

information-theoretic optimization criteria have been used with

success for three decades [41]. BSS, in its linear and instanta-

neous form, can be formulated as: consider that one observes,

at a given time instant, the signal x, m-dimensional, which

is the result of the linear combination of k ≤ m independent

signals (sources), i.e.

x = As, (24)

where s is the source vector, k-dimensional, and A is the

mixing matrix, m× k.

Without a priori knowledge of A and s, the problem

consists in obtaining a demixing matrix W to estimate the

output vector y = Wx such that it be equal to s up to scale

and permutation factors. Figure 3 illustrates this formulation,

when k = m.

The connection between ICA and BSS comes from the

fact that, if the solution W generates a set of components y

that are independent, this ensures that the original s has been

recovered. In this context, up to the previously mentioned am-

biguities, there are several criteria to perform ICA, including

(i) negentropy [40], a criterion to maximize non-Gaussianity;

(ii) the Infomax principle [42], which is based on the idea of

maximizing the information flow between the mixtures and the

separating system outputs; (iii) the minimization of entropy

rate [43], [44], which, similarly to correntropy, allows the

exploration of both statistical and temporal structures of the

signals; (iv) cumulants and (v) kurtosis [45].

In a general perspective, the ICA criteria can be related

to mutual information (MI) rate minimization between the

separating system outputs, where two diversity aspects may

be considered, in a joint manner or independently: HOS and

dependence of source samples [46]. Thus, it is convenient to

directly measure the independence degree of these signals via

ITL methods. As an example, if only HOS diversity is consid-

ered, mutual information rate reduces to mutual information,

which yields the following criterion to be minimized:

JICA =

m
∑

i=1

h(yi)− log | detW|. (25)

Furthermore, if the observations are previously whitened

(PCA) and, as consequence, the demixing matrix is a pure

rotation matrix, the loss function in (25) is reduced to just

the first term, the sum of marginal output entropies2. The

Minimum Rényi’s Mutual Information (MRMI) algorithm [47]

applies the gradient descent method to minimize (with respect

to the elements of W) this reduced cost function, replac-

ing Shannon’s differential entropy by Rényi’s definition with

α = 2. The marginal entropies are estimated with the well

known non-parametric entropy estimator (recall the definition

in Section IV.B of Part I), already employed in previous

applications.

2Although this assumption brings important practical advantages, such
as making second-order search methods easier for implementation in ICA
algorithms, constraining W to be orthogonal limits the search space and,
consequently, the achievable performance [46].

Fig. 3. Linear and instantaneous formulation of the Blind Source Separation
problem.
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Nonetheless, a deeper analysis of this method [48] has

recently demonstrated that the maximal value of Rényi’s

entropy is associated with the Gaussian distribution only when

α = 1. In this case, a modification in the MRMI original

criterion is necessary according to the estimated distribution,

which can be classified as: sub-Gaussian, a distribution flatter

and shorter-tailed (with kurtosis less than 3) than the Gaussian,

or super-Gaussian, a distribution more peaked and longer-

tailed (with kurtosis greater than 3) than the Gaussian. The

new implementation was compared with other traditional ICA

algorithms in separating audio recordings and the results

indicated a superior performance of MRMI with the parameter

α = 2. Nevertheless, the theoretical results of modified

MRMI are valid only for the generalized exponential family

of distributions, and [49] demonstrated that the choice of the

α value may lead to a cost function that does not satisfy the

requirements of a contrast function [41]. The final conclusion

is that the adoption of Rényi’s entropy to perform ICA must

be preceded by a careful analysis of the scenario at hand.

An extension of the BSS problem that has been recently

studied is related to the post-nonlinear (PNL) model [50],

which adds nonlinear, memoryless and invertible functions

to the BSS linear model. These functions may represent,

for example, the effect of sensors in some measurement

process. To perform the separation, it is necessary to apply

the nonlinear memoryless functions to each component of x

previously to the demixing matrix W.

One of the most robust approaches to separate PNL mixtures

is also based on the independence recovery with mutual

information minimization. In this direction, [51] uses a direct

MI estimator based on order statistics (recall Section IV.C of

Part I) as cost function to be minimized with an immune-

inspired algorithm.

1) ICA over Finite Fields: Recently, ICA has been extended

to the domain of finite and discrete valued signals and systems.

