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Constructions of Binary Constant-Weight
Quasi-Cyclic Codes and Quasicyclically Permutable

Codes
Valdemar Cardoso da Rocha Jr., José Sampaio de Lemos-Neto and Maria de Lourdes Melo Guedes Alcoforado

Abstract—A theorem is proven showing how to obtain a
constant-weight binary quasi-cyclic code from a pr-ary linear
cyclic code, where p is a prime and r is a positive integer,
r > 1, by using a representation of the elements of a Galois field,
GF(pr), as cyclic shifts of a binary pr-tuple. From this theorem,
constructions are derived for two classes of constant-weight
binary quasi-cyclic codes. These two classes are shown to achieve
the Johnson upper bound on the number of codewords asymptot-
ically for long blocklengths. A quasicyclically permutable (QCP)
code is a binary code such that the codewords are quasicyclically
distinct and have cyclic order equal to the code blocklength.
A technique is described for selecting virtually the maximum
number of cyclically distinct codewords of full cyclic order from
Reed-Solomon (RS) codes and from Berlekamp-Justesen (BJ)
codes, both known to be maximum distance separable codes.
Those cyclically distinct codewords of full cyclic order from RS
codes and from BJ codes are mapped to binary to produce
two classes of asymptotically optimum constant-weight quasi-
cyclic codes and two classes of asymptotically optimum constant-
weight QCP codes. An application of QCP codes is introduced to
construct protocol-sequence sets for the M -active-out-of-T users
collision channel without feedback, allowing more users than
strict cyclically permutable codes with the same blocklength and
minimum distance.

Index Terms—Cyclic codes, binary constant-weight quasi-
cyclic codes, binary constant-weight quasicyclically permutable
codes, collision channel without feedback.

I. INTRODUCTION

This paper presents new constructions of constant-weight
binary quasi-cyclic codes [1, p. 506] and introduces qua-
sicyclically permutable (QCP) codes as a generalization of
cyclically permutable (CP) codes. The usual practice in the
coding literature is to refer to a cyclic code meaning a block
code that is both linear and invariant to cyclic shifting of
its codewords. In the sequel, and following [2], whenever we
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refer to a cyclic code we mean a block code that is invariant
to a cyclic shift of any of its codewords. In order to avoid
ambiguity, we call a linear cyclic code a block code which is
linear and whose set of codewords is closed with respect to the
operation of cyclic shifting of every codeword. By a constant-
weight code we mean a block code whose codewords have the
same Hamming weight. Consequently, every constant-weight
binary cyclic code is a nonlinear code, except the trivial code
containing only the all-zero codeword. Constant-weight codes
find application in practice, for example, in visible light com-
munication, random access communication and construction of
protocol sequences for the collision channel without feedback
[4], [7].

The problem of mapping non-binary block codes to binary
block codes is relevant in practice and has been addressed
earlier in the literature [1, pp. 298-301] - [3]. The main interest,
however, concentrates on mapping non-binary cyclic codes to
either binary cyclic codes or binary quasi-cyclic codes. By a
quasi-cyclic code [1, p. 506] we mean a block code whose
set of codewords is closed with respect to cyclic shifts of
codewords by at least s positions, or integer multiples of s,
where s is a positive integer, s > 1, and we call s the cyclic
step of the code. If s = 1 such a block code is called a
cyclic code. After an early attempt to obtain binary cyclic
codes from non-binary cyclic codes MacWilliams [3] more
or less discouraged further research on this problem. This
situation changed later with the publication of [2], showing
how to construct various classes of constant-weight binary
cyclic codes from p-ary linear cyclic codes, where p is a
prime, by employing a representation of the elements of GF(p)
as cyclic shifts of a binary p-tuple. When a binary cyclic
representation of GF(p) was introduced in [2] the authors
remarked that only cyclic codes over GF(p), where p is a
prime, can be mapped to binary cyclic codes because the
additive group of GF(p) is cyclic. Furthermore, it is also
remarked in [2] that this is not the case for cyclic codes defined
over GF(pr), where r denotes a positive integer, r > 1,
because the additive group of GF(pr) is not cyclic.

