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NeuroPi: A Portable Steady-State Visually Evoked
Potential-based Brain-Computer Interface

Vitor M. Barbosa, Sarah N. Carvalho, Harlei M. A. Leite

Abstract—The NeuroPi system is a Brain-Computer Interface
(BCI) based on Steady-State Visually Evoked Potentials (SSVEP).
This system employs brain activity responses induced by os-
cillatory visual stimuli to enable intuitive and efficient control
of external devices. The system was designed to non-invasively
gather brain signals using electroencephalography. A low-cost
biosignal amplifier was employed to capture, filter, and digitize
these signals. Python scripts were utilized for signal processing in
the stages of preprocessing, feature extraction, feature selection,
and classification, ensuring seamless integration, customization,
and straightforward adaptability. NeuroPi was designed with a
focus on simplicity and user-friendliness, enabling the integration
and control of electronic devices using brain signals. Additionally,
the system is portable, cost-effective, and efficient, making it
suitable for various real-world applications. Performance tests
validate NeuroPi’s effectiveness, highlighting its potential to
contribute to the popularization of SSVEP-based BCI systems.
The NeuroPi system is available to be freely used for research
and development purposes.

Index Terms—Brain-Computer Interface, Steady-State Visu-
ally Evoked Potential, Embedded System.

I. INTRODUCTION

BRAIN-Computer Interface (BCI) is a closed-loop system
that establishes a communication channel between a

brain and electronic devices through the interpretation of
cerebral signals [1]. Due to its independence from muscular
movements, its utilization holds appeal in the advancement of
assistive technologies [2]. The development of an efficient BCI
system requires an extensive understanding of neuroscience
and engineering and its state-of-the-art is in the phase of use
in a controlled environment with experts [3].

Fig. 1 shows a typical architecture of an electroencephalog-
raphy (EEG)-based BCI system. Initially, the signal is ac-
quired through electrodes and then digitized. It subsequently
undergoes pre-processing to eliminate unwanted artifacts and
enhance the signal-to-noise ratio. Following, features are
extracted and selected to feed the classifier. The classifier
maps these features into actionable commands for a defined
application. This iterative process continues until the user no
longer wishes to control the device.
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Fig. 1. Standard architecture of a BCI system. User interaction with the
application occurs through the interpretation of brain signals. The signal is
acquired through EEG, subjected to a signal processing module comprising
pre-processing, feature extraction, feature selection, and classification stages,
which map the features into control signals. The NeuroPi follows this
architecture.

The Steady-State Visually Evoked Potential (SSVEP) is a
widely used technique in the field of BCI. It involves the pre-
sentation of visual stimuli that flicker at specific frequencies.
When the user is exposed to these visual stimuli, it generates
electrical responses at the same frequencies as stimuli. These
responses can be detected using EEG. By analyzing the EEG
signals, it is possible to identify which specific frequencies
the user is focusing on. Thus, to control an application, each
visual stimulus is associated with a specific command to an
external device.

SSVEP-based BCIs are known for their high accuracy
and relatively fast response times compared to other BCI
paradigms. This makes them suitable for various applications,
including assistive technology for individuals with disabilities
[4].

The development of SSVEP-based BCI systems presents
several challenges that involve:

• Signal quality: One of the primary challenges is obtaining
clean and reliable SSVEP signals. The EEG signals can
be affected by various noises and artifacts, including
muscle activity and environmental interference, which
can degrade signal quality [5].

• Safety: SSVEP responses vary among the people.
SSVEP-based BCI systems pose a potential risk for indi-
viduals with a history of epilepsy. Implementations that
differentiate high frequencies can make this technology
safer for these subjects [6].

• Fatigue and adaptation: Prolonged use of SSVEP-based
BCIs can lead to user fatigue and neural adaptation,
potentially reducing the BCI’s effectiveness over time [7].

• Accuracy of the system: Implementation of robust signal
processing techniques capable of handling noise and the
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low amplitude of the acquired brain signal, accurately
identifying the information related to the user’s desired
command [8].

