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On the Quasi-Moment-Method as a Rain 
Attenuation Prediction Modeling Algorithm 

 Sulaiman Adeniyi Adekola, Ayotunde Abimbola Ayorinde,  Hisham Abubakar Muhammed, Francis Olutunji 
Okewole, and Ike Mowete  

Abstract— A computationally inexpensive, analytically simple, 
and remarkably efficient rain attenuation prediction algorithm is 
presented in this paper. The algorithm, here referred to as the 
Quasi-Moment-Method (QMM), has only two main requirements 
for its implementation. First, rain attenuation measurement data 
(terrestrial or slant path) for the site of interest must be 
available; and second, a model, known to have predicted 
attenuation for any site to a reasonable level of accuracy (base 
model), and whose analytical format can be expressed as a linear 
combination of its parameters, is also required. An important 
novelty introduced by the QMM algorithm is a normalization 
scheme, through which a modelling difficulty concerning 
exceedance probabilities outside a 0.01 to 1.00 range, is 
eliminated. Model validation and performance evaluation using a 
comprehensive set of data available from the literature clearly 
demonstrated that the QMM models consistently improved base 
model performance by more than 90%; and outperformed all 
published ‘best fit’ models with which they were compared. 

 
Index Terms—ITU-R models, Normalized percentages of time, 

Quasi-Moment-Method, Rain attenuation prediction 
 

I. INTRODUCTION 
 AIN ATTENUATION represents a key 
consideration in the design of wireless 
terrestrial and Earth-space 

radiocommunication links, whose performances 
degrade significantly on account of severe signal 
scattering and absorption associated with rainfall 
events, when operating frequencies are greater than 
10GHz; [1] –[4]. Design procedures for these links, 
including signal fade mitigation strategies [5], [6], 
routinely utilize prediction models, typically 
developed with the use of field measurements. 
Easily the most popular of such models are the ITU-
R models (exemplified by [7]- [9]), which are 
continuously being updated, and which have been 
put to extensive use by the global community of  
researchers, [4], [10]. The ITU-R models have 
however, been reported in the literature, to give  
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inaccurate attenuation prediction outcomes, 
especially when utilized for rain attenuation in  
tropical climatic zones: underestimating in some 
cases, [11], [12]; over-estimating in some others [4], 
[13]; though yielding predictions comparable with 
measurements in a few other cases, [10], [14].  
 

A. Literature Review 
   Prediction inaccuracies and certain 
inconsistencies associated with the ITU-R models 
motivated the development of quite a few 
alternative models, [2].  These alternative models 
are generally classified as either ‘statistical’ 
(regression-based) or ‘physical’ (analytical), [1], 
[3]; though a recent review in [15] suggested that 
the five categories identified as ‘empirical’, 
‘physical’, ‘statistical’, ‘fade-slope’, and 
‘optimization-based’ may also apply, when the 
models are regarded from the formulation point of 
view. According to [1], the statistical models 
invariably rely on cumbersome regression 
algorithms, whereas the physical models, which 
provide more accurate prediction outcomes, are 
rather complex, requiring a large number of input 
parameters.  