Another contribution of this paper is the construction of
constant-weight QCP codes based on our constructions of
constant-weight binary cyclic codes. A CP code was defined
by Gilbert [8] to be a binary block code of blocklength N such
that each codeword has N distinct cyclic shifts and such that
no codeword can be obtained by the cyclic shifting, one or
more times, of another codeword. As a natural generalization
of CP codes we define a QCP code to be a binary code
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of blocklength N such that each codeword has N/s distinct
cyclic shifts by s positions and such that no codeword can
be obtained by the cyclic shifting by s positions or multiples
of s of another codeword, i.e., such that the codewords are
quasicyclically distinct and have cyclic order equal to the code
blocklength.

II. A BINARY REPRESENTATION OF GF(pr)

Let b denote an N -tuple defined over an arbitrary finite
alphabet, and let N be a positive integer. Let S(i)(b) denote
a rightward cyclic shift of b by i positions. The cyclic order
of an N -tuple b is defined as the least positive integer i such
that S(i)(b) = b. As a consequence the cyclic order of an
N -tuple is always a divisor of N [2]. Thus, if p is a prime
and r is a positive integer, r ≥ 1, for N = pr an N -tuple can
have cyclic order 1, p, p2, . . . , pr, only.

Two distinct N -tuples b and b′, which are codewords in a
quasi-cyclic code of cyclic step s, are said to be in the same
quasi-cyclic equivalence class if S(i)(b) = b′ for some i,
i = as, a ∈ {1, 2, . . . , (N/s) − 1}. If b has cyclic order N
then the quasi-cyclic equivalence class containing b is defined
as having order N/s and has a total of N/s N -tuples.

We consider next a binary representation of the elements
of a Galois field, GF(pr), that employs a binary pr-tuple v
of full cyclic order and its cyclic shifts, as explained in the
sequel.

Definition 1. For any binary pr-tuple v having full cyclic
order, we define the binary v-representation of GF(pr) as
the representation in which the element γi of GF(pr) is
represented by the pr-tuple S(i)(v), the i-th rightward cyclic
shift of v, 0 ≤ i ≤ pr−1 − 1.

Let v(x) denote the polynomial representation of a pr-tuple
v, i.e., v(x) is a polynomial of degree at most pr − 1 and its
nonzero coefficients vi, 0 ≤ i ≤ pr − 1, correspond to the
respective nonzero entries vi = 1 in v. We denote by v(i)(x)
a rightward cyclic shift of v(x) by i places corresponding
to S(i)(v), 0 ≤ i ≤ pr − 1, assuming v(0)(x) = v(x) and
S(0)(v) = v.

Lemma 1. In the binary v-representation of GF(pr), where
p is a prime, r is a positive integer, and v is a binary pr-tuple
of full cyclic order, the element γi of GF(pr) is represented
by the i-th rightward cyclic shift of v, denoted as S(i)(v),
0 ≤ i ≤ pr−1 − 1.

Proof. The truth of this lemma is a consequence of the
definition of the binary v-representation of GF(pr) and the
fact that, for given values of p and r, there is at least one
binary pr-tuple of full cyclic order. For example, the binary
pr-tuple of Hamming weight 1.

A. A theorem for constructing constant-weight binary quasi-
cyclic codes

For the finite fields GF(pr), where p is a prime and r
is a positive integer, Reed-Solomon (RS) codes exist with
blocklength n that divides pr− 1, having k information digits
and minimum Hamming distance d = n− k+1, i.e., they are

maximum distance separable (MDS) codes [1, pp. 294-301].
For the finite fields GF(q) where q is a power of 2, Berlekamp
and Justesen (BJ) [13] have given constructions of q-ary
Bose-Chaudhuri-Hocquenghem (BCH) codes of blocklength
n = q + 1 that are MDS. An extension of their results to an
arbitrary finite field was obtained later by da Rocha [14], and
we will refer to them also as BJ codes.