• Portability and user-friendly design: A portable BCI
system should be easy to set up and use, allowing users
to quickly get started without extensive preparation. Fur-
thermore, intuitive interfaces and user-friendly controls
enhance the portability and popularization of the system
[9].

This study addressed this last problem, with the devel-
opment of an embedded SSVEP-based BCI system named
NeuroPi [10]. The primary feature of the NeuroPi is its
operation on a Raspberry Pi 3 model B [11], a compact single-
board computer equipped with various types of communication
interfaces and easily integrated with electronic devices, as
shown in Fig. 2, facilitating its integration into different
types of applications. For the acquisition of EEG signals, an
OpenBCI was used [12], it is low-cost with a configurable
hardware platform and open-source tools. The embedded BCI
was designed to be plug-and-play, eliminating the need for
technical expertise in its setup, and making it possible for
operation by users without technical knowledge, after the
device has been configured for the first time.

The primary contribution of this work lies in the creation
of an accessible and user-friendly BCI system. By leveraging
the affordability and versatility of the Raspberry Pi 3 Model B
and the OpenBCI platform, the NeuroPi system significantly
lowers the barrier to entry for BCI technology. Its plug-and-
play design ensures that users without technical expertise can
operate the system effortlessly after the initial setup. This
innovation democratizes access to BCI technology, potentially
broadening its applications in various fields such as assistive
technology, communication, and neurofeedback.

II. NEUROPI SYSTEM DESIGN

NeuroPi was designed according to the classic architecture
of BCI systems (Fig. 1) with five modules: (i) acquisition, (ii)
pre-processing, (iii) feature extraction, (iv) feature selection,
and (v) classification. We present the implementation details
of each module in the following.

A. Acquisition module

The acquisition module serves as the interface between
the BCI system and the OpenBCI EEG signal acquisition
equipment. In this study, our system was based on the Cyton
board, enabling the simultaneous capture of data from 8
channels, each sampled at 250 Hz, with 24-bit channel data
resolution. To accommodate more than 8 electrodes, the Daisy
expansion board could be employed, connecting to Cyton and
expanding the channel count to 16, sampled at 125 Hz. This
extension allows for comprehensive spatial coverage of the
scalp [12]. Communication between OpenBCI and the NeuroPi
occurred via a Bluetooth 4.0 Low Energy (BLE) RF Module,
facilitated by a custom code running on a Raspberry Pi, as
shown in Fig. 3.

We employed a 3D-printed Ultracortex Mark IV cap [13]
to ensure precise electrode positioning on the scalp, following

Fig. 2. User operating the NeuroPi. The setup features a laptop displaying
four visual stimuli, with the Raspberry Pi positioned on the right side of the
table, receiving data sent by the OpenBCI. The user is wearing a cap with
16 dry electrodes distributed across the scalp. Each electrode is seamlessly
connected to the OpenBCI board, conveniently positioned at the front of the
cap.

the established 10-10 standard pattern [14]. The electrode
placement process on the cap is a one-time task for each user,
with occasional adjustments to ensure proper contact with the
scalp. The electrodes used are dry, eliminating the requirement
for any type of fixing gel. To check electrode scalp contact,
an impedance test is performed.

The code for the acquisition module has been developed in
Python, and the OpenBCI libraries were adapted to ensure
compatibility with the ARM (Advanced RISC Machines)
architecture. For BCI system designers considering the use
of the NeuroPi, the acquisition code has been parameterized,
simplifying the process of selecting the desired number of
channels. This flexibility enables it to function with either the
Cyton board alone or in conjunction with the Daisy expansion
board. Furthermore, the acquisition module can be adapted to
integrate other EEG equipment with the NeuroPi, providing
versatility for different EEG system configurations.

B. Pre-processing module

During the preprocessing stage of the NeuroPi system, we
employed two filters: an 8th-order Butterworth filter with a
passband ranging from 5 to 50 Hz, and a 2nd-order notch filter
at 60 Hz. Subsequently, a Common Average Reference (CAR)
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Fig. 3. Communication between OpenBCI and Raspberry Pi via Bluetooth.

was applied to remove common components across all elec-
trodes [15], as they are not related to the brain activity under
evaluation. The goal of preprocessing is to enhance the signal-
to-noise ratio and facilitate the detection of relevant patterns
of brain activity. These techniques can be activated/deactivated
by the user, and the system is designed to allow the integration
of additional preprocessing options.

