
JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 39, NO.1, 2024. 127

A Pitch-Controlled End-to-End Voice Conversion
System for Brazilian Portuguese

Victor P. da Costa, Sergio L. Netto, Luiz W. P. Biscainho, and Ranniery Maia

Abstract—Speech conversion is a technique that modifies the
identity of the voice in a speech signal without changing the
spoken content. Accurate pitch conversion is a requirement the
best speech conversion systems must address, as this charac-
teristic is essential to the correct identification of the target
speaker. This work proposes a pitch-controlled end-to-end voice
conversion model that combines state-of-the-art ideas from both
speaking and singing voice conversion with a novel cost function
to ensure artifact-free pitch tracking. The model is trained in
Brazilian Portuguese, overcoming the lack of high-quality data
by improving a large but flawed dataset with filtering operation.
Our model mostly outperforms other popular open source models
in both listening tests and objective measurements. In particular,
on a 5-point MOS, we obtained the highest speaker similarity
score (4.05), and a naturalness score of 3.48, second only to a
system whose similarity score was 2.62.

Index Terms—voice conversion, generative adversarial net-
works, Brazilian Portuguese

I. INTRODUCTION

Voice conversion is the process of modifying a speech signal
such that the perceived identity of the speaker is changed
while preserving the textual content. It is a tool with many
applications, both direct (e.g. as a voice acting tool) and
indirect (e.g. as a way to generate diverse training data for
other applications).

In traditional voice conversion, speech is transformed into
an intermediate representation with useful properties, a model
performs conversion in the representation space and the
converted representation is transformed back into an audio
signal [1] [2]. Advances in deep learning techniques have
revolutionized all stages of the conversion process, producing
more complex conversion models, newer intermediate repre-
sentations and higher quality vocoders [3].

There are many reasons to use an intermediate represen-
tation, such as allowing the use of high-quality vocoders or
isolating specific aspects such as timbre and pitch — essen-
tial for voice identification —, making conversion simpler.
On the other hand, compounding errors may degrade signal
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quality: using a vocoder developed for natural representations
in the reconstruction of converted representations may result in
worse performance, as a small training error for the conversion
network may be amplified into very noticeable artifacts by the
synthesis process.

Our system combines a generative adversarial network-
based approach for both conversion and synthesis with a pre-
trained encoder to create an end-to-end network that outputs
audio directly. Since there is no distinction between conversion
and synthesis, gradients can be propagated throughout the
framework, avoiding compounding-error artifacts and thus
improving the overall quality.

One common issue in many voice conversion systems is
poor pitch conversion. Pitch characteristics, specially its mean,
are very important for voice identification, but most voice con-
version systems only transform the pitch implicitly. Explicit
pitch control is more common in singing voice conversion,
and is often used to preserve the original pitch contour [4] [5]
in order to avoid melody distortion. However, enforcing the
original pitch may lead to poor perceived similarity between
converted and target voices or poor signal quality, especially
when source and target singers have different vocal registers.

In this work, we incorporate strategies from singing voice
conversion to explicitly convert the pitch (operating more
flexibly as we are not constrained by an original melody),
greatly improving the identification of the resulting converted
speech as originating from the target speaker.

We trained our model in Brazilian Portuguese, which is a
language still underserved in voice conversion. We overcame
the lack of large, high quality, multi-speaker datasets in Por-
tuguese by filtering an existing dataset plagued by problems
such as noise and non-standardized recording environments.
These problems can even make signals from the same speaker
sound like they are from different speakers.

The main contributions of this work are the following:
an end-to-end voice conversion system with pitch control,
adapting various techniques from the literature; a novel pitch
matching loss exploiting a neural pitch extraction network;
and an improved version of a large scale Brazilian Portuguese
dataset.

This article is organized as follows: Section II reviews
related voice-conversion works; Section III provides a descrip-
tion of the proposed system, both in terms of network archi-
tectures and loss functions used in its development; Section IV
details aspects of system training, including the dataset, and
the experiments comparing our model to other models in the
literature. Finally, Section V provides a conclusion.
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II. RELATED WORK

Many methods have been proposed over the years for
voice conversion. Traditional methods used vocoders such as
STRAIGHT [6] or WORLD [7] for feature extraction and
synthesis, and conversion resorted to statistical models such
as vector quantization [1], Gaussian mixture models [2] and
hidden Markov models [8].