Theorem 1. Let p be a prime, let r be a positive integer and let
C be a pr-ary (n, k, d) linear cyclic code. Let each codeword
c = [c0, c1, . . . , ci, . . . , cn−1] in C be represented by a binary
word b of length prn, in a manner that ci is replaced by
a binary pr-tuple of Hamming weight w in the binary v-
representation of the i-th component of c, 0 ≤ i ≤ n − 1
(see Definition 1). The set B of cardinality prk, containing
the binary N -tuples b corresponding in this manner to the
prk codewords c ∈ C, constitutes a binary quasi-cyclic code
of blocklength N = npr and cyclic step s = pr, whose
prk codewords have constant-weight wc = nw and minimum
distance dmin satisfying dmin ≥ dd(v), with equality when the
binary v-representation of GF(pr) is equidistant.

Proof. Because C is linear and cyclic, a rightward cyclic
shifting of a codeword c by produces a codeword in C. It
thus follows that the corresponding set of prk binary N -tuples
b is closed with respect to the operation of rightward cyclic
shifting by s = pr cyclic steps. Since all elements in the binary
v-representation of GF(pr) have the same Hamming weight
w, it follows that all N -tuples b have the same Hamming
weight wc = nw and thus a constant-weight quasi-cyclic code
with cyclic step s = pr results.

Comparing pr-tuples in corresponding positions in two
distinct binary codewords, b and b′, obtained from two distinct
pr-ary codewords c and c′, respectively, we conclude that at
least d(c, c′) pr-tuples are distinct, where d(c, c′) denotes
the Hamming distance between c and c′. It follows from
the v-representation that two pr-tuples differ in at least d(v)
positions. Thus, two distinct binary codewords, b and b′, will
differ by at least d(c, c′)d(v) positions, with equality if the
binary v-representation is equidistant. Finally, we notice that
d(c, c′) ≥ d, with equality for some codewords in C.

III. CONSTRUCTIONS OF CONSTANT-WEIGHT BINARY
QUASI-CYCLIC CODES

As mentioned in Section II, a block code is called quasi-
cyclic if there is some smallest positive integer s such that
every s cyclic shifts applied to a codeword preserves the code,
i.e., produces again a codeword [1, p. 506], and we call s the
code cyclic step. If s = 1 the quasi-cyclic code is actually
a cyclic code. The cyclic minimum distance of a quasi-cyclic
code is defined as the minimum Hamming distance between
a codeword and its own distinct cyclic shifts by steps of size
s or some cyclic shift by steps of size s of another codeword.

Construction 1. Let p be a prime and let r be a positive
integer, r ≥ 1. Let C be a pr-ary linear cyclic (n, k, d)
RS code of blocklength n, where n divides pr − 1, having
k information digits, 1 ≤ k < n, and minimum Hamming
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distance d. Let each codeword c = [c0, c1, . . . , ci, . . . , cn−1]
in C be represented by a binary word b of length prn, in a
manner that ci is replaced by the binary pr-tuple of Hamming
weight w = 1 in the binary v-representation of the i-th
component of c, 0 ≤ i ≤ n−1 (see Definition 1 and Theorem
1). The set B of cardinality prk, containing the binary N -
tuples b corresponding in this manner to the prk codewords
c ∈ C, constitutes a binary quasi-cyclic code of blocklength
N = prn, with cyclic step s = pr, whose prk codewords have
constant-weight wc = n and minimum distance dmin satisfying
dmin = 2(n− k + 1).

Proof. The proof of the validity of this construction is entirely
similar to the proof given for the validity of Theorem 1, and
thus will be omitted. The minimum Hamming distance dmin =
2(n − k + 1) results because the binary v-representation of
GF(pr) considered is equidistant with d(v) = 2.

Construction 2. This construction is similar to Construction
1 except that code C is chosen to be a BJ code, i.e., the
blocklength n is a divisor of pr + 1.