Quite a few of these models represent 
modifications of one ITU-R model or another, as 
for example, in the case of [16], in which the ITU-R 
P618-7 was modified in a best fit approach that 
utilized measurement data with MATLAB’s 
‘lsqcurvefit’. The resultant model, which differed 
from the ITU-R model in the first two coefficients, 
was reported to have significantly improved 
prediction performance. In a slightly different 
approach described in [17] for slant path rain 
attenuation prediction, regression coefficients 
available in the literature and referred to as ‘locally 
obtained’ were adopted for use with the 
modification. Comparisons of predictions by the 
power law model that emerged with those due to a 
corresponding ITU-R model revealed that whereas 
the former performed better for frequencies lower 
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than 20GHz, the reverse was the case for 
frequencies greater than 20GHz. Another best fit, 
regression-based approach was reported in [18], 
where rainfall rate and rain attenuation 
measurements supported the development of a non-
linear regression algorithm. The process informed 
the determination of a conversion factor, through 
which average annual exceedance was related to 
average worst month exceedance in a manner 
similar to that prescribed by ITU-R P.841-6. 
Average worst month attenuation predicted by the 
model were compared with those due to P.837-1 
and P.837-7 as well as a few other models, and 
outcomes reported suggesting that the P.837-7 
model and that developed in [18] gave better results 
than other models; with the former performing best. 
Unlike the models discussed in the foregoing, the 
logarithmic and power-law best fit regression 
models developed in [12] for a 6.37km terrestrial 
link, did not derive directly from any existing 
model. Instead, the authors deduced analytical fits 
that best described the dependence of specific 
attenuation on rainfall rate. using measurement data 
for seven different rainy months. Best fit regression 
for rain attenuation prediction modeling as used in 
[3] focused on obtaining constants for a slant path 
adjustment factor model. Nonetheless, the algorithm 
also represents a modification of an  ITU-R model 
in that in specifying 0.01% exceedance for an 
average year, factors that were functions of link 
elevation, polarization, and operating frequency are 
computed with the use of the equations of ITU-R 
P.838-3. Predictions by the model were 
significantly better than those due to all the other 
existing models with which it was compared. 
Investigations described by [19] utilized numerical 
data obtained from a volume integral equation 
formulation (VIEF) in the least-squares curve fitting 
(involving a combination of the method of 
differential corrections and Newton’s iteration 
algorithm) formulation of the extinction cross 
section (ECS) of rain drops. An empirical formula 
for the determination of specific attenuation, which 
utilized that for the ECS, was then derived.          
       Learning Assisted Rain Attenuation (LARA) 
prediction models may be described as a class of 
modelling techniques, with basis in either Artificial 
Neural Networks (ANN) or Supervised Machine 
Learning (SML), for the model development 

process, [15]. An example of the ANN approach is 
provided by the contributions reported by [6], in 
which a Back Propagation NN (BPNN) model was 
developed with the use  of measured rainfall data to 
predict rainfall rates; and thence, long term rain 
attenuation statistics. The model’s ability to predict 
deep fades during storm events was rated 
‘sufficiently good’, and its corresponding ability to 
support the implementation of dynamic fade 
mitigation strategies, adjudged ‘satisfactory’. 
Similar outcomes were reported for the Feed 
Forward Backpropagation (FFB) Neural Network 
model developed in [20] for the prediction of rain 
attenuation along satellite links in South Africa. In 
this case, the FBB model’s prediction performance 
was found to be comparable to that of the 
corresponding Simple Attenuation Model (SAM). 
These outcomes appear to support the justification 
offered in [21] for the use of an Evolution 
Programing Network (EPnet)-evolved ANN, as a 
preferable alternative to conventional ANN, for rain 
attenuation prediction modeling. For according to 
[21], conventional ANN leads to sub-optimum 
prediction models, whose error functions are 
susceptible to being trapped in local minima.  
     An excellent example of the use of the SML 
approach is available from [1], which described a 
regression-based algorithm that utilizes Gaussian 
Process (GP) compatible functions. By identifying 
how what the authors referred to as “a set of 
descriptive features” influence the desired outputs 
(assumed to have Gaussian distributions), the paper 
developed an approach to rain attenuation 
prediction, designed to reveal the nature of its 
dependence on such parameters as path length, 
operating frequency, polarization, and rainfall 
distribution profiles. A noteworthy feature of the 
model is its cross-application characteristics, 
through which the same model predicted rain 
attenuation for terrestrial links in different tropical 
countries with significant superiority over other 
models with which it was compared.            
      Rainfall drop size distribution (DSD) modeling 
is typically the first step in some semi-analytical 
techniques for rain attenuation prediction, with the 
contributions in [22] and [23] being representative 
examples. In the case of [22], two DSD models 
were proposed through the use of a ‘method of 
moments’ (involving third, fourth, and sixth 
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moments) combined with lognormal and gamma 
distributions. With the DSD models, specific rain 
attenuation predictions models were prescribed 
through an integral expression, whose integrand is a 
product of extinction cross-section and the model 
for DSD. On the other hand, the DSD model 
utilized in [23] derived from a statistical evaluation 
of measurements, and was combined with Mie 
scattering (for the determination of extinction cross-
section) to develop the integral expression modeling 
specific rain attenuation prediction. In addition to 
including an account for attenuation due to antenna 
wetness, the paper also reported the important 
conclusion that  path reduction factor prescribed by  
ITU-R P.530-17 gives inaccurate outcomes when 
utilized for short-range links. This same conclusion 
featured in [24], in which the rain attenuation 
proposed for terrestrial line-of-sight links also 
includes an account for wet antenna effects and 
moderates inaccuracies due to the use of the 
conventional path adjustment factor with a rainfall 
adjustment factor.   
       The multi exponential cell (MultiEXCELL) 
simulation tool, described by [5] as a procedure for 
the generation of synthetic rain fields that are 
spatially correlated, has served as basis for many 
physical attenuation prediction models, [25], [26]. 
Its use in [25] facilitated the simulation of an 
interaction between a hypothetical terrestrial link 
and a synthetic rain field (described as realistic) 
through which the variation of path reduction factor 
with rain rate measured at the link’s transmitter, 
operating frequency, and link path length, was 
investigated. Outcomes of the investigation 
informed the  development of the analytical 
attenuation prediction model presented in the paper. 
A similar approach was utilized in [26] for the 
development of the publication’s prediction model 
for free space optical links of length up to 5km. 
Although the model developed in [27] shares the 
similarity of a synthetic propagation environment 
with those of [25] and  [26], it differs in that it 
utilized an atmospheric numerical simulator (ANS-
consisting of a weather forecasting model and an 
electromagnetic module) for the computation of 
annual statistics of interest to rain attenuation 
prediction.  
    Another class of physical models are those 
referred as Synthetic Storm Techniques (SST) 

