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Atkinson Index Detector for Spectrum Sensing
Dayan Adionel Guimarães

Abstract—A new approach for designing detectors for cooper-
ative spectrum sensing has recently been developed. It applies an
incoming inequality index, which is normally used in economic
and social sciences, to build a test statistic that operates on the
entries of the received signal sample covariance matrix. The first
detector designed using this approach was the Gini index detector
(GID). This letter devises the Atkinson index detector (AID),
which is shown to outperform the GID in many situations, with
the special attribute of attaining a time complexity that grows
linearly with the number of secondary users.

Index Terms—Atkinson index, cognitive radio, dynamic spec-
trum access, Gini index, spectrum sensing.

I. INTRODUCTION

THE proliferation of wireless communication systems in
recent years has resulted in scarcity of available radio

frequency (RF) spectrum. This scarcity can be credited to the
implementation of fixed spectrum allocation policies, where a
network of primary users (PUs) holds exclusive rights to utilize
specific RF bands. However, research indicates that numerous
allocated RF bands remain underutilized in particular regions
and time periods, leading to inefficient spectrum utilization [1].

The landscape of RF spectrum scarcity is anticipated to
deteriorate with the expansion of Internet of Things (IoT)
and 5G networks, and the emergence of 6G networks. These
advancements will demand larger bandwidths and intensify
competition for the already constrained spectrum resources [1].

A potential remedy for the issue of inefficient spectrum
utilization involves the implementation of cognitive radio
(CR) networks. These networks enable the identification of
vacant bands resulting from the variable occupancy of the
primary network spectrum in both time and space [2]. In
such scenarios, a dynamic spectrum access (DSA) policy can
be implemented, allowing cognitive terminals of secondary
users (SUs) to opportunistically utilize unoccupied frequency
bands. This approach, known as spectrum sensing [1], [3]–[5],
employs techniques with or without the aid of a database of
RF spectrum occupancy to detect spectral gaps, commonly
referred to as whitespaces or spectrum holes.

While individual spectrum sensing performed by each SU
may be susceptible to impairments such as multi-path fading,
signal shadowing and hidden terminals, cooperative spectrum
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sensing (CSS) addresses these issues by employing multiple
SUs. CSS aims to enhance the accuracy of decisions con-
cerning the occupancy state of the sensed band by leveraging
collaborative efforts among SUs.

This article considers a centralized approach to CSS with
data fusion, wherein samples of the received signal from SUs
are transmitted to a fusion center (FC). At the FC, these
samples are used to calculate a test statistic, which is then
compared with a decision threshold to yield a global decision
regarding the occupancy state of the monitored band.

There is a vast list of detection techniques for spectrum
sensing, from the well-known energy detection to modern
solutions based on neural networks, machine learning and
artificial intelligence, going through cyclo-stationary feature
and eigenvalue-based detection strategies [5].

Recently, an incoming inequality index was proposed as a
novel and promising detector design approach [6]. This type
of index is commonly used in economic and social sciences
to measure income or wealth inequality among groups or
populations. Using this approach for the first time, the Gini
index detector (GID) has been derived in [6], where the Gini
index formula has been adapted to operate on the elements
of the received signal sample covariance matrix (SCM). The
resultant GID attained low complexity, robustness against
variations in signal and noise power levels, and exhibited the
constant false alarm rate (CFAR) property, yet outperforming
several state-of-the-art detectors in many practical situations.

This letter devises the new Atkinson index detector (AID).
As the name suggests, the detector is based on the Atkinson in-
dex [7] for income inequality measurement. It is shown that the
AID is robust against variations in signal and noise powers, at-
tains the CFAR property, and has low time complexity. More-
over, the AID performs close to the GID, but exhibits a latency
far below its predecessor. The performances of both detectors
are addressed by means of computer simulations modeled
according to a practical-appealing system model encompassing
distance-dependent received signal powers, nonuniform noise
levels across the SUs, multi-path fading with variable line-
of-sight condition, and a consistent procedure to calibrate
the signal-to-noise ratio (SNR). Additionally, the model is
subjected to variations of the main system parameters that
govern the spectrum sensing performance, allowing for a
realistic assessment of AID and GID.