IV. CONSTRUCTIONS OF CONSTANT-WEIGHT BINARY
QUASICYCLICALLY PERMUTABLE CODES

A quasicyclically permutable (QCP) code of cyclic step
s can equivalently be defined as a binary block code of
blocklength N = sz, where z denotes a positive integer,
such that each codeword has cyclic order N and lies in a
distinct quasi-cyclic equivalence class containing z N -tuples.
The cyclic minimum distance, dc, of a QCP code is defined as
the minimum Hamming distance between a codeword and its
own distinct cyclic shifts by steps of size s or some cyclic shift
by steps of size s of another codeword. It turns out that dc
coincides with the minimum Hamming distance, dmin, of the
binary code the codebook of which consists of all N -tuples
belonging to the quasi-cyclic equivalence classes of the QCP
code.

A convenient result published in Peterson & Weldon [10,
p. 387] is revisited next and adapted to select virtually the
maximum number of cyclically distinct codewords of full
cyclic order from a pr-ary linear cyclic code. Our proof
however follows along the lines employed to prove Theorem
2 in [11].

Theorem 2. Let p be a prime and let r be a positive integer
r ≥ 1. Let C denote a (n, k, d) pr-ary linear cyclic code with
generator polynomial g(x), where n divides pr−1. Let h(x) =
(x− β)f(x), where β is a root with multiplicative order n in
GF(pr) and h(x) = (xn−1)/g(x). Every codeword c(x) ∈ C
has the form c(x) = i(x)g(x), where i(x) is a polynomial
of degree less than k. By restricting i(x) to have the form
i(x) = 1 + (x − β)m(x), where m(x) denotes a message
polynomial of degree less than k − 1, the pr(k−1) codewords
in the subset generated by c′(x) = (1+(x−β)m(x))g(x) are
cyclically distinct and have full cyclic order.

Proof. Suppose a codeword c′(x) = (1 + (x − β)m(x))g(x)
has cyclic order i, 1 ≤ i ≤ n, i.e.,

xic′(x) = c′(x) mod (xn − 1),

or, equivalently,

(xi − 1)c′(x) = 0 mod (xn − 1). (1)

Substituting (1+(x−β)m(x))g(x) for c′(x) in (1) it follows
that

(xi − 1)(1 + (x− β)m(x))g(x) = 0 mod g(x)h(x), (2)

which is equivalent to

(xi − 1)(1 + (x− β)m(x)) = 0 mod h(x), (3)

obtained from (2) after division by g(x), or, equivalently,

(xi − 1)(1 + (x− β)m(x)) = 0 mod (x− β)f(x). (4)

Because gcd(1 + (x − β)m(x), (x − β)) = 1, the remainder
obtained by dividing the lefthand side in (4) by x − β can,
equivalently, be written as

xi − 1 = 0 mod (x− β). (5)

Moreover, by hypothesis β has multiplicative order n in
GF(pr) and thus the smallest value of i for which (5) is
satisfied is i = n. Therefore, the codewords in the subset
generated by c′(x) = (1+ (x− β)m(x))g(x) have full cyclic
order. Since x − β is a monomial, we conclude that the
number of full cyclic order codewords selected is pr(k−1)

because m(x) has degree less than k − 1. In order to show
that codewords selected in this manner are cyclically distinct,
let c′1(x) = (1 + (x − β)m1(x))g(x) and c′2(x) = (1 + (x −
β)m2(x))g(x), m1(x) 6= m2(x), be two distinct codewords
in C and assume that they lie in the same cyclic equivalence
class, i.e.,

xic′2(x) = c′1(x) mod (xn − 1), (6)

for some value of i, 0 < i < n. Replacing c′1(x) by (1+ (x−
β)m1(x))g(x) and c′2(x) by (1 + (x − β)m2(x))g(x) in (6)
and simplifying, we obtain

xi − 1 + (x− β)(xim2(x)−m1(x)) = 0 mod h(x). (7)

Because h(x) is divisible by x−β, the remainder obtained after
dividing the lefthand side in (7) by x − β can, equivalently,
be written as

xi − 1 = 0 mod (x− β). (8)

For (8) to be satisfied x−β must divide xi−1. However, this
is impossible because β has multiplicative order n in GF(pr)
and i is less than n, i.e., 0 < i < n. Thus, (8) is not satisfied
and we conclude that codewords c′1(x) and c′2(x) can not lie in
the same cyclic equivalence class and are therefore cyclically
distinct.