In mathematical terms, the filtered signal V CAR
i at the i-th

sample is computed as the potential measured Vi minus the
average signal across all N channels, as follows:

V CAR
i = Vi −

1

N

N∑
j=1

Vj (1)

Despite its mathematical and computational simplicity, CAR
can adjust the electrode potential reference and mitigate some
of the artifacts present in the signal. This effectiveness is
attributed to the fact that most artifacts that interfere with
the SSVEP response typically appear simultaneously and with
comparable intensity across all electrodes. In contrast, the
signal of interest exhibits greater intensity in only a select
few electrodes, particularly those located in the occipital zone
[16].

C. Feature extraction module

The feature extraction module consists of representing the
signal compactly, allowing the discrimination of stimulus
classes through their characteristics [17]. This step prepares the
signal so that the classifier can operate directly in the feature
space.

NeuroPi conducts feature extraction in the frequency do-
main by computing the magnitude of the Fast Fourier Trans-

form (FFT) at the frequencies of the visual stimuli and their
harmonics, as follows:

X[k] =

N−1∑
n=0

x[n] · e−j2π kn
N (2)

where, X[k] represents the component at frequency k, x[n] is
the input signal in the time domain and N is the total number
of samples in the signal.

D. Feature selection module

In the context of BCI systems, the feature selection algo-
rithm plays an important role in identifying the channels that
contain the most pertinent information for the classification
process. Its objective is to enhance performance, minimize
signal processing time, and enable the system to achieve a
better representation [18]. There are numerous feature selec-
tion techniques commonly used in BCIs, and all of them can
be integrated into the system.

NeuroPi utilizes a filter-based feature selection technique
known as the Pearson Correlation Coefficient [19]. Pearson’s
correlation coefficient assumes linearity in the relationship
between variables, normal distribution of data, and the absence
of outliers. It can be sensitive to outliers and may not capture
nonlinear relationships. Equation 3 shows how the correlation
Rc is calculated, considering an input vector xc associated
with class y, representing the visual stimuli to be discrimi-
nated.

Rc =
cov(xc, y)√
var(xc)var(y)

(3)

The correlation coefficient Rc for the c-th feature (channel)
varies within the range [−1,+1]. When there is a strong
correlation between the feature vector xc and the label y, it
results in Rc being close to |1|. This indicates that the feature
vector makes a valuable contribution to a classification system.
Conversely, as Rc approaches zero, the correlation between the
feature and the label becomes negligible, suggesting that the
feature vector can be eliminated.

Therefore, feature selection involves ranking the absolute
value of the correlation coefficient, with the top k ranked
channels being integrated into the feature matrix destined for
the classifier. The parameter k can be determined through
cross-validation or set, for example, as half of the total number
of channels used. The maximum value for k could indeed be
set to match the number of EEG channels being read, but with
this configuration, no feature selection would take place.

E. Classification module

A classification system maps the input signals to the possi-
ble output classes. In the context of BCI systems, the objective
is to determine which of the visual stimuli the subject was
concentrating on, using the recorded brain signal.

The classification process consists of three stages: (i) train-
ing, (ii) validation, and (iii) operation [20]. In the training
stage, a labeled database is used to “teach” the system,
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essentially identifying the hyperplanes or surfaces that dis-
tinguish each of the classes. Subsequently, a separate dataset
is employed to validate the effectiveness of the generated dis-
crimination system and to assess the classifier’s performance.
Once validated, if the performance is satisfactory, the classifier
can be deployed in operational mode.

NeuroPi utilizes a low computational cost algorithm for
the classifier. The Least Squares linear classifier aims to find
hyperplanes that best separate different classes of data by
minimizing the sum of squared errors. The linear model for a
multi-class problem is given by:

ŷ = XTw (4)

where ŷ is the predicted output, X is the feature matrix and w
represents the weight vector, which determines the direction
and slope of the decision boundary.