which, for Earth-space links, appear to have been 
pioneered by [28], where it was developed as a 
physical-mathematical approach to the modeling of 
the dynamics of rain attenuation. As originally 
conceived and utilized for rain attenuation 
prediction along slant paths as well as fade duration 
and fade rate of change (fade slope), the only 
physical input required (additional to operational 
parameters) is the 1-min rain rate time series at the 
location of interest. According to [28], the SST is 
suitable for an estimation of the storm translation 
speed, to enable the conversion of the rain rate time 
series to an equivalent space series along horizontal 
and slant paths. In a recent contribution concerning 
the use of the SST model for the prediction of rain 
attenuation in a hilly, heavy-rainfall tropical 
environment, [29], it was reported that the model 
over estimated both rain attenuation levels and fade 
slope: to suggest that it may require modification in 
order to perform accurately in tropical climates. It 
was pointed out in [30] that whereas SST combines 
the advantages of a solid physical-mathematical 
framework with the simplicity of requiring rain rate 
time series as only input, it suffers from a limitation 
arising from how it models the melting layer. 
 

B. Limitations of the Modeling Approaches 
    A particularly useful summary of the main 
attributes of the modeling approaches briefly 
reviewed in the foregoing, is provided by [31]. 
According to that publication, the fundamental 
difference between the various rain attenuation 
prediction methods lies in how the time-space 
structure of rainfall rate is modelled. The paper 
posits that apart from the SST, which generates 
attenuation statistics through the conversion of rain 
rate / time distributions into rain rate / distance 
profiles, all other approaches essentially utilize 
local measurements of cumulative distributions 
rainfall rates. Some of these other modeling 
techniques specify the statistical profile of rain 
along the path of interest using one of two 
assumptions; either that of a  single cell of suitable 
shape or that of several cells of a particular shape, 
with a prescribed statistical distribution of sizes. 
Still others introduce a reduction coefficient as a 
means of statistically profiling rainfall distribution; 
or in the alternative, adjust the actual path length, 
using a reduction factor to obtain an equivalent 
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length, along whose extent, rainfall intensity may be 
regarded as uniform.  
          It has  been pointed out in [2] and [31] that 
existing methods recommended by ITU-R for the 
prediction of rain attenuation along slant path and 
terrestrial links, all derive from the basic 
assumption of an equivalent cell in which rainfall 
rate is uniform as model for the rainfall rate’s non-
uniform distribution along the link. An associated 
observation by [2] and [31] is that prediction by 
these methods utilize only measured rainfall rate 
exceeded for 0.01% of the time with extrapolation 
techniques, to determine exceedance for other 
percentages of the time. These two characteristics, 
according to those two publications, are responsible 
for the main limitations (detailed in [2] and [31]) of 
the ITU-R methods.  A semi-empirical method 
proposed by [2] addressed these limitations by 
retaining the equivalent cell concept, but modifying 
path adjustment factor modeling to achieve a 
consistency in the latter, when utilized for both slant 
path and terrestrial links.  