Advances in deep neural networks resulted in a rapid
increase in new techniques. Some works adapted domain-
agnostic generative techniques, such as generative adversar-
ial networks (GANs) [9] [10] and variational autoencoders
(VAE) [11], to perform voice conversion, while others ex-
ploited advances in other speech processing tasks, such as
voice synthesis [12] or automatic speech recognition [13].

Some of the biggest advances in the field of voice con-
version came from newer vocoders based in deep neural
networks that could achieve higher quality than traditional
ones. The first neural vocoder to achieve great results was
WaveNet [14], which uses a deep convolutional network to
implement an auto-regressive model of speech generation. It
is able to produce high-quality samples, but the generation
speed is fairly slow due to the complex network and its auto-
regressive nature. Later, other works such as WaveRNN [15],
Parallel WaveGAN [16], WaveGlow [17] and MelGAN [18]
improved the generation speed without sacrificing quality by
reducing network size and/or making the model non auto-
regressive.

Newer techniques also changed the types of represen-
tation used. High-quality pre-trained vocoders made mel-
spectrograms the most common representation for voice con-
version. Features obtained from networks trained for auto-
matic speech recognition (ASR), such as phonetic posterior-
grams [19] or intermediary features [4] [20], are also popular
representations; since they are closer to text, and as such
naturally carry less speaker information, they make conversion
easier. Self supervised learning (SSL) models are a newer
source for representations. These networks are trained on
large scale datasets, usually with the objective of producing a
disentangled representation useful for many tasks [21] [22] or
focusing on specific tasks, such as content encoding [23]. All
these alternative representations are not mutually exclusive:
many works use, for example, SSL representations as input
and mel-spectrograms as output [24].

While most works use a separate vocoder, others follow an
end-to-end approach. Nachimani et al. [25], for instance, uses
a WaveNet vocoder directly as the decoder of an autoencoder.
NVCNet [26], FreeVC [27] and two of the best performing
systems in the 2023 edition of the Singing Voice Conversion
Challenge [24] use the HiFi-GAN [28] vocoder in similar
ways.

In the context of pitch conversion, vocoders such as
STRAIGHT or WORLD separate the audio signal into pe-
riodic or aperiodic envelopes and pitch. As such, models that
use these representations usually treat pitch conversion sepa-
rately [2]. As novel deep learning methods were introduced, it
has become more common to use mel-spectrograms or other
learned representations as the conversion domain, which has

many advantages, but makes the pitch conversion implicit.
Recent models, such as the SF-HiFi-GAN vocoder [29] have
begun to reintroduce explicit pitch control but are not widely
used yet.

Explicit pitch conditioning is an important aspect of singing
voice conversion. One of the first deep learning models with
explicit pitch conditioning was PitchNet [30], which uses addi-
tional costs to make a pitch-independent embedding, which is
concatenated with a pitch-embedding stage and subsequently
decoded. Nachimani et al. [25] use an artificial sinusoidal
signal as input for their network together with linguistic and
loudness representations, while Liu et al. [4] use downsampled
versions of a similar signal to condition the network at
different scales.

Some methods attempt to improve pitch conversion without
explicit pitch conditioning. Speechsplit2 [31] and FreeVC [27]
both use data augmentation to assist their internal represen-
tations in becoming speaker independent. The former uses
traditional techniques to generate signals with modified pitch
and spectral envelope, while the latter employs frequency
shifted versions of the signals by stretching and compressing
its mel-spectrogram and synthesizing the result. In both works,
the conversion network recovers the original speech from the
corrupted version, thus learning to ignore the source’s pitch
and spectral content.

Our model combines a WavLM [21] encoder to extract
features, a modified version of the generator from HiFi-
GAN [28] as a decoder, and a pitch encoder inspired by
FastSCV [4]. We improve overall quality and pitch tracking
by incorporating a novel pitch specific loss using a neural
pitch estimator [32], as well as other losses adapted from the
literature [23] [33].