Yeredor [52] firstly explored this idea with the development

of an ICA algorithm for Boolean signals mixed in accordance

with XOR and classical product operations, i.e. in the context

of a Galois field of order two. The algorithm iteratively

extracts the sources by searching for the linear combination

of the mixtures that minimizes the entropy, followed by a

deflation process [53] to remove the extracted source from

the mixtures.

Afterwards, [54] extended the algorithm towards dealing

with finite fields of any size. Analogously, [55] improved

the pioneering algorithm, known as AMERICA, and proposed

a faster (but less accurate) algorithm based on sequential

reduction of the pairwise mutual information, the name of

which is MEXICO. A summary of all contributions, at that

point, was consolidated in [56].

All these techniques comprise parameter adaptation based

on ITL cost functions — the histogram based estimator of

Shannon’s entropy (see Section IV.F of Part I) — and a se-

quential search for the separating matrix elements. Differently

from this perspective, [57] proposed the application of an

immune-inspired algorithm to search for the complete sepa-

rating matrix. The problem was formulated as a combinatorial

optimization task such that the solution was the separating

matrix that led to the minimal mutual information (actually,

the sum of marginal entropies — recall (25)) between extracted

components.

Another related proposal was subsequently developed [58],

where a more robust immune-inspired algorithm was applied

in association to a Michigan-like approach [59] to model

the population individuals. The algorithm criterion was to

minimize the entropy of each extracted source, considering

that the intrinsic diversity operators of the algorithm may allow

that distinct independent signals are obtained, in the end.

E. Cluster Analysis

Clustering is a self-organizing process that plays an im-

portant role in a broad range of fields, from pattern recog-

nition, signal compression [21], and knowledge discovery in

databases [60] to communication channel estimation and/or

equalization [61]. Roughly speaking, clustering is aimed at

partitioning a set of objects into groups that share some kind of

(predefined) similarity. Clearly, it is not a well-posed problem,

just like the estimation of MI from finite dataset. To clarify

this important point, let us consider a tiny data set of 5 points,

represented in Figure 4.

For someone looking for cluster formation in observed

data, a naive clustering hypothesis may promptly be raised,

as illustrated in Figure 5. Nevertheless, even though a visual

inspection may lead one to accept the plausibility of this first

hypothesis, there is not a consensual way to measure it, unless

we define/chose a numeric criterion, which is, in turn, an

arbitrary decision/choice itself. Indeed, it is well known that

different clustering criteria, when applied to the very same

dataset, may provide different clustering hypotheses, mainly

when the number of available samples under analysis is small.

This means that one cannot even infer the existence of clusters

from finite datasets themselves: any conclusion should be

based on a priori information about the data source model.

Note that this is implicitly true even when a simple distance

measure is used in a clustering criterion.

Fig. 4. Five 2D numeric samples drawn at random from a unknown source.
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Fig. 5. Clustering hypothesis from five 2D numeric samples.

This unavoidable need for a priori information engenders

a striking analogy between cluster analysis and mutual in-

formation estimation from finite datasets. To properly show

it, we first recall that the MI between two random variables,

say X and Y , is the amount of decrease in the uncertainty

regarding one of them when the other is known (recall Section

2 of Part I). Strictly speaking, for finite datasets, unless there

are coincident values (which have a vanishing probability for

continuous variables), there is no randomness to be removed.

For instance, in Figure 4, by knowing that event X = x3

occurred, we conclude, deterministically, that Y = y3 is to

occur too. This means that, strictly speaking, for finite sets

of samples generated by continuous variables, the mutual

information that can be inferred without any a priori source

model is always maximal (i.e. no randomness at all)!

Evidently, any useful analysis must consider a source model,

and use data to adjust this model, as in clustering. Not

surprisingly, there can be found in literature many works

combining both analyses, mainly on the simplified use of MI

for finding consensus among many clustering hypothesis [62],

[63].

One simple and straightforward combination of MI and

clustering ensemble concerns the estimation of the number

of clusters formed by finite datasets in metric spaces. Again,

it is an ill-posed problem in clustering analysis, and the use of

many clustering hypotheses, along with an MI based criterion,

may facilitate the difficult choice of a specific metric and an

algorithm to this task. Indeed, in a clustering ensemble based

approach, an arbitrarily large number of clustering algorithms,

M , provide independent clustering hypothesis with K clusters

each one. Each hypothesis yields a vector of labels (one label

per pattern), which are regarded as random outputs drawn from

M sources of K symbols, thus creating M random discrete

variables, Xm. Figure 6 illustrates this ensembling process.