C. Synopsis of Paper Contents 
     In this paper, a Quasi-Moment-Method (QMM) 
algorithm is introduced as a rain attenuation 
prediction modeling method, capable of modifying 
existing models to provide remarkably accurately 
performing models. For the purposes of validation 
and performance evaluation, measurement data 
from five different literature sources were utilized. 
Base models of varying complexity were taken as 
candidates for use with the development of the 
QMM models, whose performances not only 
remarkably improved the prediction accuracies of 
the base models, but were also better than the best 
fit models with which they were compared. An 
important novelty introduced in the paper is that of 
scaling “percentages of time” to range from 1% to 
0.01%, and utilizing an ‘equivalent A0.01’ in the 
QMM algorithm’s implementation. This 
contribution is informed by a remark in [1], which, 
with reference to ITU-R P.837-7, noted that 
“employing an empirical formula, the results 
obtained are scaled to percentages of time that 
range from 1% to 0.001%”. 
      Section II of this paper presents the analytical 
foundations of the QMM algorithm, as applied to 
rain attenuation prediction, whilst Section III 
discusses computational results concerning the 

validation of the algorithm and its performance 
evaluation. The main conclusions arising from the 
investigations as well as possibilities for extensions 
in future work are presented in Section IV, which is 
the paper’s concluding section.      
  
 

II. PROPOSED APPROACH 

A. The Quasi-Moment-Method Algorithm 
   Given a set of rain attenuation measurement data 

represented by  (where ‘X’ may denote 
either specific attenuation in dB/km or attenuation 
in dB; and xk, either rain rate in mm/h  or 
probability of exceedance in percentages), the 
prediction problem may be defined as that of 
determining the function which is such that  

  (1) 
  The QMM algorithm specifies an approximation 

 to  in a manner that guarantees that 
the weighted Euclidean semi-norm of the error 
function 

  (2) 
assumes its smallest possible value: that is, [33], the 
numerical value of the quantity 

 (3) 

in which is a weighting function, is the 
minimum possible. In particular, is required 

to be derivable from a ‘base’ function  
known to have, with reasonable accuracy, predicted 
rain attenuation, and which will admit 
representation in the form [33], [34],  

  (4) 

The set of functions appearing in (4) serve 
as basis and weighting functions as described for 
example, in [4]. And the problem then reduces to 
that of determining a set of coefficients , such 
that  

 (5) 
satisfies (3).  
These otherwise unknown coefficients are 
determined through a procedure, whose details are 
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available in [33] – [35], to emerge in this case, as  

 (6) 

provided that the inner product quantities appearing 
in (6) are defined by 

   (7a) 

and  

  (7b) 

As pointed out in [33] and [35] and demonstrated in 
[34], the solution to the prediction problem given by 
(6) is unique when all the basis functions in the set 

are linearly independent.   

B. Base Models for the Algorithm. 
Because they are arguably the most widely used 

rain attenuation prediction models by the global 
research community, the ITU-R models satisfy one 
of the key requirements for QMM base models, and 
consequently represent natural choices for 
However, these models, which are typically of the 
forms [7], [8] 

  (8a) 
and  
  (8b) 

for specific attenuation and probability of p% 
exceedance for the average year, 

respectively, do not satisfy the requirement of (4). 
In this paper therefore, prior to the implementation 
of the QMM algorithm, base models in the forms of 
(8a) and (8b) are first recast into formats that satisfy 
the requirement specified by (4). Thus, taking the 
natural logarithm of both sides of (8a) yields 

  (9) 
for which  
  (10) 
The desired unknown coefficients are then 

determined by the QMM algorithm  as 

   

(11) 