III. DESCRIPTION OF THE PROPOSED MODEL

The proposed model is a generative adversarial network,
and as such is composed of two sub-networks: a generator
G(s, c, e) that converts the audio signal s from its original
speaker into the target speaker represented by c, conditioned
on a pitch excitation represented by e; and a discriminator
D(s, c) that evaluates the signal. Fig. 1 shows an overview of
the system.
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Fig. 1. Overview of the system, showing inputs & outputs and the general
structure around a simplified view of the generator.
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The system performs many-to-many conversions, meaning
that it can convert from and to any speaker in the training set,
with the same generator for all conversion pairs, receiving the
target speaker as an input to perform the necessary condition-
ing. The discriminator receives as input both the audio and the
target speaker’s identity and decides if it is a natural signal
from the target speaker or one produced by the generator.
These networks are trained adversarially: the discriminator
tries to classify real signals as real and produced by the
correct speaker, rejecting generated signals that either sound
too unnatural or have the wrong identity; in turn, the generator
tries to deceive the discriminator. Sections III-A and III-B
describe the structure of the generator and discriminator,
respectively, while Section III-C describes the cost functions
used in their training process.

A. Generator

The generator is an autoencoder where the encoder embeds
the audio signal into a latent space and the decoder transforms
the embedding, together with target speaker and target pitch
conditioning, back to an audio signal.

1) Decoder: The decoder structure alternates upsampling
layers and stacks of residual block, following the same
approach employed in the HiFi-GAN generator [28]. The
upsample layer is a single transposed convolution and roughly
expands the previous level of computation, increasing the time
resolution and reducing the number of channels, whereas the
residual blocks refines the signal while keeping both the time
resolution and number of channels constant. Fig. 2 shows an
overview of the decoder.
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Fig. 2. Overview of the decoder, showing the internal structure of each stage
and how the content, identity, and pitch inputs are processed.

Each residual block has a residual connection that adds its
input to its output, and is composed of a dilated convolution
and a convolution with kernel of length one, both preceded
by leaky ReLU activations. Blocks are organised into parallel
stacks, with the dilation of the convolution starting at one (no

dilation) and increasing throughout the stack, improving the
perceptive field of the stack without significantly increasing
its number of parameters. Each stack uses a different kernel
size to help the network learn structures of different lengths.
Dilation and kernel size configurations follow [28].

Information on the target speaker and the desired pitch is fed
into the generator between the convolutions of each residual
block through an affine transformation similar to Perez et
al. [34]. In that manner, channel-wise concatenated pitch and
speaker embeddings are transformed into per-channel and per-
time step scaling and translation via a pair of convolutional
layers with a leaky ReLU activation in between, which are
respectively multiplied and added to the feature map. Mathe-
matically, the transformation is implemented as

ĥ(i) = h(i) ⊙ σσσ(i)
c +µµµ(i)

c , (1)

where, h(i) is the feature map, σσσ(i)
c and µµµ

(i)
c are speaker- and

pitch-dependent scale and translation, respectively, all and ⊙ is
the point-wise product. This transformation allows the condi-
tioning vectors to modulate the synthesis more effectively than
concatenating the vector to the maps [9]. The transformation
is not accompanied by instance normalization as done in Chou
et al. [35] or Kaneko et al. [9], to avoid loss of information
and artifact production during audio generation [18].

Speaker embeddings are obtained, according to the speaker
ID, from a learnable codebook and are the same for all time
steps. When concatenating, they are simply repeated to match
the pitch embedding time dimension. Details on the pitch
vectors are explained in the next item.

A final convolutional layer reduces the number of channels
to one and a hyperbolic tangent activation produces the nor-
malized audio signal as an output between −1 and 1.

2) Pitch encoder: While the generator with only the
speaker conditioning is able to produce signals with a spectral
envelope close to that of the target speaker, it struggles to
produce the same mean pitch as the target, thus greatly
impairing the perceived identity of the converted signal. In
particular, the model has a tendency to sustain, to halve or
to double the original pitch. Therefore, in order to improve
the pitch control, we employ techniques inspired by singing
voice conversion and use the desired pitch as an input to the
network [4].

We first extract the fundamental frequencies from the source
signal and a randomly selected signal from the target speaker.
The desired converted pitch is then determined as

fconv = fsrc
ftgt

fsrc
, (2)

where fsrc and ftgt are the average pitches of the source and
target signals, respectively. Instead of using the pitch directly
as the input of the network, we follow Liu et al. [4] and
use the desired pitch to obtain an excitation signal, which
is then fed to the network to produce better results [36].
To obtain the excitation signal, the pitch is interpolated to
the same dimensions as the source signal, thus providing the
instantaneous frequency, which in turn is integrated into the
instantaneous phase. The excitation signal et is then the sine
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of the instantaneous phase for voiced frames and random noise
for the unvoiced ones:

et =


α sin

(
t∑

k=0

2π
fk
fs

t+ θ

)
+ nt, if voiced

α

3σ
nt, if unvoiced,

(3)

where nt ∼ N (0, σ2), θ is a random initial phase and fs is
the sampling frequency. Gain α controls the energy of the
excitation signal.