Construction 3. Let p be a prime, let r be a positive integer,
r ≥ 1, and let C be a pr-ary (n, k, d) RS code, where the
blocklength n divides pr − 1, having k information digits,
2 ≤ k < n, and minimum Hamming distance d. Select in C a
subset C′ of codewords c(x) = (1+(x−β)m(x))g(x) of full
cyclic order as described in Theorem 2, represented in vector



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 39, NO.1, 2024. 116

form as c = [c0, c1, . . . , ci, . . . , cn−1]. Let each codeword c
in C′ be represented by a binary word b of length prn, in a
manner that ci is replaced by the binary pr-tuple of Hamming
weight w = 1 in the binary v-representation of the i-th
component of c, 0 ≤ i ≤ n−1 (see Definition 1 and Theorem
2). Then the set B containing pr(k−1) binary N -tuples b,
corresponding in this manner to the pr(k−1) codewords of C′,
is a constant-weight wc = n, (N,Mc, dc) QCP code with
cyclic step s = pr, Mc = pr(k−1) and minimum Hamming
distance dc = 2(n− k + 1).

Proof. As we discussed earlier it suffices to show that each N -
tuple in B has cyclic order N = npr and that the pr(k−1) N -
tuples in B are distinct when cyclically shifted in steps of size
s = pr. Let c be the codeword in the subset C′ corresponding
to b. We note that c∗ = S(i)(c) represents i rightward cyclic
shifts of c and corresponds to the codeword b∗ = S(ipr)(b),
1 ≤ i ≤ n, i.e., a rightward cyclic shift of b by ipr steps. Thus,
b has cyclic order N = prn and belongs to a quasi-cyclic
equivalence class in B containing n entries. The minimum
Hamming distance dc = 2(n − k + 1) results because the
binary v-representation of GF(pr) considered is equidistant
with d(v) = 2.

We show next that the codewords in B are quasicyclically
distinct or, equivalently, if b ∈ B, b′ ∈ B and b 6= b′, then
S(ipr)(b′) 6= b, for 1 ≤ i < n. Denoting by polynomials b′(x)
and b(x) the codewords b′ and b in B, respectively, suppose
that

xip
r

b′(x) = b(x) mod (xN − 1), (9)

which corresponds to

xic′(x) = c(x) mod (xn − 1), (10)

recalling that the codewords in C′ are cyclically distinct and
their mapping into binary codewords is reversible. Therefore,
equality in (10) will hold only for i = n (see Theorem 2),
which implies b′(x) = b(x) in (9), i.e., b′ = b. Thus, the
codewords in B are quasicyclically distinct and form a QCP
code of blocklength N = prn, with cyclic step s = pr. This
completes the proof of the validity of Construction 3.

Construction 4. This construction is similar to Construction
3 except that code C is chosen to be a BJ code, i.e., the
blocklength n is a divisor of pr + 1.

V. EFFICIENCY OF THE CODE CONSTRUCTIONS PRESENTED

The essential difference between the codes of Construction
1 and Construction 2 is that the latter codes are two pr-ary
digits longer when n is chosen as large as possible for the
same pr. The quasi-cyclic codes given by Construction 1 with
n = pr − 1 and by Construction 2 with n = pr + 1 are
asymptotically optimum constant-weight codes in the sense
that, for fixed k, they meet the Johnson upper bound [1,
Corollary 5, p. 527], with equality as p → ∞, as explained
next. For a given even number d, the Johnson upper bound
states that

A(N, d,w) ≤
w−d/2∏
i=0

N − i
w − i

, (11)

and since the minimum distance of a constant-weight binary
code is always even, the requirement of even d does not
represent a restriction.