The corresponding prediction model is thereafter 
obtained as 

 (12) 
In like manner, taking the natural logarithm of 

both sides of (8b) enables the definition of an 
associated base model according to  

  
(13) 

And following the definitions of the matrix 

 (14) 

for which 

  (14a) 

as well as the column vector 

  (15) 

the solution to the problem (determination of the 
coefficients )  emerges in this case, as  

  (16) 

Hence, the corresponding QMM prediction model 
becomes given by  

 (17) 

Computational results presented in Section III 
derive in the main, from analytical models obtained 
with the use of the procedure outlined in the 
foregoing discussions. In each of the cases 
considered, measurement data were obtained from 
journal publications, through the use of the 
commercial graph digitizer software,  GETDATA. 
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III. VALIDATION AND PERFORMANCE 
EVALUATION 

A. Comparison with Results of [32] 
    As a first simple example, measurement data 
available from [32, Fig. 8 ] were utilized for the 
development of a QMM specific attenuation 
prediction model of the type given by (12). 
Predictions by the best fit model proposed by [32] 
as 

  (18) 
are compared in Fig. 1 with those due to the 
corresponding QMM model obtained here as  

  (19) 
In (19), the coefficients produced by the QMM 
algorithm are identified by  magenta coloured fonts.  
    

                                      
Fig. 1. Comparison of the performances of the best fit model 
of  [32] with the corresponding QMM model. 
 
The profiles of Fig. 1  clearly show that both 
models have comparable prediction performances; 
and this is confirmed by their Root Mean Square 
prediction Errors (RMSE), recorded as 2.4540 for 
[32]’s best fit model and 2.3148 for the QMM 
model.     
 

B. Performance Comparison with Best Fit Models 
    A demonstration of the veracity of the base 
model requirements, as described in Section II is 
offered by the following example, taken from [12, 

Section 5.2]. It concerns the prediction of rain 
attenuation along a 6.73km, 19.5GHz terrestrial link 
for six different months, using the best fit models 
listed in Table 4 of the publication. According to the 
information provided by the table, either a 
‘logarithmic’ model or a ‘power law’ model (and 
not both) serves as best fit for any given of the six 
months considered. For the implementation of the 
QMM algorithm in this example therefore, identical 
base models were utilized for each of the six cases 
to obtain the QMM models given as  

  (20) 
for the  logarithmic  base model, and  
 

   

(21) 
for the power law base model. It may be noted  
from (19) and (21) that the power law base model is 
the same as utilized in the first example. Numerical 
values for the model coefficients (c1 and c2) of (20) 
and (21) due to the implementation of the QMM 
algorithm, using measurement data available from 
those of [12, Fig. 7 -13], corresponding to the 
months listed in the paper’s Table 4, are displayed 
in Table I  below. 
 

TABLE I 
MODEL COEFFICIENTS FOR THE QMM MODELS OF 

(20) AND (21) 
 
Month / Model 

Logarithmic Model Power Law Model 
 c1 c2 c1 c2 

February 1.2605         1.3924 30.1979        0.5915 
March 1.5107       -1.1246   0.1766        1.1447 
April   0.6628         0.0956  -6.3496        1.0875 
September  0.6301       1.2035 23.7815        0.4245 
November 3.7432      -2.9339  -5.3720        1.7486 
December 1.0427     -0.5471 -0.9829      1.0205 
 
A comparison of the performances of the QMM 
models defined by Table I and (20) and (21), with 
the corresponding best fit models of [12, Table 4] is 
provided by the prediction profiles of Fig. 2  
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    Fig. 2.Attenuation prediction profiles of the best fit models of  [12] with the corresponding QMM models. 
 
It is apparent from the curves of Fig. 2 that the 
QMM models are generally better performing than 
the best fit models defined by [12, Table 4].  
 