The excitation signal travels backwards through the decoder,
as shown in Fig. 2, starting with the same time dimensions as
the output and being downsampled to produce pitch embed-
dings at each internal scale of the decoder. The downsampling
is performed by a residual block inspired by Liu et al. [4]
but slightly less complex, which we found did not affect the
quality of the pitch conditioning. Fig. 3 shows the structure of
the pitch encoder.
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Fig. 3. Overview of the pitch encoder, showing the main and residual
branches.

The signal passes through two branches, one responsible
for the processing, and one residual, that changes only the
number of channels and the sampling rate. The main branch
is composed of a strided convolution that adjusts the scale
and the number of channels, followed by two pairs of ReLU
activations and convolutions. In the residual branch, the signal
also passes through a convolutional layer of kernel size one,
to adjust the number of channels, a non-learnable filter and
a downsample, to adjust the sample rate. Unlike Liu et al.,
we use a selective non-learnable filter in the residual branch
to prevent aliasing of the excitation signal. The two parts are
then added together.

3) Encoder: We use two types of encoder, one based on
a pre-trained self-supervised learning (SSL) model, which
attains better results, and a purely convolutional model, which
is faster and does not depend on a pre-trained model that may
not be available for low-resource languages. Fig. 4 illustrates
the SSL-based content encoder.

The chosen pre-trained encoder was the WavLM [21], which
transforms an audio signal into a sequence of vectors that
can be used in many tasks. The model was trained on a
large scale multilingual audio dataset that includes Portuguese.
The WavLM representation encodes various aspects of the
audio signal, such as content, identity, noise, etc. To isolate
the content information, the embedding is passed through
a convolutional layer, which greatly reduces the number of
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Fig. 4. Overview of the SSL-based content encoder, showing the pre-trained
WavLM encoder and additional layers to refine the result

channels, and a series of convolutional layers with skip-
connections, similarly to [27].

The purely convolutional encoder is the dual of the decoder.
It uses a similar structure of alternating layers that change the
resolution and the number of channels with residual blocks
to refine the result, but with strided convolutional layers
performing downsampling instead of transposed convolutional
layers performing upsampling.

Neither encoder type uses speaker or pitch conditioning, and
as such they are both speaker independent. In both encoders we
also use an additional cost to help the network remove as much
speaker information as possible, as detailed in Section III-C.

All convolutions in the generator are one-dimensional and
weight normalized [37].

B. Discriminator

We use a multi-scale discriminator inspired by Mel-
GAN [18]. A multi-scale discriminator is an ensemble of
discriminators operating at different sample rates, that is,
each discriminator receives as input a signal downsampled
by a certain factor. Specifically, each discriminator Di, i =
1, 2, . . . , N , of the ensemble has its input downsampled by a
factor 2i−1. This allows the ensemble as a whole to analyze
both long time windows and wide frequency bands. The
discriminators have an identical architecture and do not share
parameters. Other discriminator architectures to address the
complexities of audio signals include the multi-period discrim-
inator from HiFi-GAN [28] or the sub-band discriminator from
Avocodo [38]. We found that using additional discriminators
did not improve the results enough to justify the increased
complexity.

Each discriminator has the task of identifying whether a
signal is real of fake and if it is spoken by the correct speaker.
The output of each discriminator is one independent binary
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classification per speaker in the dataset, with a positive value
representing a signal that is both real and spoken by that
speaker. During training only the output corresponding to the
target speaker is considered. We do not use other speakers
because this often impairs the similarity by inducing the
generator to produce signals that are distant from decision
boundaries rather than more similar to the target [39]. The
speaker dependent branching only happens in the last layer
of each discriminator, allowing the network to share relevant
information among the speaker classification tasks.

The structure of each discriminator is largely based on
MelGAN, except for the output layers. Each discriminator
consists of a series convolutional layers interleaved with Leaky
ReLu activations, and each convolutional layer is weight
normalized [37]. An input layer is followed by four layers
of strided convolutional layers with relatively large kernel
sizes, each downsampling the signal by a factor of four and
increasing the number of channels. One additional layer and an
output layer with a number of dimensions equal to the number
of speakers produce the output per speaker. The output of the
corresponding speaker is then selected as the final output. The
output is not time-averaged, but rather presented as a sequence
of results, one per window, as in PatchGAN [40].

