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On the Kalman Filter Parameter Estimation
Methods for Blind Source Separation

Alexandre Miccheleti Lucena, Kenji Nose-Filho, Ricardo Suyama

Abstract—Blind Source Separation (BSS) is a well-known
problem in signal processing and still receives attention from the
scientific community, given its applicability in different areas.
This work presents a theoretical background overview of the
Kalman Filter formulation and its applicability to the BSS
problem as a parameter estimator in two different approaches:
joint (JEKF) and dual parameter estimation (DEKF). These
approaches are evaluated in different scenarios for first-order
autoregressive source signals, with analysis of the initialization
details, presenting simulation results and performance compar-
ison with classic algorithms, SOBI and SONS, evaluated by
SIR, MER and MSE. The results showed that both the JEKF
and DEKF algorithms can perform separation in a two-source-
two-mixture scenario. In general, over the scenarios studied,
DEKF presented a better performance when compared to the
JEKF on the evaluated metrics. However, neither algorithm
correctly estimated the parameters for mixtures involving more
than two sources, showing convergence issues and sensitivity to
initialization for an increased number of sources.

Index Terms—Blind source separation, Kalman filter, param-
eter estimation, joint estimation, dual estimation, signal process-
ing.

I. INTRODUCTION

NE of the many problems faced in signal processing

is the Blind Source Separation (BSS), or Blind Sig-
nal Separation. This well known problem can be found in
applications such as communication systems, geophysics and
biomedical signal processing [1]—[3]. It addresses the fact that
in certain scenarios the observation of the signals of interest
can’t be done individually, and even multiple sensors can
only perceive a mixture of the sources which are generally
simultaneously active. In such cases, there is an interest in
applying a procedure over the observed signals to separate or
isolate the sources.

An increasing number of works in the last two decades have
been exploring the Kalman Filter as a tool for blind source
separation. For example, in [4] a expectation-maximization
strategy benefits from the Kalman smoother on the E-step.
In [5] the algorithm is used to estimate source dynamics
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for event-related sources. Or as in [6], where it is used for
separation in a source tracking task. Most of those works
use the Kalman Filter formulation in part of the processing,
or introducing extra steps to the formulation to obtain better
estimations of the sources of interest. However, it is possible
to adapt the Kalman Filter formulation to be applied to BSS
more directly.

As to be discussed later, the blind source separation prob-
lem formulation can be written as a state-space model in
a straightforward way, where the mixing matrix coefficients
are considered as unknown parameters of the model. This
change in perspective makes the Extended Kalman Filter
(EKF) a candidate for the task of estimating both the states
and unknown parameters. Although this is a known approach
to the problem, the applicability and overall analysis on its
performance or limitation are less discussed in the literature
and a more in-depth analysis is required.

This formulation particularly benefits from the autoregres-
sive (AR) signal modeling, as an AR signal can be charac-
terized by the poles associated with its time correlation, and
easily conveyed to be estimated as an unknown parameter.
In this sense, applications that can be modeled as AR process
may benefit from this approach. For example, to cite a few, the
multispectral image obtained from an airborne visible/infrared
imaging spectrometer [7], the speech source separation [8],
[9] and financial data analysis [10] help to illustrate scenarios
where sources can be modeled as AR processes and are
possible candidates for the algorithm application. Yet, an
important characteristic of Kalman Filter based algorithms
is that the estimation of states (or parameters) are online,
meaning that each new sample can be used to update the
model and contribute to the estimation, aiding any application
that rely on immediate updates.

This work presents a comparison over the two main pa-
rameter estimation methods based on the EKF algorithm.
These approaches, joint estimation and dual estimation, are
submitted to the same conditions and tested for the task of
blind source separation of artificially generated AR source
signals, where the convergence of the algorithm, initialization
strategies and limitations are discussed. For a more in-depth
comparison, results of classical algorithms commonly used for
similar scenario, such as the Second Order Blind Identification
(SOBI) [11] and the Second-Order NonStationary (SONS)
[12], are also presented. The performance of each algorithm is
evaluated by measuring the signal-to-interference ratio (SIR)
between source and estimated signal, where the mixing matrix
is evaluated by the Mixing Error Ratio (MER) and parameter
estimation by the Mean Squared Error (MSE).
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II. PROBLEM DEFINITION