TABLE II 
RMSE PREDICTION METRICS FOR THE QMM AND 

BEST FIT MODELS OF FIG. 2 
            Root Mean Square Error 

Month / 
Model 

Best Fit Model [12] QMM Models 
Power-Law Logarithmic  Power-Law Logarithmic 

February N/A 0.9868 1.3670 0.9813 
March 2.2038 N/A 1.1130 0.8482 
April 1.0758 N/A 1.1696 0.7841 

September N/A 2.9093 3.3255 2.8190 
November N/A 2.8876 5.5212 2.3846 
December 0.6243 N/A 0.6118 0.9311 

 
This observation is supported by the RMSE metrics 
of Table II, from which a number of inferences may 
be made. First, the models listed in [12, Table 4] 
clearly imply that for the months of March, April, 
and December, power-law models gave better best 
fit predictions than the logarithmic models; and that 
the reverse is the case for February, September, and 
November. The metrics of Table II suggest 
however, that when evaluated in terms of RMSE, 
the QMM-logarithmic models are generally best for 
prediction along this link. And second, with the 
exception of April (for the power law models), all 
the QMM prediction models recorded better RMSE 
values than corresponding best fit models of [12].  
 

C. Modeling with Measurement Results from [11] 
     One of the main purposes served by the third 
example, subject of ensuing discussions, is to 
highlight an important outcome of the investigations 
reported in this paper. Computational results 
indicate that when implementing the QMM 
algorithm for the prediction of rain attenuation 
cumulative distribution function (CDF), 
significantly improved results are obtained, if 
exceedance percentages are scaled (or normalized) 
to ensure that the lower limit of the range of 
percentages is 0.01%.   In that connection, and 
using measurement results from [11] for four 
different links, two QMM prediction models are 
developed, using the same base model of the type 
specified by 8(b), and given by  

 (22) 
The first QMM model (referred to as ‘model 1’) is 
easily shown to be given by 

 (23) 
provided that  is the normalized rquivalent of 

 and  
Accordingly, the following equivalents apply; 

  (24a) 
corresponds to 

  (24b) 
The second QMM model (model 2), is defined by 

( )0.01 10log 0.12 log 0.60log 0.06 log log .b e e e ef A p p p= + - -

( ) ( ) ( ) ( )( )21 3 4 100.6 0.06 log
% 1 0.010.12 nc c c pn c
p m nA A p - +=
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0.001.A 10 ,np p=
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  (25) 
with the range for  p specified by (24a), in this case.  
   For the computational results due to the models, 
measurement data were extracted from [11, Fig. 3]; 
A0.01, from the paper’s Table 2, and A0.001, from the 
graphical presentation of its measurement data. 
Model parameters for the two QMM models then 
emerged as described by Tables III and IV, for 
models 1 and 2, respectively.  
 

TABLE III 
MODEL PARAMETERS FOR QMM MODEL 1 

    Model Parameters 
/Frequency 

15GHz 22GHz 26GHz 38GHz 

 
8.9069 17.3337 23.3699 32.5993 

c1 -1.4788 -0.6730 0.7774 -1.0549 
c2 -1.1696 -0.1089 0.9927 -0.1332 
c3 2.6014 2.9788 2.7041 2.8204 
c4 16.9102 20.4688 17.5437 18.7999 

 
TABLE IV 

MODEL PARAMETERS FOR QMM MODEL 2 
Model Parameters 
/Frequency 

15GHz 22GHz 26GHz 38GHz 

A0.01 4.2 8.3 10.98 15.10 
c1 -11.0996 -0.0191 -1.0720 0.3269 
c2 -18.2559 -1.1863 -1.7347 -0.3584 
c3 3.0434 3.3915 3.1671 3.2441 
c4 6.2563 7.0388 6.5214 6.6857 

 
A comparison of rain attenuation predicted by these 
models with corresponding measurements (as well 
as those due to the base models) for each of the four 
links is displayed in Fig. 3. Profiles in the figure 
very clearly reveal that both QMM models 
represent remarkably improved versions of the base 
model from which they derived. A close look at the 
profiles of QMM models 1 and 2 reveals that for 
‘percentages of time’ greater than 0.01, predictions 
by both models are comparable; though with model 
1 consistently giving better results. However, for 
values of p less than 0.01, model 2’s performance is 
distinctly the poorer of the two.   
 

 
Fig. 3.Comparison of attenuation predictions by QMM and 
base models with measurements available from  [11]. 
 
It would appear therefore that by arranging to 
ensure that attenuation for percentages of time other 
than 0.01% emerge, through extrapolation, from an 
‘equivalent’A0.01, model 1 guarantees a better 
prediction performance. The RMSE metrics of 
Table V quantify the extent to which the base and 
QMM models track measurement data. 
 