The goal of the Least Squares linear classifier is to minimize
the sum of squared errors between the predicted outputs and
the actual class labels for the training data, given by:

J(w) =

N∑
i=1

(yi −XT
i w)

2 (5)

where N is the number of training samples, yi is the actual
class label for the i-th sample, Xi is the feature matrix
corresponding to the i-th sample, and w is the parameter to
be estimated. To ensure the hyperplane’s degrees of freedom,
the classifier bias was integrated into the feature matrix, as
elaborated further in Fig. 5.

We can use the Monroe Penrose’s approach to find the
optimal w:

w = (XTX)−1XT y (6)

where ŷ ≥ 0 indicates that the data belongs to the class, and
ŷ < 0 indicates that it does not belong to the class [18].
The classifier was designed using a one-versus-all approach.
Thus, after projecting w for each possible class, ŷ is computed
for each one, with the maximum value indicating the class to
which the treated sample belongs.

F. Implementation details

The modules for pre-processing, feature extraction, feature
selection, and classification vary according to the operating
mode of NeuroPi. In the offline mode, the primary objective
is to effectively train the classifier system, while in the online
mode, the user harnesses the BCI to operate a device. The
following subsections provide a comprehensive overview of
the implementation specifics for these two operational modes.

1) Offline mode: During the offline operating mode, the
NeuroPi classifier is trained using the user’s brain signals. To
achieve this, the user is exposed to visual stimuli flickering at
different frequencies while their EEG signals are recorded. The
number and the selection of these visual stimulus frequencies
are parameters that can be customized.

We have established a standardized acquisition process for
the training phase in NeuroPi with 8 trials, each lasting 12
s for every stimulus. After, the 12 s signals are windowed.

The window size determines the user’s interaction speed with
the device. For instance, if the window size is set to 3 s, it
means the user must focus their attention for 3 s to issue a
command to a device. The offline classifier is trained using
signals of the same length as expected in the online mode. All
training parameters, including the number of stimuli, stimulus
frequencies, trial counts, and window sizes are easily adjusted.
These adjustments directly impact the Information Transfer
Rate (ITR) of the BCI system, as shown in Fig. 4, which
presents the ITR for a BCI with a windowing of 3 s with 2,
4, 8, 16, and 32 possible choices.

Fig. 4. Information transfer rate in bits/trial (bits/selection) and in bits/min
(for 20 trials/min) when the number of possible choices (i.e. N) is 2, 4, 8, 16,
and 32.

The feature extraction is applied to each windowed signal,
resulting in a single matrix with dimensions of M × F.N ,
where M is the number of samples, and F.N is the product
of the number of stimuli F and the number of channels N . For
the linear classifier, a bias term is introduced to account for
translation in the hyperplane within the feature space. This
addition involves appending a column of 1 s to the feature
matrix. Fig. 5 shows the feature matrix used for training a
linear classifier. This particular example considers 4 visual
stimuli blinking at frequencies of 6, 10, 12, and 15 Hz, using 8
channels and a 3-second window size. The dataset includes 8
trials, each lasting 12 s. As a result, there are M = 128 rows
(4 stimuli x 4 windows/trial x 8 trials) and 33 columns (4
stimuli x 8 channels + 1). Each element in the feature matrix
represents the magnitude of FFT estimated at the fundamental
frequency of the stimulus for each channel.

The feature matrix is divided into 75% of the samples
to train and the remaining 25% to validate the classifier,
maintaining the proportion of samples for each stimulus. Each
sample in the feature matrix corresponds to an entry in the
associated label matrix, which indicates the class to which
each sample belongs. In our approach, we use the values 1
and −1 to include or exclude from the class, respectively.
Fig. 6 shows an example of a label matrix, considering four
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Fig. 5. Feature matrix. In this example, there are M = 128 samples, F = 4
visual stimuli, and N = 8 or 16 channels.

different visual stimuli.

Fig. 6. Label matrix for the classification system: Each row represents a
sample, and each column corresponds to a class label. Entries indicate whether
a sample belongs to a particular class (1) or not (-1).