Also following MelGAN, we use three scales in the multi-
scale discriminator, and the downsampling operation in each
scale is preceded by a moving average of length four. Fig. 5
shows the structure of the discriminator.
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Fig. 5. Structure of the discriminator. Left: Ensemble of discriminators, each
operating at a different sample rate. Right: Block diagram of one discriminator.

C. Loss Function
1) Discrimination Loss: The generator and the discrimina-

tors are trained adversarially with the Least Squares GAN [41]
formulation of the adversarial loss, defined as

LD
adv(G,D) = Ep(s)[(D(s)[it]− 1)2]+

Ep(s,t)[(D(G(s, c, e))[it])
2] (4)

for the discriminator, and

LG
adv(G,D) = Ep(s,t)[(D(G(s, c, e))[it]− 1)2] (5)

for the generator, where it is the index of the output corre-
sponding to the target speaker and t is a signal from the target
speaker from which we obtain its associated embedding c and
an excitation e according to equation (3).

The discriminator uses only the output corresponding to
the target speaker, with the others ignored; therefore, its only
criteria is how close the evaluated signal is to a real signal
from the target speaker. The discriminator also is not explicitly
trained to reject real signals from wrong speakers. The losses
for each discriminator in the ensemble are independent.

2) Pitch loss: To train the pitch conditioning and guarantee
that the network uses the information on pitch contained in the
excitation signal, we introduce a novel pitch loss that compares
the pitch contour of the converted signal to the ideal contour
obtained from source and target pitches by exploiting a pre-
trained pitch estimation network.

To obtain pitch estimates of the source, target and converted
signals we use the CREPE neural pitch estimator [32]. The
output of CREPE is a distribution over frequencies, represent-
ing the probability of the pitch being in the frequency range
represented by a particular bin. The frequency of the bins is
given in cents (a logarithmic scale). From this distribution, the
pitch, as well as a voiced/unvoiced decision, can be obtained.

We use CREPE distributions as a basis for the pitch loss.
The target converted pitch is obtained by equation (2) and
we obtain the target converted distribution by shifting the
distribution obtained from the source signal by a proportional
amount. Because the frequency axis of the distribution is in
cents, a logarithmic scale, right-shifting the distribution by
(¢tgt − ¢src), with ¢ being a frequency in cents, is equivalent
to multiplying the pitch by ftgt/fsrc. We then convert the
signal conditioned on the target converted pitch and obtain
its corresponding pitch distribution. Both distributions are
compared via L2-norm.

Mathematically, the loss is given by

Lf0(G)=Ep(s,t)

[
∥C(s)[¢+¢tgt−¢src]−C(G(s, c, e))[¢]∥2

]
,

(6)

where C is the CREPE pitch estimator.
The CREPE-based loss is a perceptual loss [42] in that it

uses a pre-trained network to obtain high level information,
but unlike most models, CREPE’s output has a physical
interpretation. CREPE and similar networks have been used
to condition networks, both as input [43] and to provide
losses [5], but to our knowledge, only for reconstruction,
where the desired pitch is the input pitch. Our approach is
more flexible, allowing one to obtain losses for converted
signals when there is no ground truth.

3) Content embedding loss: To obtain a content embedding
that is speaker independent, we use an approach similar to
[23]. We compare the content embedding of the source signal
with the content embedding of a modified version of the signal
with changed identity and the same content.

To change the identity of the signal we apply the transfor-
mations used in [44]: the signal has its pitch and formants
shifted by a random amount and then passes through a filter
bank with random gain on each band.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 39, NO.1, 2024. 132

The two content embeddings are compared with a con-
trastive loss defined as

Lcont(E) = Ep(s)

[
T∑

t=0

exp(CS(E(st), E(̃st)))∑
τ∈Tt

exp(CS(E(st), E(sτ )))

]
,

(7)

where s̃ is the speaker-modified version of the signal, E is the
encoder of generator G, Tt is a set of time indices that includes
time t plus a number of randomly selected time steps, and CS
is the cosine similarity.

The contrastive loss minimizes the distance between vectors
from each embedding at the same time stamps, where their
content is the same, and maximizes the distance between
vectors from the same embedding at different time stamps,
where their content is likely different.