The subsequent sections of this letter are structured as
follows: Section II outlines the models for signals, noise and
channels. The AID test statistic is devised in Section III.
Section IV focuses on numerical results and discussions, while
Section V provides the concluding remarks for the work.
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II. SIGNAL, NOISE AND CHANNEL MODELS

The model employed for centralized CSS with data fusion
is primarily based on [8]. Thus, some details are omitted for
conciseness. Spectrum sensing is conducted by m SUs, each
gathering n samples of the PU signal over a sensing interval.
The collected samples are transmitted to the FC through an
error-free control channel, thereby forming the sample matrix
Y ∈ Cm×n, which is given by

Y = hxT +V, (1)

where the vector x ∈ Cn×1 contains the samples of the PU
signal, modeled as complex Gaussian random variables with
zero mean. The channel vector h ∈ Cm×1 comprises elements
hi that denote the channel gains between the PU transmitter
and the ith SU, for i = 1, . . . ,m. The temporal variation of
these gains reflects the fading effect resulting from multi-path
propagation and mobility of the SUs. Specifically, h = Ga,
where G is a gain matrix to be defined subsequently, and
a ∈ Cm×1 is a vector composed of complex Gaussian random
variables ai ∼ CN [

√
K/(2K + 2), 1/(K + 1)], where K =

10K
(dB)/10 is the Rice factor of the channels between the PU

and SUs, with K (dB) = 10 log10(K) denoting its dB value.
Based on the findings reported in [9], it was realized that

K (dB) is a random variable, well characterized by a Gaussian
distribution with mean of µK and standard deviation of σK ,
both expressed in decibels. The typical values of µK and σK

are determined based on the signal propagation characteristics
influenced by the environment. For instance, in urban areas
µK = 1.88 dB, σK = 4.13 dB. In rural or open areas, µK =
2.63 dB, σK = 3.82 dB are common, while suburban regions
have µK = 2.41 dB, σK = 3.84 dB [9].

The received signal power levels at the SUs can vary in
magnitude and over time due to differences in the distances
between the PU transmitter and the SUs, as well as variations
in these distances across different sensing events resulting
from the movement of the SUs. In such scenario, the pre-
viously mentioned gain matrix G ∈ Rm×m is expressed as
G = diag(

√
p/Ptx), where p = [Prx1, . . . Prxm]T represents

the vector of PU signal powers received by the m SUs,
with [·]T indicating transposition. Here, Ptx denotes the PU’s
transmission power in watts, and diag(·) is a diagonal matrix
with its diagonal elements coming from the vector argument.

The log-distance path loss prediction model [10] is em-
ployed in this context to compute the received signal power
at the ith SU, in watts, yielding

Prxi = Ptx (d0/di)
η
, (2)

where d0 represents a reference distance situated in the far-
field region of the transmitting antenna, di denotes the distance
between the PU and the ith SU, and η is the path loss exponent.
All distance measurements are specified in meters.

Discrepancies and fluctuations in noise powers at the SUs’
receivers may arise owing to temperature fluctuations, dis-
parities among front-ends, and undesired signals entering the
receivers and contributing to the noise floor. To characterize
such conditions, the elements of the ith row of the matrix

V ∈ Cm×n outlined in (1) are modeled as zero-mean Gaussian
random variables with variance

σ2
i = (1 + ρui)σ̄

2, (3)

where ui represents a realization of a uniform random variable
Ui within the interval [−1, 1], σ̄2 is the average noise power
at the SUs, and 0 ≤ ρ < 1 denotes the fraction of variation in
the noise power σ2

i around σ̄2.
The instantaneous SNR across the SUs, γ, is a random

variable due to its dependence on σ2
i and di, both of which

are random. Based on (2) and (3), a realization of γ is

γ =
1

m

∑m

i=1

Ptx (d0/di)
η

(1 + ρui)σ̄2
. (4)

Hence, the average SNR of the SUs is determined by
SNR = E[γ], where E[γ] denotes the expected value of
γ. To establish this SNR model, we initially compute the
expected value of γ′, defined for σ̄2 = 1 and {di}. It can
be demonstrated [8] that this expected value is given by

E[γ′] = ln
(

1+ρ
1−ρ

) 1

2ρm

∑m

i=1
Prxi (5)

for 0 < ρ < 1, and for ρ = 0 it is given by

E[γ′] =
1

m

∑m

i=1
Prxi. (6)

As SNR = E[γ] = E[γ′]/σ̄2, the calibrated noise level is

σ̄2 = E[γ′]/SNR. (7)

This value of σ̄2 is plugged into (3), along with a realization
ui of the random variable Ui, to yield σ2

i , which represents
the variance of the noise samples in the ith row of V. Fresh
values of {σ2

i } are computed for each sensing event, thereby
introducing temporal variability to the noise levels.

The matrix Y in (1) is built at the FC from the mn samples
forwarded by the SUs. Under hypothesis H1, which means the
presence of the PU signal in the sensed band, this matrix is
given by Y = hxT + V. Conversely, under hypothesis H0,
which indicates the absence of the PU signal, it follows that
Y = V. From Y, the FC computes the SCM

R = 1
nYY†, (8)

where † denotes conjugate transposition. Both AID and GID
test statistics are built from the elements of R.