The mathematical formulation for the BSS problem con-
sidering two sources and two sensors (two mixtures), can be
represented as follows:

z1(k) = hnzi (k) + hioza (k) ,
2’2(]{7) = hglxl(k) + hgzxg(/ﬂ) ,

where z1(k) and x5 (k) denote the discrete source signals, and
the mixture signals z; (k) and z5(k) are obtained by a weighted
sum of the sources, given by the weights h;;. In this particular
case described by Equation (1), some characteristics as the
delay between source and sensors or possible reflections are
not present, and it can be classified as a linear, instantaneous
and determined (same number of sources and sensors) source
separation problem. It is also common to write this linear
system by its matrix representation as in

D

z=Hx+r, 2

where z and x are column vectors containing z;(k) and xz;(k)
respectively, and H is a matrix containing the coefficients h;;.
The vector r in (2) is an additive noise component, and might
be associated with noisy observations, which corrupts the
mixture observation. In the BSS context the matrix H is called
the mixture matrix, and the goal is to find a transformation over
the observed mixtures z that recover the sources x.

Given a set of observations of mixed signals, and assuming
that the mixture matrix H is invertible, one of the possible
solutions can be obtained as finding a separating matrix W
that multiplied by the observations z is capable of obtaining
an estimate y of the sources. This can be written as:

y =Wz, 3)

where in an ideal case the perfect separation would be achieved
by finding a W = H™! and the estimated source y would be
equal to x. Other approaches to source separation may explore
the temporal characteristics of the observations [11], [13], or
leverage the sparseness of the sources in the time-frequency
domain to estimate a separation mask [14].

III. THE EXTENDED KALMAN FILTER

The Extended Kalman Filter (EKF) is an extension of its
original formulation which assumes a linearization procedure
over the system equations to consider nonlinear systems. The
state-space formulation for a nonlinear discrete system may
be written as

Xp = f(Xp—1) + Wi_1, 4)
zp = h(xg) + g, (%)
p(wi) ~N(0, Q), (6)
p(vi) ~N(0, R), (7)

being (4) and (5) the state and observation equations respec-
tively. The state equation represents how the state vector x
will change at each iteration k£ (subscript). The current state
X 1S a composition of the previous state xj_; transformed
by a function f(.) that is obtained by the model of study and
its relation with the state vector. The wjy_; vector models

the possible influence of noise over the state process, and
is assumed to have a normal distribution with zero mean
and variance Q. There are cases where the current state
cannot be observed directly, and the observation output z;, is a
function of the state, meaning there might be some underlying
dynamics to be considered on the measurements, that can be
represented by a function A(.). In this equation, rj represent
the observation noise. Here, r; is also assumed to have a
normal distribution with zero mean and variance R.

For this kind of system, the state transition and state obser-
vation are determined by a nonlinear function, that need to be
linearized for the application of the Kalman Filter formulation.
The linearization is obtained through a Taylor series expansion
over the state equation and measurement equation, where the
transition matrix and observation matrices can be determined
by the following partial derivatives

_of

Fr =2, . (®)
Oy,

He= x|, )

k

and F; and H;, are often called the transition and observation
matrices, respectively. After the proper linearization procedure,
with the partial derivatives matrices, the equations for the
EKF algorithm remains the same as the linear Kalman Filter.
The state estimation for the EKF is given by the following
algorithm (Algorithm 1).

Algorithm 1 Extended Kalman Filter (EKF)
INITIALIZATION

),\(0 = E[XO]

PREDICTION
X, =Fr 1Xp 1
P, =F,1P,1F_,+Q
UPDATE
K, =P, H/(H,P,H/ +R)™'
Xp =%, + Ki(zp, — HiXy)
P, = (I-K.H)P,

IV. SOURCE SEPARATION AND PARAMETER ESTIMATION

The modeling of the BSS problem as a state-space system
might be straightforward if we compare both formulations,
specially Equations (2) and (5) (the notation was chosen
carefully to highlight the similarities); it is possible to treat the
mixtures as observation of the sources (states) mixed by some
observation (mixture) matrix. Usually for the BSS problem the
kind of mixing process over the source signals is assumed
(linear, convolutive, non-linear, etc.), and can be used for
defining the transition matrix structure and state dynamic, but
the observation/mixing matrix is generally treated as unknown
(blind).
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For the parameter estimation, one alternative is to associate
the unknown terms of the mixing matrix as the parameters to
be estimated, and since Hj is assumed to be constant we
may drop the subscript k£ in (10), so each element of the
matrix H is treated as an unknown constant parameter. If
the sources are modeled, for example, by an AR(p) model,
one may be interested in estimating the source dynamics and
transition matrix Fj so its elements can be associated with
unknown parameters. In this case, also considering that the
AR coefficients are constant and dropping the subscript k, we
may represent the transition matrix as

p1 0 0
. 01 - 6
F P2 H=|: : (10)
: . 0 0 - Oy
0 --- 0 pn

where the main diagonal contains the AR(p) coefficients (or
poles) p; (: = 1,...,N) for the N sources, and may also be
treated as unknown parameters. Considering that the sources
are uncorrelated, the off-diagonal values in F are zero. In this
case not only the sources X need to be estimated but also
the matrix Hy, characterizing it as a simultaneous state and
parameter estimation problem, which the EKF formulation is
able to handle after some proper modifications to be discussed
in the following sections.