4) Reverse conversion loss: A converted signal contains the
same content as the source signal, including time alignment,
but different speakers. Training a model to convert such
signal back to its original speaker is the ideal case for voice
conversion, in which we have the exact desired signal to
compare the result to.

We use this reverse transformation as an additional loss,
comparing its result to the original signal. We found that, as
long as the model is already able to convert signals decently,
using this loss improves quality. As such, we exclude this loss
from the training at the start, introducing it after the model
has trained for a while.

To compare the signals we use both a multi-scale mel-
spectral distance, the L1 distance between the mel-spectrum of
each signal, using a range of spectral resolutions, and a feature
matching loss [45] [18], the L1 distance between the feature
maps of the discriminators when each signal is presented.

The multi-scale mel-spectral distance is

Lspec(G,D) = Ep(s)

[∑
n∈N

∥Sn(s)− Sn(G(̃s, c, e))∥1
]
, (8)

where Sn(x) is the mel-spectrum of x obtained from a short-
time Fourier transform with n frequency bins and proportional
window and hop sizes and N = {512, 1024, 2048}.

The feature matching loss is defined as

Lfeat(G,D) = Ep(s)

[
K∑

k=1

L∑
l=1

∥D(l)
k (s)−D

(l)
k (G(s̃, c, e))∥1
Nl

]
,

(9)

where D
(l)
k is the l-th feature map of the discriminator at scale

k. In both losses, both c and e are obtained from the source
signal, while s̃ is the signal previously transformed into an
arbitrary speaker.

The reverse conversion loss is the weighted sum

Lrev = λspecLspec + λfeatLfeat. (10)

This loss is similar to the cyclic conversion loss used in
previous works [46], but with the important distinction that
the gradient is not propagated beyond the converted signal.
This prevents the network from ‘cheating’ by coordinating the
forward and backward conversions to reduce the loss without
actually improving the conversion.

5) Identity loss: We also use the identity loss to regularize
the training and help enforce coherence between the input and
output signals. The identity loss is the distance between a
signal and itself converted with its own speaker as target, i.e.
the signal reconstructed.

To compare the signals we employ the same losses used
in Section III-C4, but with the original signal s instead of a
converted signal s̃.

This loss guarantees that the network is able to reconstruct
signals. Because the other aspects of the system stimulating
the encoded signal to be as speaker independent as possible,
reconstructing the signal greatly overlaps with conversion. We
also found that the identity loss is specially important at the
beginning of training.

6) Global loss function: The global loss function is the
weighted sum of all individual loss components:

Lcyc = Ladv + λcontLcont + λrevLrev + λidtLidt + λf0Lf0,
(11)

where λ. are the corresponding weights with respect to Ladv.
These weights are hyper-parameters and affect the final

result in a variety of ways. For example, the identity loss is
important for the training to converge into intelligible audio,
but if their weights are too high the network can learn to only
reconstruct the input signal instead of performing conversion,
since that is the best way to reduce those losses.

IV. EXPERIMENTAL RESULTS

A. Dataset
One of the challenges of developing a Portuguese language

voice conversion system is the lack of large, high-quality
datasets. In this work we use the CETUC dataset [47], a
dataset that is large and balanced, both in terms of frequency
of phonemes and samples per speaker, but contains defects
that can degrade the quality of generated voices.

The CETUC dataset contains recordings of a set of 1000
phonetically balanced sentences [48] uttered by 100 different
speakers, lasting a few seconds each, totaling 145 hours of
speech. Sampling rate is 16 kHz, but the overall quality of the
recordings varies: the dataset contains both clean, relatively
high-quality audio and audio degraded by various defects,
such as noise, high frequency noise, ambient reverberation, etc.
Even between different recordings of the same person there are
inconsistencies that can make them appear, in extreme cases,
to come from different people.

To improve intra-speaker consistency, we filtered the
dataset. For each speaker, we extracted the speaker embed-
ding of each signal using Resemblyzer [49] and clustered
the embeddings using Gaussian mixture models. Because the
dataset was recorded in different sessions, each speaker has a
small number of signal groups, usually one to three, that share
the same environmental and recording characteristics, and are
therefore easily clustered. Based on cluster visualization and
a few metrics, the most representative cluster for each speaker
was manually selected to be part of the filtered dataset, in an
attempt to balance signal quality and number of samples1.