III. ATKINSON INDEX DETECTOR

In the context of income inequality measure, let ri represent
the income of the ith population, for i = 1, . . . , N , and let the
mean income be r̄ = 1

N

∑N
i=1 ri. The Atkinson index [7] with

the inequality aversion parameter 0 ≤ ϵ ̸= 1 is defined as

Aϵ = 1− 1

r̄

(
1

N

∑N

i=1
r1−ϵ
i

) 1
1−ϵ

, 0 ≤ ϵ ̸= 1. (9)

Herein, this expression is adapted to the spectrum sensing
scenario by replacing the incomes ri by the elements rij of
R, yielding the AID test statistic TAID = 1−Aϵ, given by

TAID =
1

r̄

(∑m

i=1

∑m

j=1
r1−ϵ
ij

) 1
1−ϵ

, (10)
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where r̄ = 1
m2

∑m
i=1

∑m
j=1 rij . A particular case of special

interest arises when ϵ = 0.5, for which well-known algorithms
for square root calculation can be employed to reduce the
latency for computing the test statistic TAID. In this case,

TAID =
1

r̄

(∑m

i=1

∑m

j=1

√
rij

)2
=

1

r̄

(∑m

i=1

∑m

j=1

√
|rij |+ ℜ(rij)

2

)2

,

(11)

where, to further simplify the computation, it has been ex-
ploited the fact that each complex value above the main diago-
nal of R corresponds to its conjugate below the main diagonal.
This implies that the square roots of these pairs will have the
same real parts but opposite imaginary parts. Consequently,
the imaginary parts cancel out in the summation, resulting
only in the sum of the real parts. The Appendix explains the
equality used in this simplification. Additionally, as dividing
by 2 in (11) does not affect the detector’s performance, this
division can be suppressed. Moreover, considering that the
square roots operating above and below the main diagonal
of R in the second line of (11) yield the same set of results,
there can be a reduction in the total number of terms in the
summations from m2 to m(m+1)/2. Therefore, when ϵ = 0.5,

TAID =
1

r̄

(∑m

i=1

∑m

j=i
(2− I)

√
|rij |+ ℜ(rij)

)2

, (12)

where I = 1 for i = j (elements on the main diagonal of R),
and I = 0 for i ̸= j (off the main diagonal of R). Notice that,
owed to this last simplification, only the entries on and above
the main diagonal of R need to be computed.

IV. NUMERICAL RESULTS

The results presented hereafter have been obtained using
the MATLAB code [11], from 20000 Monte Carlo simulation
runs. Unless otherwise stated, m = 6, SNR = −10 dB, η =
2.5, r = 1 km, d0 = 1 m, Ptx = 5 W, PU at (1, 1) km,
n = 200, ρ = 0.5, µK = 1.88 dB, σK = 4.13 dB, Pfa = 0.1.

A. CFAR property of the AID

The CFAR property of a detector refers to its ability to
keep a fixed probability of false alarm, Pfa, irrespective of the
noise power. In this case, the decision threshold is set in the
detector’s design phase for a target Pfa, and is kept unchanged
no matter the noise level. Fig. 1 shows empirical probability
density functions (PDFs) estimated for 20000 values of TAID
under hypothesis H0, for four randomly chosen values of σ̄2.
It can be seen that the PDFs are almost identical to each other,
thus maintaining Pfa for any predefined threshold.

B. The Gini index detector

Since the GID is the benchmark for the results presented
hereafter, this subsection briefly presents its test statistic. Let
ri denote the ith element of the vector r formed by stacking
all columns of R, for i = 1, . . . ,m2. The GID test statistic
proposed in [6] is computed at the FC according to

Fig. 1. Empirical PDFs of TAID under H0.

TGID =
2(m2 −m)

∑m2

i=1 |ri|∑m2

i=1

∑m2

j=1 |ri − rj |
, (13)

where the constant 2(m2 − m) has been used in [6] for
convenience, but it does not influence the performance of the
GID detector, and can be removed.

C. Performance comparisons

As preliminary results, Fig. 2 shows the influence of the
inequality aversion parameter, ϵ, of the AID on the probability
of detection, Pd, for Pfa = 0.1, and on the average run-time
spent for computing TAID and TGID, for m = 6 and m = 12
SUs. From Fig. 2a it can be seen that ϵ = 0.5 is a conservative
choice, which is reinforced by the decreased run-time of the
AID observed in Fig. 2b. Hence, the remaining results of this
section adopts ϵ = 0.5.

(a) (b)
Fig. 2. (a) Probability of detection versus ϵ, and (b) run-time versus ϵ.

A closer look at the influence of m on Pd and run-time can
be made with the help of Fig. 3. As expected, the performance
improves with an increasing number of SUs, though with
diminishing returns. The AID is slightly superior to the GID
for smaller m, whereas the opposite happens for larger m.