Once the feature matrix is partitioned, we can proceed with
the feature selection stage. A common approach is to include
the top-ranked channels determined by the Pearson correlation
coefficient. Subsequently, the classifier is trained using the
training data partition, and the classifier’s accuracy is estimated
using the validation partition. A widely used criterion for
feature selection is to continue including channels until no
further improvement in classifier performance is observed.

Concluding these stages, the BCI is ready to be used in
the online mode, with its performance estimated based on the
validation set. The k-fold cross-validation technique can be
employed to enhance the BCI accuracy estimation.

2) Online mode: When the NeuroPi is powered on, the
EEG signal is continuously captured. The first acquisition
window is discarded to eliminate transient noise. Afterward,
the signal is processed at each configured windowing interval,
generating a control signal for the application. The processing
time typically takes around 1 ms. Fig. 7 shows the online mode
operation, using a 3-second windowing as an example.

The application controlled by NeuroPi receives commands
through the GPIO pins of the Raspberry Pi Model B. When
an associated frequency is activated, a logic value of 1 is

Fig. 7. Online mode operation. When the system is initiated, the first
window is discarded to allow the user time to begin concentration. Between
each acquisition window, there is an interval of approximately 1 ms for the
execution of the processing and classification module, as the Raspberry Pi
operates sequentially.

transmitted to a specific GPIO pin. NeuroPi was initially
preconfigured to work with four frequencies: 6 Hz (GPIO20),
10 Hz (GPIO21), 12 Hz (GPIO22), and 15 Hz (GPIO16), but it
has the flexibility to support additional frequencies by defining
more GPIO pins on the board.

III. METHODOLOGY

To evaluate the NeuroPi system, two scenarios were con-
sidered: the first, involving 8 electrodes (O1, Oz, O2, PO3,
POz, PO4, Pz, and Cz), and the second, involving 16
electrodes (O1, Oz, O2, PO3, POz, PO4, Pz, Cz, C3,
CP1, P3, CP5, C4, CP6, P4, and CP2). The reference and
ground electrodes were positioned on the mastoid processes.
Dry EEG electrodes with a 5 mm dimension, developed by
OpenBCI, were used and positioned on the user’s head through
a 3D-printed cap, as depicted in Fig. 2.

The NeuroPi system was configured on a Raspberry Pi 3
Model B and connected to the OpenBCI EEG acquisition
system. The visual stimulus was developed in the Unity
game engine and displayed on a laptop, taking the form of
a square that flickers, alternating between black and white
at frequencies of 6, 10, 12, and 15 Hz. There is no direct
connection between the laptop and the Raspberry Pi, as the
purpose of the stimulus is to generate an SSVEP signal that
will be identified by the NeuroPi. Other formats and means
of reproducing visual stimuli can be used, such as the use
of LEDs and various images. NeuroPi does not provide a
visual stimulation interface because each application requires a
specific type of visual stimulus. The design of how a stimulus
should be, as well as its construction, must be thought out in
conjunction with the application, following the functional and
non-functional requirements of the application.

A healthy male volunteer aged 23 participated in the ex-
periment. The experiments were organized into two stages. In
the first stage, the cap was placed on the user’s head, and the
training phase (offline) was initiated, involving 10 acquisitions
of 12 s for each visual stimulus. In the second stage, a 30-
second acquisition was performed for each visual stimulus
in the scenario with 8 electrodes, and 21 s for each visual
stimulus in the scenario with 16 electrodes, to carry out the
system validation phase (online). The number of collections
conducted is a configurable parameter in the NeuroPi. The
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acquisition protocol was approved by the Ethics Committee
of the University of Campinas (n. 791/2010).

The data collected in the training and validation phases
were windowed in 3-second intervals, allowing the BCI to
issue a command every 3 s. The window size is related to the
BCI’s operating speed, where smaller windows enable faster
interaction, and larger windows allow for slower interaction.
A smaller window size makes the classification process more
challenging, as it receives a smaller amount of data compared
to larger windows. The window size is a configurable param-
eter in the NeuroPi.

The classifier results were evaluated using the mean accu-
racy and standard deviation. The objective of the experiments
was to demonstrate that the NeuroPi is capable of executing all
stages of a BCI system, encompassing acquisition, processing,
and classification. This underscores its viability as a suitable
option for BCI research and the creation of applications
controlled by BCI systems.