1The filtered dataset can be found in https://github.com/vicpc00/filtered_
cetuc_dataset.
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The new dataset is composed of 75.5 total hours of speech,
i.e. 52% of the original. We use approximately 90% of the
dataset for training, with the rest being used for test and
validation. We also use a subset of 16 speakers, 8 male and
8 female, speaking the same 15 phrases for objective tests,
with a smaller subset of 8 speakers being used for listening
tests. For the tests, each signal is converted to each of the 16
speakers (including self transformation), totaling 187 hours of
audio, which our model takes approximately 27 minutes to
generate.

B. Training details

When training the conversion network from scratch, the
model had trouble converging. We observed that at the begin-
ning of the training, the conversion process mainly introduced
noise into the learning process, making convergence difficult.
For this reason, we decided to perform training in two stages:
in the first stage the network performs only reconstruction,
that is, the target speaker is always the same as the source
speaker; in the second stage the network is trained for the
speaker conversion itself.

In the first training stage, we give more weight to the
identity loss and use neither pitch loss nor reverse conversion
loss, forcing the network to simply learn how to produce audio.
In the second stage, all loss functions are used, with the reverse
conversion loss introduced only after a number of epochs.
Hence, the network converts each signal to randomly selected
speakers without the original speaker being excluded from the
selection.

The first step is the longer of the two, due to the fact that
synthesis is generally a more difficult task. The second step
does not necessarily have to use the same choices of relative
weights or other hyper-parameters such as the learning rate,
which do not change the network structure. Since the final
result is also more responsive to hyper-parameter choices in
the second step, the separation also makes experimentation
and hyper-parameter tuning less time-consuming and compu-
tationally expensive.

We found that even when using an additional cost function
to make the latent space more speaker independent, it was
never fully independent and our network still benefited from
conversion-specific training.

Our code, detailed training instructions and hyper-parameter
configuration can be found at https://github.com/vicpc00/
td-vc-gan. Our model was trained on a single NVIDIA
GeForce RTX 3090 for a total of 110 epochs, or approximately
355 hours.

C. Experiments

We performed listening tests to evaluate the quality of
conversion: two versions of our model, with and without
the pre-trained encoder, were compared with FreeVC [27]
and YourTTS [50] — both trained with the same dataset as
our model, following the configuration recommended in their
repositories2.

2Examples available at vicpc00.github.io/td-vc-gan.

The test was carried out by 20 listeners in a controlled
environment. Each listener performed a series of evaluations
in which they heard a converted signal and a natural reference
signal from the target speaker uttering a different sentence, and
were asked to rate the former, on a scale of one to five, for
naturalness and similarity. As naturalness they are expected
to assess the signal regarding defects such as noise, lack of
intelligibility, and distortions; as similarity they are asked to
assess how close the speaker of the sentence under test is to
the reference speaker. Each listener evaluated 16 signals per
system in a random order. Signals were balanced such that
each speaker was used as source and target the same number
of times per listener, with the frequency of conversion pair
being balanced over the course of multiple listeners.

We also computed a series of objective measures:
the mean log-f0 difference (MF0D), defined as∑

(fconv,ftgt)

∣∣log fconv − log ftgt
∣∣ /N , where (fconv, ftgt)

is a pair of pitch contours extracted from corresponding
utterances; the mel-cepstral distortion (MCD), defined as∑

(Cconv,Ctgt)
∥Cconv −Ctgt∥2 /N , where (Cconv,Ctgt)

is a pair of mel-cepstral representations extracted from
corresponding utterances and aligned via dynamic time
warping; the speaker embedding similarity (SES), defined as∑

(Rconv,Rtgt)
CS(Rconv,Rtgt)/N , where (Rconv,Rtgt) is

a pair of speaker embeddings extracted from corresponding
utterances with Resemblyzer [49] and CS() is the cosine
similarity; and the word error rate (WER) of the Whisper [51]
automatic speech recognizer when analyzing the converted
signals.

Results are shown in Tab. I: the proposed model obtained
the highest similarity score and the second highest naturalness
score, losing only to FreeVC, which obtained the worse
similarity score. Our model also outperformed or tied with
the best model in all objective measures, except for word error
rate, where once more it only lost to FreeVC. FreeVC’s high
naturalness score and low word error rate must be related to its
poor similarity performance, since it results of not changing
the source speaker enough. More dramatic changes between
distant speakers tent to be harder and introduce more artifacts.