Fig. 3b unveils the most attractive result, which is the much
lower run-time of the AID as m gets larger. A curve fitting of
the type axb+c has been applied to the run-time measurements
given in Fig. 3b, yielding a ≈ 4.9× 10−7, b ≈ 3.9, and
c ≈ −1.5× 10−5 for the GID, and a ≈ 1× 10−6, b ≈ 1, and
c ≈ 1.1× 10−5 for the AID. Hence, the GID’s computation
time follows a power growth rate of O(m3.9), and the AID
follows a linear growth rate of O(m). Clearly, as m increases,
the AID is capable of delivering much lower latency in
comparison with the GID. It is worth mentioning that ϵ
progressively smaller than 0.5 is a better choice if m > 12.
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(a) (b)
Fig. 3. (a) Probability of detection versus m, and (b) run-time versus m.

The influences of µK and η on Pd are shown in Fig. 3.
It can be seen that the AID and GID perform close to each
other for high values of µK , whereas the AID is considerably
more advantageous at lower µK . Larger values of η reduces
the performance of both detectors, as expected, since this
situation produces larger discrepancies among the received
signal powers across the SUs (it is worth noting that the SNR
has been kept the same for any η). Nonetheless, the AID
unveils a small advantage over the GID for all values of η.

(a) (b)
Fig. 4. (a) Probability of detection versus µK , and (b) versus η.

Fig. 5 illustrates the influences of n and SNR on Pd.
It can be seen that the performances of both detectors are
improved as n increases, as expected, and that the GID is
preferable for smaller number of samples, whereas the AID
wins as n increases. Their respective advantages are not
large, though. Regarding the SNR, the performances of both
detectors improve as the SNR increases, as also expected, with
a slight advantage of the AID at high SNR regimes.

Finally, Fig. 6 illustrates the influences of ρ and the PU
transmitter coordinates on Pd. Fig. 6a demonstrates that both
detectors are quite robust against the amount of noise power
fluctuations, with the AID exhibiting a small advantage over
the GID. In regard to the PU transmitter location, it can be
seen in Fig. 6b that the performances of both detectors are
reduced when (x, y) < 2000 m, keeping practically unchanged
for larger distances. The performance reduction, which is an
expected outcome, is owed to the fact that larger discrepancies
among the received signal levels occur if the PU transmitter
is close to the SUs.

(a) (b)
Fig. 5. (a) Probability of detection versus n, and (b) versus average SNR.

(a) (b)
Fig. 6. (a) Probability of detection versus η, and (b) versus PU transmitter
coordinates (x, y) for (x = y).

V. CONCLUSIONS

This letter introduced the AID for centralized CSS and com-
pared its performance with the GID, the first detector based on
an income inequality index. The AID consistently outperforms
the GID across various scenarios, with a time complexity that
scales linearly with the number of SUs. Specifically, the AID
operates with a computational time growth rate of O(m), in
sharp contrast to the GID’s power-law growth of O(m3.9).
This difference in scaling has significant practical implications,
as it enables the AID to deliver much lower latency as the
number of users increases, making it a more efficient and
scalable solution for real-world applications where fast and
reliable spectrum sensing is critical.

The hardware complexities of AID and GID, which can be
fully assessed with accuracy only after they are implemented
using field programmable gate array (FPGA) or application-
specific integrated circuit (ASIC) designs [12]–[14], can be
anticipated by comparing one of the AID test statistics (10),
(11) or (12), with the GID test statistic (13): It can be
inferred that the AID has the potential for attaining lower
hardware complexity than the GID due to the smaller number
of operations made to compute the test statistic.

It is also worth emphasizing that, for the sake of brevity,
comparisons have been exclusively conducted between GID
and AID. However, given the their performance similarity in
numerous scenarios, one can readily infer the behavior of the
AID against other detectors by examining in [6] how the GID
compares with alternative techniques.
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[13] D. A. Guimarães, E. J. T. Pereira, and R. Shrestha, “Resource-efficient
low-latency modified Pietra-Ricci index detector for spectrum sensing in
cognitive radio networks,” IEEE Trans. Veh. Technol., pp. 1–15, 2023,
doi: 10.1109/TVT.2023.3269345.
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APPENDIX

The square root of a complex quantity rij = aij + jbij is

√
rij =

√
|rij | cos(θij/2) + j

√
|rij | sin(θij/2),

where θij = arctan(bij/aij). When ϵ = 0.5 in (10), from the
conjugate symmetry of R and the above result, we obtain
m∑
i=1

m∑
j=1

√
rij =

m∑
i=1

m∑
j=1

ℜ(√rij) =

m∑
i=1

m∑
j=1

√
|rij | cos(θij/2).

Applying the trigonometric identity cos(θij/2) = {[1 +
cos(θij)]/2}0.5 and the fact that cos(θij) = aij/|rij |, after
some simple manipulations it is found that

m∑
i=1

m∑
j=1

√
rij =

m∑
i=1

m∑
j=1

√
|rij |+ ℜ(rij)

2
.
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