A. A modeling example

To illustrate the described modeling of the BSS problem, the
following state-space equations are presented as an example.
This may represent the frue model that underlies the BSS
problem as a state-space equation, without any concern about
the parameter estimation task yet. The following example
considers two sources (N = 2), generated by an AR(1) model,
and two mixtures (M = 2). In this case, the state equation that
describes the dynamics of the source is

v _|p1 O |z +-w1
L2 0 paf |22, ; [w2 k’

and for the measurement equation, we can write

|:21:| _ {911 6’12] [ﬁ] ?"1}

= + .
zo)|, 021 O] w2, [r2f,

From equations (11) and (12), it is possible to highlight
that the parameters of interest to be estimated are associated
with the matrices F and H. The reformulation of the state-
space equation may be needed according to the parameters
estimation algorithm to be used (joint or dual), but the main
idea regarding the relation between BSS and the parameter
estimation is defined. The purpose of this simple example is
just to enlighten the idea of the BSS problem as a state-space
formulation and which are the parameters to be estimated in
the model. In the following sections, the specific application
of the JEKF and DEKF using this model is conducted.

(1)

12)

B. State and parameter joint estimation

One of the earliest works to propose a joint estimation
approach is [15], and it suggests unknown parameters to be
included into the state vector directly, so state and unknown
parameters are estimated jointly. This is achieved by associ-
ating the unknown parameters 6 of the system to the state
vector, and creating an augmented state vector as in

Xk f(Xp—1,0k-1) + Wr_1
= 13
{91@} [ Or—1+ Vi1 ’ (13)
Zr = h(Xk, Gk) +rg . (14)

This joint estimation of state and parameters (JEKF) ap-
proach for source separation EKF is explored in [16]. By
modeling the sources as AR signals, the mixture matrix
coefficients (unknown parameters) are estimated by creating an
augmented vector as in (13) and following the state estimation
procedure for the augmented vector with the EKF formulation.
In said work, the AR coefficients of the sources are considered
exactly known, and the only unknown parameters are the
mixture matrix coefficients to be estimated.

The application of the EKF formulation in the above system
equations is straightforward, but in this case, although the
Fi and Hj; matrices (8) and (9) are obtained through the
same linearization step respectively, now both depend on the
augmented state vector, and function A(.) in (14) also depends
on the unknown parameters.

C. State and parameter dual estimation

An alternative from creating an augmented vector is to
estimate states and parameters separately (yet simultaneously)
with an independent EKF formulation for each [17]. The
EKF formulation can be used to implement a dedicated EKF
for the state estimation, and another EKF for the parameter
estimation, hence the name Dual Kalman Filter (DEKF) [18].
The main idea behind the DEKF is the combination of two
EKF running in parallel, one implementing its classic state
estimation procedure, assuming known system parameters, and
the second EKF running simultaneously, having the parameters
to be estimated as state vectors of the system by considering
the state estimates to be known. One of the earliest approaches
into using the DEKF as a signal separation tool was found in
[19], where the DEKEF is used to train the weights of a couple
parallel neural network that separates two speech sources in a
monoaural signal.

There are also specific approaches using the DEKF as a
parameter estimation tool in BSS context. The works [20],
[21], and [22] utilizes the DEKF formulation by modeling the
source dynamic and mixture matrix estimation as parameters
to be estimated. Differently from the joint estimation approach,
in the dual estimation the augmented vector is separated to
be estimated in parallel. The first EKF, dedicated to state
estimation, follows the traditional estimation steps of the
algorithm as in (4), however the state dynamics should now
incorporate the unknown parameters 6 as

Xp = f(Xp—1,0) + Wi ,
Z = h(xk,ﬁ) +rg .