A very likely reason for FreeVC’s poor similarity perfor-
mance can be found in the mean log-f0 difference, where
it obtained the worse scores, indicating that it often failed
to convert the pitch properly, which greatly affects the per-
ceived identity. YourTTS, on the other hand, obtained an
MF0D comparable to our proposed method, even without
pitch conditioning, because during training it aligns its content
embedding with a text based representation, which is naturally
pitch independent. This forces the model to ignore the source
pitch, but is an additional requirement to train the network. Our
method obtained the best pitch performance, with the choice
of encoder not affecting the result.

Compared to our main proposed method, the version with a
purely convolutional encoder attained worse results, reinforc-
ing why most recent works in voice conversion utilize pre-
trained networks as encoders [24]. The non-SSL model did
obtain results comparable to YourTTS, with better naturalness
and worse similarity. For underserved languages, where neither
a pre-trained SSL model nor the resources to train one might
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TABLE I
RESULTS OF LISTENING TESTS AND OBJECTIVE MEASURES. MEASURES: NATURALNESS MEAN OPINION SCORE (NAT MOS), SIMILARITY MOS (SIM
MOS), MEAN LOG F0 DISTANCE (MF0D), MEL-CEPSTRAL DISTORTION (MCD), SPEAKER EMBEDDING SIMILARITY (SES), AND WORD ERROR RATE

(WER)

Model Nat MOS Sim MOS MF0D MCD SES WER
Proposed 3.48± 0.14 4.05± 0.13 0.133± 0.004 1.334± 0.006 0.875± 0.001 0.057

Proposed (non-SSL) 2.93± 0.14 3.20± 0.16 0.131± 0.004 1.393± 0.005 0.847± 0.001 0.115
YourTTS 2.78± 0.13 3.67± 0.13 0.141± 0.004 1.347± 0.006 0.875± 0.001 0.177
FreeVC 3.95± 0.12 2.62± 0.17 0.227± 0.005 1.406± 0.007 0.826± 0.001 0.050

be available, this model may still be an adequate solution.

TABLE II
ABLATION STUDY FOR THE PITCH COST

Model MF0D WER
Base model 0.138± 0.004 0.290

No pitch loss 0.132± 0.004 0.657

To test the effectiveness of the pitch cost on the results,
we trained a pair of models, with and without it. We trained
a model with the convolutional encoder under the same
conditions, except for the pitch cost during the second stage
of training. The reverse conversion loss was not used in this
training. Results are presented in Tab. II, where it can be seen
that the lack of the pitch cost did not affect the pitch distance,
but affected the word error rate. Even without the pitch cost,
other costs, such as the adversarial cost, can indirectly guide
the pitch conversion, as they are speaker dependent. While the
excitation input was enough to guide the pitch conversion in
many signals, in many others it led to distinctive artifacts that
degraded the converted signal quality. Such artifacts3 tend to
occur near the transition between voiced and unvoiced frames;
we speculate that they are due to the excitation signal not
being correctly mixed with the rest of the signal during the
transitions.

V. CONCLUSION

In this work, we proposed a pitch-controlled end-to-end
system for voice conversion, as well as a cost function to
effectively train it. We train our network on a pre-existing
Brazilian Portuguese language dataset, overcoming problems
in the dataset with a filtering scheme. Our network outper-
formed other public available models in listening tests and
several objective measures, obtaining the best overall results
when considering both the similarity and naturalness scores. Its
similarity score of 4.05 was the highest among evaluated mod-
els and its naturalness score of 3.48 was the second highest,
second only to FreeVC, which achieved a naturalness score of
3.95 but a similarity score of only 2.62. This result highlights
the importance of precise pitch tracking: in our pitch difference
metric, FreeVC obtained 0.227, versus our method’s 0.133,
which surely contributed to our better similarity performance.
An ablation study of our novel pitch tracking cost confirms its
importance for the quality of generated signals.

Our tests demonstrate the usefulness of pre-trained en-
coders for voice conversion. We used WavLM, which is

3Examples can be heard in the example page.

designed to be a general purpose model. Some models,
such as ContentVec [23], are specifically designed for voice
conversion, but publicly available implementations are often
only trained in English. Training or fine-tuning one such
model for Portuguese might further improve our model’s
performance. Another natural extension is incorporating one
of many techniques to allow conversion of speakers not seen
during training (i.e. any-to-any conversion), such as speaker
encoders.
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