The QCP codes given by Construction 3 with n = pr − 1
and by Construction 4 with n = pr + 1 are asymptotically
optimum constant-weight codes in the sense that, for fixed
k, they meet the RS code upper bound and the BJ code
upper bound, respectively, on the number of distinct cyclic
equivalence classes with equality as p → ∞, as explained
next.

As well known, for an (n, k, d) cyclic code over a pr-
ary alphabet the ratio prk/n gives an upper bound on the
number of distinct cyclic equivalence classes. Moreover, by
considering n = pr − 1 in Construction 3 it follows that, for
the resulting binary quasi-cyclic codes, an upper bound on the
number of distinct cyclic equivalence classes is given by the
ratio prk/(pr − 1), which asymptotically approaches pr(k−1)

for large p and fixed k. Similarly, by considering n = pr+1 in
Construction 4 it follows that, for the resulting binary quasi-
cyclic codes, an upper bound on the number of distinct cyclic
equivalence classes is given by the ratio prk/(pr + 1), which
asymptotically approaches pr(k−1) for large p and fixed k.

A. Construction 1

For an (n, k, d) RS code over GF(pr) with n = pr − 1 we
have N = pr(pr − 1), w = pr − 1, d = 2(pr − k) and the
righthand side of the Johnson upper bound in (11) gives

A(N, d,w) =

k−1∏
i=0

pr(pr − 1)− i
(pr − 1)− i

=

k−1∏
i=0

pr − i/(pr − 1)

1− i/(pr − 1)

= prk(1 +O(p)),

where O(p) → 0 as p → ∞. The codes of Construction 1
have precisely prk codewords and therefore can be said to
be asymptotically optimum with respect to the Johnson upper
bound.

B. Construction 2

Using an argument similar to that employed in subsection
V-A, the codes in Construction 2 with n = pr +1 can be said
to be asymptotically optimum in the same sense.

C. Construction 3

For an (n, k, d) RS code C over GF(pr) with n = pr − 1
an upper bound on the number of distinct cyclic equivalence
classes selected from C is prk/n = prk/(pr − 1) ≈ pr(k−1),
for large p and fixed k. The QCP codes of Construction
3 have pr(k−1) codewords and therefore can be said to be
asymptotically optimum for large p and fixed k.

D. Construction 4

Using an argument similar to that employed in subsection
V-C, the codes in Construction 4 with n = pr +1 can be said
to be asymptotically optimum in the same sense.
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VI. NEW PROTOCOL-SEQUENCE SETS

Constant-weight CP codes were shown to provide a natural
solution to an interesting random-accessing problem in [2].
In this section we show that constant-weight QCP codes also
contribute a natural solution to this random-accessing problem,
extending what was already known when CP codes were
employed.

The binary quasi-cyclic codes produced from MDS cyclic
codes in Section III were used in Section IV to construct
QCP codes where subsets of codewords are considered as
protocol sequences for the users of a collision channel without
feedback [16]. Tsybakov [17] and Pinsker [18] formulated the
random-accessing problem where in each received frame at
most M out of the total T of users can be active in the
sense of sending at least one packet in this frame. The set
of T binary sequences of length N , {s1, s2, . . . , sT }, is said
to be a (T,M,N, σ) protocol-sequence set if each frame-
active user can be identified by the receiver and at least σ
of the packets transmitted by each frame-active user are sent
without collision, when these sequences are used as protocol
sequences for the T users and provided that at most M of
the users are active in each received frame. Theorem 4 in
Reference [2] was originally proved regarding constant-weight
CP codes, i.e., it shows how constant-weight CP codes can
be used as (T,M,N, σ) protocol-sequence sets, but its proof
remains valid when we consider instead constant-weight QCP
codes, and is restated as follows.