15)
(16)
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On the other hand, there is a parallel EKF formulation
dedicated to estimate the parameters that will follow the
traditional EKF algorithm, but the state vector of this filter
are the unknown parameters organized in a parameter vector.
The dynamic of its observation should be written in function
of the actual process state, that are considered as known. The
state-space equations for the parameter estimation EKF are
described as

Op = Op—1 + Vi1, (17)
zr = g(xk, 0) + my,, (18)
p(v) ~ N(0, Q%), (19)
p(my) ~ N(0, R?). (20)

The state vector will contain the source estimations, whilst
the parameter vector may contain matrices F; and Hj, coef-
ficients. Since there are two EKF equations in the algorithm,
variables that are repeated in each filter will have a superscript
needed to distinguish them between the state and estimation
filter x and the parameter estimation filter §. The DEKF
algorithm can be summarized by the following equations
(Algorithm 2).

Algorithm 2 Dual Extended Kalman Filter (DEKF)
INITIALIZATION

)A(O = E[XO]
bo = El6o]
& = E[(x0 — %o)(x0 — %0)"]

B
P! = E[(0o — 00)(0o — 00)7)
PARAMETER FILTER PREDICTION
0, =0, P =P!_, +qQ°
STATE FILTER PREDICTION
X, =Fp 1%
PY” =F,PY_,Fi_, +Q~*
STATE FILTER UPDATE
¥ =Py H](HPy HE +RY)™
r=0- K;‘Hk)P};‘
PARAMETER FILTER UPDATE
K/ =P/ G{(G,P} G +R")™!
O, = 0, + K (2, — Hy%y,)

The EKF for parameter estimation must consider that the
dynamics between the states and the unknown parameters fol-
lows a certain known (assumed) model, and the linearization
of this dynamic is represented by the matrix Gy, as

ok,
G,=H kik

. (21)
90 0=0,

TABLE I
INITIALIZATION VALUES FOR THE Q, R AND P MATRICES IN THE JEKF
AND DEKF ALGORITHMS - I IS THE IDENTITY MATRIX.

QF Qf TRE[R{[ Py [ Pf
JEKF [ 9x 10721 | 10761 1075T | 107°1
DEKF 10° I 1001 I I 10731 | 10731

V. EXPERIMENTAL SETUP
A. Algorithm Initialization

There are two groups of parameters associated with the
JEKF and DEKEF algorithms that need to be initialized before
the algorithm’s first iteration: the unknown states and param-
eters, and the covariance matrices associated with noise and
error. Except when stated otherwise, the simulation results in
this section were obtained according to the following described
initialization procedure.

For the unknown states associated with the source estima-
tion, the xg values were initialized with zeros. For the AR
coefficients, the chosen procedure was a random initialization,
obtained from an independent random uniform distribution
between —0.3 and 0.3.

As the main task is to deal with the BSS problem, where the
mixing (observation) matrix Hg is not known, so the initial-
ization of this matrix greatly affects the algorithm progression,
since it relates to the observation of the states. At first, there
were attempts on initializing the mixing matrix randomly.
However, this method did not show consistency. Assuming that
in each observed mixture there is only one (exclusive/unique)
predominant source signal that is not predominant in other
mixtures (e.g. mixture one is predominantly composed by
source one, and mixture two by source two, and so on...),
another approach was to initialize the mixing matrix as an
identity matrix I. This method showed more reliability since
the mixtures presented the condition required.

Given the lack of knowledge about a proper initializa-
tion procedure for the covariance matrices, in the following
proposed base example, the matrices Q, R and P in each
algorithm were manually tuned to achieve separation and be
established as the initial conditions for the experiments. Each
matrix is obtained by generating an identity matrix I with
the matching dimension associated with the number of states
or parameters, and then multiplied by a scaling factor. Tab.
I summarizes the initialization value for each parameter and
algorithm.

B. Performance Comparison

As a quantitative performance comparison, the quality of
the recovered source signals was calculated by the SIR. In
summary, the SIR evaluates the ratio between the energy of
the target source x; and the energy of the residual interference
signal (i.e. difference between estimated and true signal)
ejlk] = 2;[k] — x;[k] as in

> 23 (]

SIR; :=10log,y =57

. 22
>, 2 lH] (22
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There is also an interest in evaluating the estimated mixing
matrix. Each column of the mixing matrix H contains the
weights h;; associated to a given source j, and those coeffi-
cients can be grouped as a vector h;. Through least-squares
projection, the estimated vector of mixing coefficients Hj is
decomposed in a collinear h¢®" and orthogonal h™ to the
true vector of mixing coefficients h;, in a way that

ﬁj _ h;oll + h(];rth' (23)

The Mixing Error Ratio (MER) [23] calculates the quality
of the matrix coefficients or mixing gains for each source in
comparison to the original mixing matrix, allowing arbitrary
scaling of the matrix coefficients for each source. The MER
in decibels is obtained by

(Ll

(24)