IV. EVALUATION AND VALIDATION

The NeuroPi employed the techniques traditionally used in
SSVEP-based BCI systems. Our research group has previously
presented performance analyses of these techniques in the
context of BCI-SSVEP systems in papers [8] and [9].

In this section, we provide a preliminary evaluation of the
recorded EEG signal quality and a performance analysis of
the NeuroPi system using 8 and 16 electrodes.

A. Acquisition quality

The EEG signal recorded at Oz electrode is presented in
Fig. 8 in the time domain (considering a 3-second window
without overlap) and in the frequency domain (showing the
useful information band from 5 to 20 Hz) for 10 Hz, and
allows a comparison of the effects of the Butterworth, notch,
and CAR filters on the quality of the acquisitions. In the time
domain, a slower oscillatory pattern is visible, primarily due to
the filtering of the power line frequency at 60 Hz. Additionally,
there is an attenuation in the signal’s amplitude due to the
action of filters and the A/D conversion process used in the
OpenBCI platform for each channel. In the frequency domain,
it is noticeable that the peaks at the respective frequencies
of interest (10 Hz) become more pronounced after filtering,
enhancing the signal-to-noise ratio.

B. NeuroPi with 8 electrodes

Tab. I presents the accuracy rates of NeuroPi in both offline
and online modes using 8 electrodes (O1, Oz, O2, PO3, POz,
PO4, Pz, and Cz). Due to the limited number of channels,
the feature selection was not operated. Results indicate better
performance in the offline mode.

The decline in performance during the online mode can
likely be attributed to the absence of an integrated real-world
application for BCI use. Consequently, a longer recording
duration requiring 30 seconds of sustained concentration,
without the presence of inherent motivations or challenges
typically associated with real-world applications, may have led

Fig. 8. EEG signal acquired through NeuroPi in the time and frequency
domains. Signals acquired when the user was exposed to a stimulus at 10
Hz were recorded at Oz electrode. It is possible to observe in the frequency
domain a higher amplitude at the specific frequency.

TABLE I
NEUROPI PERFORMANCE ACCURACY IN OFFLINE AND ONLINE MODES

USING 8 ELECTRODES FOR 4 FREQUENCIES: 6, 10, 12, AND 15 HZ.

Frequency (Hz)
BCI 6 10 12 15 Avg±Std
Offline 78,75% 88,13% 60,63% 86,25% 78,44%±12,54
Online 60,00% 50,00% 60,00% 50,00% 55,00%±5,77

to subject distraction. Moreover, since this stage followed the
offline training, subject fatigue might have been a contributing
factor.

Currently, ongoing research is focused on improving the
user interface to reduce fatigue resulting from stimuli and
create a more user-friendly interaction. To encourage the
widespread use of BCI systems, it is imperative to follow the
recommendations established by the Human-Computer Inter-
action (HCI) field. Such compliance guarantees an enjoyable,
secure, and effective user experience, particularly when these
systems are applied in assistive technologies designed for users
with physical limitations.

C. NeuroPi with 16 electrodes

Tab. II presents the performance of NeuroPi with 16 elec-
trodes (O1, Oz, O2, PO3, POz, PO4, Pz, Cz, C3, CP1, P3,
CP5, C4, CP6, P4, and CP2) in offline mode, both without
and with feature selection. The BCI performance significantly
improves when feature selection is applied, and a lower
standard deviation is observed, indicating a more consistent
system. In the best configuration, the following 12 channels
were selected by the Pearson correlation coefficient method,
in order of relevance: O2, PO4, O1, C4, C3, PO3, Cz, CP1,
P4, CP2, CP6, and Oz.

V. RELATED WORKS

A BCI system platform should implement the steps of brain
signal acquisition, pre-processing, feature extraction, selection,
classification, and command output for the controlled applica-
tion. Currently, various BCI system platforms are available,
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TABLE II
IMPACT OF FEATURE SELECTION ON NEUROPI PERFORMANCE ACCURACY
USING 16 ELECTRODES IN OFFLINE MODE FOR 4 FREQUENCIES: 6, 10, 12,

AND 15 HZ.