Theorem 3. For any integer σ with 1 ≤ σ ≤ w, a
binary constant-weight w QCP code (N,Mc = T, dc) is
a (T,M,N, σ) protocol-sequence set for M satisfying the
condition

M = min{T, b(w−1)/(w−dc/2)c, b(w−σ)/(w−dc/2)c+1}.
(12)

The coding of packets is next briefly examined, i.e., how
the users can code their packets so that each user can send
σ information packets in each frame of his activity and the
receiver can correctly decode these packets. Each user employs
an (n′ = w, k′ = σ, d′ = w − σ + 1) shortened RS code
over GF(Q) to code his σ information packets into his w
transmitted packets. Such a code exists provided only that
w ≤ Q + 1 when we use doubly-extended RS codes [9, p.
221]. If a user is frame-active and has σ successful packet
transmissions, the decoding problem at the receiver is equiv-
alent to having erasures in the at most w− σ positions where
this user’s packets suffer collisions. Because d′ = w − σ + 1,
the receiver can always correct these erasures by a standard
erasure-correcting algorithm for the RS code and hence, can
correctly recover the σ information packets from this user.
Because a (T,M,N, σ) protocol-sequence set allows each of
the M active users to send σ information packets successfully
in a frame of N slots when the users code their packets as
described earlier, it follows that Rsum, the total information
transmission rate that can be achieved, is

Rsum = (Mσ)/N(packets/slot). (13)

Example 1. Taking p = 13, r = 2, n = 170 and k = 3 in
Construction 4 yields a binary, constant-weight w = 170, QCP
code (N = 28730,Mc = 28561, dc = 340). By Theorem 3,
this code can be used as a (T = 28561,M,N = 28730, σ =
60) protocol-sequence set for M = min{28561, 84, 55} =
55. In other words, provided that at most M = 55 out of
the T = 28561 users are active in each received frame of
N = 28730 slots, each frame-active user will be guaranteed
at least σ = 60 collision-free packet transmissions among the
w = 170 packets that he sends in a frame. A sum rate of

Rsum = (55× 60)/28730 = 330/2873 ≈ 0.11 (packets/slot)

can be achieved.

VII. CONCLUSION

The code constructions presented in this paper can be seen
as complementary to the code constructions presented in [2].
The constant-weight binary quasi-cyclic codes introduced here
are asymptotically optimum relative to the Johnson upper
bound on the number of codewords in Construction 1 and
Construction 2. Regarding binary QCP codes, by Theorem 2,
for fixed k and p→∞, Construction 3 and Construction 4 are
asymptotically optimum because their respective number of
quasicyclically equivalence classes is equal to the upper bound
on the corresponding number of distinct cyclic equivalence
classes for the RS code and the BJ code, respectively. Con-
sequently, for the same blocklength and minimum distance,
binary constant-weight QCP codes have more codewords than
the binary constant-weight CP codes given by Construction V
and Construction VI in [2]. The practical application of QCP
codes to construct protocol-sequence sets for the M -active-
out-of-T users collision channel without feedback allows more
users than those protocol-sequence sets obtained when strict
cyclically permutable codes with the same blocklength and
minimum distance are employed.

We hope the reader will be challenged to advance other
code constructions based on Theorem 1 by exploring different
choices of the sequence v used in the v-representation of the
elements of GF(pr) and by different choices of the pr-ary
linear cyclic code C. As an application of constant-weight
QCP codes, we have considered their use as protocol-sequence
sets for the M -active-out-of- T -users collision channel without
feedback but expect other applications will be found regarding
problems of an essentially asynchronous nature.

REFERENCES

[1] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes, North-Holland, New York, 1977.

[2] N. Q. A, L. Györfi and J. L. Massey,“Constructions of Constant-Weight
Binary Cyclic Codes and Cyclically Permutable Codes”, IEEE Trans.
Inf. Theory, vol. 38, no. 3, pp. 940-949, 1992, doi: 10.1109/18.135636.

[3] F. J. MacWilliams, “On Binary Cyclic Codes Which are also Cyclic
Codes Over GF(2s)”, SIAM Journal on Applied Mathematics, vol. 19,
no. 1, pp. 75-95, 1970, http://www.jstor.org/stable/2099332.