VI. SIMULATION RESULTS

The JEKF and DEKF algorithms were implemented in a
simulation environment following the initialization procedure
described in Section V-A. Although the aim of this paper
is to explore the JEKF and DEKF algorithm behavior and
performance, there are other algorithms that are known for
their effectiveness in the considered scenario. One example
is the SOBI [11] algorithm, that leverages the second-order
statistics of the signals and are commonly applied when the
sources present time correlation, which is the case for AR
signals. An extension of the SOBI algorithm is the SONS
[12] algorithm that improves SOBI by also utilizing any
second-order nonstationarity present within the sources, yet
the data in the simulations are considered as stationary. All
four algorithms are tested on the same scenario in order to
compare the JEKF and DEKF approaches with more classical
algorithms (SOBI and SONS) as baseline results.

One important difference to consider is that SOBI and
SONS are batch algorithms (i.e. need all the data to be
processed for a proper estimation of the mixing matrix),
while both JEKF and DEKF are online algorithms (i.e. can
update de estimated mixing matrix after each iteration). As
a way to compensate this difference, at the last iteration
of JEKF and DEKF algorithms, the final estimated mixing
matrix was inverted and used to separate the mixed signals.
This generates an estimate of the sources as in (3) for SIR
and MER evaluation, hence comparing all the algorithms as
batch algorithms. The online estimation capabilities of the
parameters were analyzed in terms of MSE, where SOBI
and SONS are not considered as they do not present online
parameter estimates.

Simulation results are organized as follows. Section VI-A
explore the algorithms considering different pole values for
the sources and diffrent mixing matrices on the separation of
two sources (and observations) in a way that a more general
behavior and understanding of the JEKf and DEKF algorithms
is obtained. Section VI-B consider the results observed in VI-A
for the analysis of JEKF and DEKF algorithms on favorable
conditions and analyze their online parameter estimation ca-
pabilities. Section VI-C propose a study of the JEKF and

DEKEF algorithms performance when the number of sources
is increased.

A. Source AR pole and mixing conditions

A simple case to be considered in a source separation
problem is the separation of two signals, as described in
Section IV, hence this experimental setup is an investigation
of the JEKF and DEKEF algorithms behavior on the separation
of two sources (and observations), inspired by the conditions
presented in [16]. Considering that the sources are modeled
as AR signals, the time correlation and spectra of the signal
are directly associated to the pole values used to generate the
sources. Synthetic sources were generated from independent
white random Gaussian distributions and modeled as first-
order AR(1) sources, each one with 5000 samples. With that
in mind, different pole values were tested for the generation
of the source signals varying from -0.95 to 0.95 (with steps
of 0.05) for each source, leading to a combination of each
possible pole value p; between source 1 and 2.

To test this scenario, a mixing matrix was chosen arbitrarily
to simulate the observed signals, mixing the source signals as
the operation described in Equation (2) with the following
matrix

(25)

g _ [0-8575 0.5145
~ [0.3511  0.9363]°

where each row of the matrix has a unitary norm. The obtained
mixed signals where separated using JEKF, DEKF, SOBI and
SONS algorithms and the SIR calculated over each recovered
source. To better summarize the results on a unique SIR
value and later be able to plot a single 3D surface, the SIR
obtained for sources 1 and 2 were summed and divided by two
(averaged). The said experiment was repeated 50 times (Monte
Carlo), maintaining the same AR poles variation, mixing ma-
trix, and rules for initialization, so every variable that depended
on random sampling, such as parameters initialization and the
AR signal exciting noise were resampled. Fig. 1 show the
results of the mean SIR calculated over the recovered signals
for the 50 realizations, considering each combination of pole
value between the proposed interval (-0.95 to 0.95).

From Fig. 1, one can observe a general behavior of the
separation algorithms for different poles of the AR(1) sources.
It is possible to observe that for all algorithms there is a
decrease in performance when p; = po as the signals start to
present similar time correlation (or spectral content), and might
be indistinguishable from each other. However as pole values
start do differ, each algorithm have their own characteristics.
The JEKF seem to perform poorly when compared to other
algorithms, peaking its SIR values around 40 dB, close to the
point where both poles are closer to 1 (above 0.8) but with
opposite sign (p; = —p2). For the DEKF, a similar behavior
is observed, however the overall performance is increased
in a much wider area (above 0.5) peaking closer to 60 dB
near py = —p2 = 0.9 and diminishing elsewhere. SOBI
and SONS have a smoother surface, meaning they present
a more balanced performance across the tested values, with
SOBI closer to 50 dB and SONS slightly below, near 45 dB.
However, although it is not a global behavior across all values,
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Fig. 1. Mean SIR values in decibels of the recovered sources for different pole values p; over 50 simulations of the JEKF (top-lef), DEKF (top-right), SOBI
(bottom-left) and SONS (bottom-right) algorithms in a two-source-two-mixture scenario (N = M = 2).

it is important to notice that the peak mean values stand for the
DEKF in the analyzed scenario, specially when p; = —py >
0.6 where the DEKF not only match SOBI performance but
surpasses it as it get closer to 1.