Therefore, for each Xm, an entropy measure can be obtained,

as follows:

H(Xm) = −
K
∑

k=1

pm(k) log pm(k), 1 ≤ m ≤ M

where pm(k) = P [Xm = k] stands for the probability of

randomly selecting the k-th label from the vector of labels

xm.

Fig. 6. Clustering ensemble of M algorithms, providing M clustering
hypothesis with K clusters each one, codified as M vectors of labels.

Moreover, for each pair of the so defined random variables,

it is also possible to measure their labeling agreement through

MI, by computing:

I(Xi;Xj) = H(Xi) +H(Xj)−H(Xi, Xj)

where H(Xi, Xj) = −∑K

a=1

∑K

b=1 pi,j(a, b) log pi,j(a, b)
and pi,j(a, b) = P [Xi = a,Xj = b].

Given a fixed K , one may average all pairwise quantities

I(Xi;Xj) as a measure of how much the imposition of K
clusters corresponds to a stable configuration. Furthermore,

to properly test this “natural” stability, it is also necessary

to ensure a diversity of clustering hypotheses, which can be

done (a) through the use of many different clustering methods,

(b) through the subsampling of available data or (c) both

strategies.

Finally, because the ranges of values for the entropies

and the MI depend on K , one would prefer to normal-

ize I(Xi;Xj), yielding the Normalized Mutual Information

(NMI). This normalization procedure is not unique. A usual

choice is:

NMI(Xi;Xj) =
I(Xi;Xj)

max(H(Xi), H(Xj))
(26)

and the Averaged NMI for the ensemble of clustering hypoth-

esis is given by:

ANMI({Xk}) =
2

M(M − 1)

M−1
∑

i=1

M
∑

j=i+1

NMI(Xi;Xj).

(27)

The ANMI is likely to be higher for values of K correspond-

ing to stable clustering hypotheses. Therefore, by varying K ,

it is possible to estimate the number of clusters in a dataset.

As an illustration, Figures 7 and 8 show two bidimensional
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datasets whose visual inspection provides initial guesses con-

cerning the number of clusters in each one. In both cases, we

used ensembles of M = 20 clustering hypotheses provided

by the standard K-Means algorithm. Diversity of hypotheses

was induced by simple dataset subsampling. In Figure 7, the

ANMI peaks at K = 3, whereas, in Figure 8, as the upper

cluster spreads up, this peak moves to K = 4, but both values

(i.e. 3 and 4) seem to be almost equally likely, which suits

most human observer opinions.

This approach relies on a committee of clustering algo-

rithms, whose computational complexity depends on designer

choices. On the other hand, as for the remaining structure,

the computational complexity is mainly dominated by the

computation of the M(M − 1)/2 pairwise information terms,

I(Xi;Xj), for each tested value of K .

Fig. 7. Estimation of the number of clusters through Averaged Normalized
Mutual Information (ANMI) – strong consensus in favor of 3 clusters.

Fig. 8. Estimation of the number of clusters through Averaged Normalized
Mutual Information (ANMI) - weak consensus in favor of 4 clusters.

IV. CONCLUSION

This two-part work presented an introduction to information

theoretic learning, an emerging discipline that employs infor-

mation theory for developing new machine learning criteria

and algorithms.

The Part I of this tutorial was devoted to a description of

fundamental concepts of information theory, from the seminal

work of 1948 by Claude E. Shannon — which is considered

the ‘birth’ of this field — to the generalized measures proposed

by Alfred Rényi, which allowed, approximately three decades

later, the application of definitions such as entropy and mutual

information in the context of new adaptive algorithms that can

effectively explore the higher-order statistical content of data.

Furthermore, the problem of estimating information-theoretic

measures from the available data is discussed, as, differently

from classical applications of Information Theory, in ITL,

as a rule, there is no prior knowledge about the probability

distributions that are involved.

In Part II, a new concept that arises from Rényi’s quadratic

entropy and the idea of information potential is presented:

correntropy, a nonlinear similarity measure that possesses

several possibilities of applications, mainly in the domain of

signals with a temporal structure. The rest of the paper brings

a set of representative problems for which ITL provides effec-

tive solutions: dynamic modeling, classification, equalization,

independent component analysis and cluster analysis. In each

case, we present the main criteria that have been developed,

together with the pros and cons of each methodology.

Although this tutorial does not cover the whole spectrum

of applications that this research field already presents, we

expect that it has provided the reader with a general un-

derstanding of the motivations and characteristics of ITL

techniques. Moreover, the references employed in this work

can be recommended as a basis for further study.
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