[4] S. H. Lee, M. Zhang and J. K. Kwon, “Bit Error Probability Perfor-
mance of Binary Dimmable Visible Light Communication Systems,”
IEEE Trans. Veh. Technol., vol. 70, no. 9, pp. 9118-9131, 2021, doi:
10.1109/TVT.2021.3100587.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 39, NO.1, 2024. 118

[5] H. A. Inan, S. Ahn, P. Kairouz and A. Ozgur, “A Group Testing
Approach to Random Access for Short-Packet Communication,” IEEE
Int. Symp. Inf. Theory (ISIT), pp. 96 -100, Paris, France, 2019, doi:
10.1109/ISIT.2019.8849823.

[6] Y. Zhang, Y. -H. Lo, W. S. Wong and F. Shu, “Protocol Se-
quences for the Multiple-Packet Reception Channel Without Feedback,”
IEEE Trans. Commun., vol. 64, no. 4, pp. 1687-1698, 2016, doi:
10.1109/TCOMM.2016.2538259.

[7] V. C. da Rocha Jr., “Protocol Sequences for Collision Channel Without
Feedback”, IET Electronics Letters, vol. 36, no. 10, pp. 2010 - 2012,
2000, doi: 10.1049/el:20001427.

[8] E. N. Gilbert, “Cyclically Permutable Error-Correcting Codes”,
IEEE Trans. Inf. Theory, vol. 9, no. 3, pp. 175-182, 1963, doi:
10.1109/TIT.1963.1057840.

[9] R. E. Blahut, Theory and Practice of Error Control Codes, Reading.
MA, Addison-Wesley, 1984.

[10] W. W. Peterson and E. J. Weldon Jr.: Error-Correcting Codes, MIT
Press, 2nd edition, 1972.

[11] J. S. Lemos-Neto and V. C. da Rocha, Jr.: “Cyclically Permutable Codes
Specified by Roots of Generator Polynomials”, IET Electron. Lett., vol.
50, no. 17, pp. 1202 - 1204, 2014, doi: 10.1049/el.2014.0296.

[12] V. C. da Rocha, Jr. and J. S. Lemos-Neto, “New Cyclically Permutable
Codes”, IEEE Inf. Theory Workshop, ITW-2011, pp. 693-697, 2011,
doi: 10.1109/ITW.2011.6089586.

[13] E. R. Berlekamp and J. Justesen, “Some Long Cyclic Linear Binary
Codes are not so Bad,” IEEE Trans. Inf. Theory, vol. 20, no. 3, pp.
351-356, 1974, doi: 10.1109/TIT.1974.1055222.

[14] V. C. da Rocha, Jr., “Maximum Distance Separable Multilevel Codes,”
IEEE Trans. Inf. Theory, vol. 30, no. 3, pp. 547-548, 1984, doi:
10.1109/TIT.1984.1056909.

[15] J. L. Massey, “The Capacity of the Collision Channel Without Feed-
back,” Abstracts of Papers, IEEE Int. Symp. Inf. Theory (ISIT), p. 101,
Les Arcs, France, 1982.

[16] J. L. Massey and P. Mathys, “The Collision Channel Without Feedback,”
IEEE Trans. Inf. Theory, vol. 31, no. 2, pp. 192-204, 1985, doi:
10.1109/TIT.1985.1057010.

[17] B. S. Tsybakov and N. B. Likhanov, “Packet Communication on a
Channel Without Feedback,” Probl. Inform. Transm., vol. XIX, no. 2,
pp. 69-84, 1983.

[18] L. A. Bassalygo and M. S. Pinsker, “Limited Multiple-Access of a Non-
Synchronous Channel,” (in Russian) Probl. Inform. Transm., vol. XIX,
no. 4, pp. 92-96, 1983.

Valdemar Cardoso da Rocha Jr. was born in
Jaboatão, Pernambuco, Brazil, on August 27, 1947.
He received his BSc degree in electrical and elec-
tronics engineering from Escola Politécnica, Recife,
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