Another important aspect of the algorithms evaluation is that
the chosen mixing matrix can greatly impact on the algorithms
performance. To address this fact, the algorithms were tested
using a random mixing matrix and had the results evaluated
trough SIR and MER. The mixing matrix coefficients were
sampled from an uniform distribution between -1 and 1, and
then followed by row normalization. In this scenario, two pair
of pole values were chosen from the previous simulation to
represent a more favorable and unfavorable scenario for the
algorithm, as the only parameter being varied are the mixing
matrices and sources exciting noise.

Tab. II presents the results of Mean SIR and MER values
obtained in 100 simulations for random mixing matrices and
sources generated with p; = —po = 0.9, being considered as
a favorable scenario for all the considered algorithms. Results
show that JEKF and DEKF algorithms are able to improve
the source estimations, with a great advantage for the DEKF
algorithm. It is noticeable that the SIR and MER values for the
JEKF and DEKF presented more fluctuation, as observed in
the greater standard deviation values when compared to SOBI
and SONS, that had more consistent results. This indicates that
even for a favorable sources, the JEKF and DEKF algorithms
are both sensitive on mixing matrix variation, when compared
to SOBI and SONS.

Similarly, Tab. III presents the results of Mean SIR and
MER values obtained in 100 simulations for random mixing
matrices and sources generated with p; = —ps = 0.3,
considered as an unfavorable scenario based on Fig. 1. In
this scenario, all algorithms have a significant decrease in

TABLE 11
MEAN SIR AND MER (AND STANDARD DEVIATION) VALUES OBTAINED
FOR RANDOM MIXING MATRICES IN 100 SIMULATIONS FOR N =M = 2 ON

A FAVORABLE SCENARIO p1 = —p2 = 0.9.
SIR [dB] MER [dB]

Source 1 Source 2 Source 1 Source 2
Mixed 8.6 £8.3 9.9 +9.0 - -
JEKF | 239+ 12.6 | 283 £13.8 | 30.6 £12.7 | 26.8 £ 12.0
DEKF | 314 +153 | 305+ 169 | 31.3+219 | 332199
SOBI 293 +89 493 + 6.2 58.6 + 13.1 57.0 £ 9.0
SONS 28.6 +7.9 434 +£55 45.6 £ 9.6 48.8 + 13.8

TABLE III

MEAN SIR AND MER (AND STANDARD DEVIATION) VALUES OBTAINED
FOR RANDOM MIXING MATRICES IN 100 SIMULATIONS FOR N =M =2 ON

A UNFAVORABLE SCENARIO p; = —p2 = 0.3.
SIR [dB] MER [dB]

Source 1 Source 2 Source 1 Source 2
Mixed 8.6 + 8.2 9.8 £9.0 - -
JEKF 8.7 £ 8.3 10.0 £ 9.6 79 £ 8.8 6.8+£79
DEKF | 15.6 £ 11.1 17.1 £ 124 | 172 £ 12.1 16.0 £ 11.8
SOBI 34.6 £+ 59 37.3+58 44.0 + 11.2 | 46.6 + 13.7
SONS 279 + 6.6 295 +£7.7 338+ 135 | 345+11.0

performance. The JEKF algorithm is the most affected since
its mean results are comparable to the observed signals it-
self, indicating it was not able to recover the sources. As
expected from previous discussion, as the source pole values
are p; = —p2 < 0.6, results show the inability of the DEKF on
recovering the sources and also mixing matrix sensitivity as the
SIR and MER standard deviation are relatively high. Although
the performance decreased, SOBI and SONS maintained con-
sistent results for the random mixing matrix scenario.
Summarily, the SIR surface evaluation and mixing matrix
variations show that the SOBI and SONS algorithms are more
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Fig. 2. SIR values for 100 simulations of the DEKF and JEKF algorithm for
N=M=2.

suitable for the batch source separation task, yet the main
advantage of using an online algorithm as the Kalman Filter
is not explored on this scenario, since the SOBI and SONS
are batch algorithms and the adaptive behavior of the EKF
algorithm is set aside. Next section address this matter by
evaluatig the parameter estimation capabilities of JEKF and
DEKEF algorithms using MSE.