Frequency (Hz)
Selection 6 10 12 15 AVG±std
None 25,00% 62,50% 62,50% 75,00% 56,25%±18,75
Pearson 75,00% 87,50% 75,00% 75,00% 78,13%±5,41

with notable options including BCI2000 [21], BioSig [22],
BCI++ [23], OpenViBE [24] and PMW [25].

BCI2000 emerged in the early 2000s to address the demand
for tools for BCI system development. Its primary aim was to
provide a set of tools. Around the same time, BioSig was intro-
duced as a tool for offline EEG data analysis using MATLAB
and Octave. In 2004, it received an update to analyze online
data, often referred to as real-time brain-computer interface
(rtsBCI), in MATLAB/Simulink. Both BCI2000 and BioSig
focus on supporting research in the BCI field.

BCI++ was developed with an emphasis on end-users and
researchers. Its structure is designed to simplify interaction
with external devices and includes a graphical user interface
(GUI) known as AEnima. It was created in response to
the lack of BCI platforms that emphasize Human-Computer
Interface (HCI) aspects. Following a similar user-friendly
approach through user interfaces, OpenViBE was launched
in 2009, offering tools for BCI development and integration
with virtual reality (VR) environments, primarily focused on
research. By providing a graphical programming language
within the platform, OpenViBE does not require programming
knowledge to expand its functionalities.

With the growing interest in using Python in the neuro-
science community, PMW was developed in this language,
distinguishing itself from the earlier platforms predominantly
written in C++. Due to Python’s smoother learning curve
compared to C++, it has become the preferred language in
the neuroscience field. PMW was released in three releases
between 2008 and 2015: The first release, named Pythonic
feedback framework (Pyff), enabled the development of visual
stimuli and feedback. The second release, called Mushu,
handled the acquisition of EEG signals from multiple devices.
Finally, the third release, named Wyrm, provided a toolkit for
BCI system development.

Developing BCI is not just about advancing science and
technology but also about enhancing people’s everyday lives.
While theoretical research is essential for an in-depth un-
derstanding of BCI systems, creating BCIs tailored for end-
users is equally critical. These practical applications not only
democratize access to innovative technologies but also have the
potential to transform lives. In this regard, NeuroPi was devel-
oped to be an embedded SSVEP-based BCI, ready for use in
controlling applications such as wheelchairs, prosthetics, and
entertainment applications, among others. These requirements
guided its development, making it portable, cost-effective, and
easy to integrate into various applications.

VI. CONCLUSION

When we focus on creating BCIs for the general public,
we are opening doors to a myriad of possibilities that can
provide independence to subjects with severe motor disabil-
ities, enabling them to control electronic devices such as
wheelchairs or computers solely through their brain signals.
Furthermore, they can revolutionize how we interact with
technology, making interfaces more intuitive and accessible
for everyone. This not only enhances people’s quality of life
but also establishes a positive cycle of learning, feedback, and
continuous improvement.

For the popularization of BCI systems, it is essential to
develop tools for both BCI research and application-oriented
BCI systems to practically validate theoretical concepts. With
current computational resources, BCI systems are approaching
reality, and user-side testing is as crucial as the development
of new techniques for acquiring, processing, and classifying
brain signals.

In this research, we introduce NeuroPi, an embedded Brain-
Computer Interface (BCI) solution, which is freely avail-
able for researchers and application developers [10]. Our
presentation offers a comprehensive description of NeuroPi,
outlining its features and capabilities for immediate use in
research and application development. NeuroPi was designed
with portability, customization, cost-efficiency, and ease of
integration into several applications. Our goal is to promote
the widespread adoption of BCI systems and contribute to an
improved quality of life for people with disabilities.

For future work, it is suggested to incorporate new prepro-
cessing, feature extraction, and classification techniques into
NeuroPi, aiming to enhance its performance. Additionally,
conducting tests involving high-frequency visual stimuli is
essential to reduce visual fatigue in users and facilitate its
use by individuals with a history of photoepilepsy.
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