B. Two Sources

Considering the results obtained in VI-A, a general favor-
able scenario was established for other aspects of the DEKF
and JEKF algorithms could be explored. Two aspects greatly
differ from the compared algorithms: the parameter estimation
approach and the online estimation capability. In this sense, the
following simulations were designed considering fixed source
poles p1 = —p2 = 0.9 and the arbitrarily chosen mixing
matrix (25).

To summarize the statistics obtained for the different met-
rics, the results of SIR are presented in Fig. 2 as a boxplot
based on 100 realizations of the experiment. As the poles and
mixing matrices are fixed, it implies that the only difference
between realizations are random initializations and exiting
noise for the sources. Results for the mixed signals (Mix)
were also calculated as a way to compare the improvement
obtained by the separation.

The SIR median obtained through the simulations for the
JEKF for sources one and two were 37.8 dB and 37.5 dB
respectively, while the DEKF presented some advantages with
median values of 42.5 dB and 43.9 dB. Both algorithms
performed similarly for the MER; JEKF obtained 36.5 dB and
41.1 dB medians for sources one and two, respectively, while
the DEKF resulted in 42.0 and 43.5.

From Fig. 3 and Fig. 4 it is possible to evaluate the
overall behavior of the estimated parameters. Fig. 3 shows
the evolution of the mean value for the estimated AR poles
while Fig. 4 shows mixing matrix coefficients MSE. As both
algorithms iterate, it is possible to observe the convergence of
both the estimated poles and mixing matrix coefficients, with
a faster response for the DEKF algorithm. The convergence
to the true parameter indicates the capacity of tracking the
possible underlying parameter that define the model, and could
be expected even if the data does not exactly match the AR
model. Tab. IV summarizes the results of mean SIR and
MER for all algorithms in the proposed scenario, maintaining

Coefficient Value

Iteration

Fig. 3. Evolution of the mean value for the estimated AR parameters in 100
simulations of the DEKF and JEKF algorithm for N = M = 2.

TABLE IV
MEAN SIR AND MER VALUES OF THE RECOVERED SIGNALS FOR THE
JEKF, DEKF, SOBI AND SONS ALGORITHMS FROM 100 SIMULATIONS

FOR A FIXED MIXING MATRIX AND p; = —p2 = 0.9 (N=M =2).
SIR [dB] MER [dB]

Source 1 Source 2 Source 1 Source 2
Mixed 57+0.3 9.1 £0.3 - -
JEKF | 273+93 | 324+ 120 | 353+ 11.8 324+94
DEKF | 404 +9.5 414 +83 442 + 83 45.6 £ 9.6
SOBI | 29.3 +£8.9 493 + 6.2 584 + 114 58.6 + 74
SONS | 28.6+79 434 +£55 448 +£9.3 449 + 11.8

SOBI and SONS as baseline comparison algorithms, where
the DEKF matches SONS results but SOBI still offers better
overall results. However, it is important to note that JEKF and
DEKEF are being trained online (without the knowledge of all
training samples in all iterations), as illustrated by Fig. 3 and
Fig. 4, and the SOBI and SONS are being trained offline.

C. Three Sources

The source separation problem is not limited to estimating
only two sources and ideally an algorithm should be able to
handle different numbers of sources and mixtures. The model
presented in Section IV is applicable to any number of sources,
along with the JEKF and DEKF algorithms. Based on this
principle, simulations were conducted using both algorithms
in a similar scenario, but with three mixtures of three sources.
Fig. 5 and Fig. 6 display the mean value over 100 simulations
for the evolution of the AR parameters and MSE of the
mixing matrix coefficients, respectively, in the N = M = 3
scenario. Although the implementation of both algorithms may
be straightforward for an increased number of sources, Fig. 5
and Fig. 6 demonstrate that their behavior over the estimated
parameters in the simulated scenario changes dramatically.

Fig. 5 show that for the JEKF algorithm, none of the poles
converged to their true value, and although the mixing matrix
parameters estimation seems stable, it did not reflected in
a good source estimation (SIR). For the DEKF, one of the
sources (AR coefficient of -0.9) the estimation was success-
ful, however, the other two coefficient estimation seems to
collapse as both parameters converge to the same value of
approximately 0.75.

In Fig. 6, its possible to observe for the DEKF that there are
two coefficients which, besides initialized relatively close to
their true values, diverged from the expected value; at the same
interval (around iteration 1000 and 2000) one coefficient from
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Fig. 4. Mean squared error for the estimated mixing matrix coefficients in 100 simulations of the DEKF (bottom) and JEKF (top) algorithm for N = M = 2.

Coefticient Value

Iteration

Fig. 5. Evolution of the mean value for the estimated AR parameters in 100
simulations of the DEKF and JEKF algorithm for N = M = 3.

the main diagonal (h1) decreases, while an off-diagonal value
increases (hi2). This indicates that the algorithm is discarding
the estimation for one of the sources, to estimate a duplicate
signal, as two poles (Fig. 5 and two rows of the estimated
mixing matrix (Fig. 6) are converging to similar values.
Evaluating the sources estimation quality, Fig. 7 presents the
SIR values obtained in the 100 repetitions for the N = M = 3
scenario. From the SIR values, its possible to determine that
the quality of the source estimation was definitely poorer when
compared to the N = M = 2 scenario. The SIR median
obtained by the simulations in this experiments for JEKF for
sources one two, and three was 12.8 dB, 15.8 dB and 17.0
dB respectively, while the DEKF presented median values of
2.9 dB, 3.2 dB and 16.0 dB. Tab. V summarizes the results of

TABLE V
MEAN SIR VALUES OF THE RECOVERED SIGNALS FOR THE JEKF, DEKEF,
SOBI AND SONS ALGORITHMS FROM 100 SIMULATIONS FOR A FIXED
MIXING MATRIX, p1 = —p3 = 0.9 AND p2 = 0.4 (N =M = 3).

SIR [dB]
Source 1 Source 2 Source 3
Mixed 9.5+ 0.3 24 +£0.1 154 +0.3
JEKF 128 +04 | 158+18 | 17.0+0.6
DEKF 2.9 + 0.6 32+02 16.6 £ 9.3
SOBI | 289 +7.6 | 31.3+44 | 448 +3.6
SONS | 21.9+54 | 23.0+54 | 349 +6.8

mean SIR for all the considered algorithms onthe N = M =3
scenario, where results for SOBI and SONS are also present.
Results from the mean SIR confirm that both DEKF and JEKF
were unable to retrieve the sources, while SOBI and SONS,
beside the fact that de SIR also decreased when compared with
two sources scenario, presented relatively good performance.

VII. CONCLUSION

This work presented two algorithms for blind source sep-
aration (BSS) using the Kalman Filter formulation based on
parameter estimation approach. The Kalman filter formulation
enables the development of an online algorithm, an important
characteristic for several applications. The theoretical back-
ground of the algorithms was described, along with their
applications in BSS and performance comparison.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 40, NO.1, 2025. 9

JEKF

_40 | | | | | | [ | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iteration
_hll _h21 h31 _h12 _h22 h32 _h13 _h23 _h33
DEKF
_60 | | | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iteration
——h  ——h h, —h, _ ——h h, —h,_, ——h__, ——h

11 21 31 12

22

Fig. 6. Mean squared error for the estimated mixing matrix coefficients in 100 simulations of the DEKF (bottom) and JEKF (top) algorithm for N = M = 3.
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Fig. 7. SIR values for 100 simulations of the DEKF and JEKF algorithm for
N=M-=3.

The JEKF and DEKEF algorithms were tested in a simulation
environment were their general behavior was tested by ana-
lyzing the influence of the pole values for AR(1) sources, as
well as the sensitivity to the mixing matrix. The performance
of the algorithms were studied and presented alongside the
results for well known algorithms used in similar scenarios:
SOBI and SONS.

The simulations showed that both algorithm (JEKF and
DEKEF) recovered mixed AR(1) sources successfully for the
N = M = 2 scenario, for certain pole values and mixing ma-
trix tested. However, JEKF had convergence issues depending
on the initialization of the process noise covariance matrix.
On the other hand, DEKF showed convergence to expected
values with a performance advantage over JEKF for evaluated
metrics (SIR and MER).

Fine-tuning of correlation matrices initialization and the
sensitivity to the initialization of unknown parameters were
found to be important for the proper functioning of JEKF
and DEKF algorithms. Neither algorithm was able to perform

proper parameters estimation for the mixtures involving more
than two sources (N = M = 3).

Since the source separation is an inverse problem, from the
results obtained, this ill-posed scenario may benefit of a regu-
larization strategy, also considering the theoretical limitations
of the parameter estimation approach for this model, requir-
ing an extensive investigation and may demand an alternate
solution. The absence of the results for N >= 3 scenarios
from previous works highlights the importance of examining
and discussing this limitation. A deeper analysis of the origin
of these issues may lead to interesting results for perspective
work.
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