TABLE V 
ROOT MEAN SQUARE PREDICTION ERROR 

METRICS FOR THE MODELS OF FIG. 3. 
Frequency 
(GHz) 

QMM-
Model1 

RMSE(dB) 

QMM-
Model2 

RMSE(dB) 

Base 
Model 

RMSE(dB) 
15 0.1599 0.4441 1.9130 
22 0.4057 0.9243 3.6593 
26 0.4647 1.1425 4.9806 
38 0.6394 1.6391 6.8952 

 
It is readily verified from Table V that in terms of 
RMSE, model 1 represents an average of close to 
60% performance improvement over model 2, and 
of about 91% compared with the base model. 

D. Model Calibration with Measurements from [1]  
      Support for the conclusions described in the 
foregoing example is offered by performances of 
the QMM models developed from the use of 
measurement data available from [1], for which 
exceedance probability is in the range 

. With these values of p, it is not 
ordinarily possible to extrapolate from known 
values of A0.01. And in order to negotiate the 

( ) ( ) ( )( )3 4 101 2
0.6 0.06 log

% 2 0.010.12 c c pc c
p mA A p - +=

0.01
nA

5 310 10p- -£ £
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difficulty posed by that observation, an equivalent 
A0.01 is defined in this paper through scaling 
(normalization) to set the range of p to 

 , in implementing the QMM 
algorithm. For the base model, use is made of the 
Chinese model given by [31, (10)], such that  

 (26) 

in which f (GHz) represents operating frequency, 
with  

  (27a) 
and  

  (27b) 
The implementation of the associated QMM 
algorithm utilized measurement data from [1, Fig. 
15, 16, 17, and 18]. Model parameters for the 
resulting models are displayed in Table VI below.  
 

TABLE VI 
QMM MODEL PARAMETERS FOR THE BASE MODEL 

DEFINED BY (26) AND (27) 
Parameters Figure 15 

f  = 
32,6GHz 

Figure 16 
f  = 
57GHz 

Figure 17 
f  = 
97GHz  

Figure 18 
f  = 
137GHz 

c1 0.9588 1.0857 1.0417 0.9050 
c2 -0.3013 -0.0028 -0.5665 -5.1040 
c3 -0.7226 -3.5261 -2.5008 0.8328 
c4 13.2114 9.8083 0.4972 -28.8411 
c5 -8.0456 -0.6046 -1.4165 -9.6709 
c6 -1.7394 -1.9079 -1.1351 -2.1357 

 47.9124 17.6559 46.0963 37.0937 

 
Rain attenuation predictions due to the QMM 
models defined by the parameters of Table VI  are 

compared in Fig. 4, with corresponding 
measurement data, as well as those due to the 
associated base models. 
 

   
Fig. 4. Profiles of rain attenuation predicted by the QMM and 
base models defined by (27) and Table VI, compared with 
corresponding measured attenuation profiles from [1].  
 
RMSE metrics, which characterize the 
performances of the models described by Fig. 4 
were obtained as (QMMRMSE, BaseRMSE) = (0.8990, 
17.9714), (0.1169, 5.8819), (1.4958, 15.7974), and 
(0.4326, 12.1586) for the profiles of Fig. 4(a), 4(b), 
4(c), and 4(d), respectively. The consistently 
excellent prediction profiles of the QMM models 
lend further credence to the efficacy of the scaling 
procedure introduced by this paper.   
   
E. Comparison with Measurements from [3] 
     A final example considered in this paper 
developed QMM models with the use of three sets 
of data extracted from [3]. For base model in this 
case, the model proposed by [3, (4)] was adopted, to 
give  
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  (28) 

Outcomes of the use of this base model for the 
development of QMM prediction models are 
presented in Table VII below.  
 

TABLE VII 
 PARAMETERS OF QMM MODELS DERIVED FROM 

THE BASE MODEL OF (28) 
Parameters Cameroon  

f=11.6GHz 
      

Nigeria 
f  =11.6GHz 
   

Eindhoven 
f = 28,7GHz 

 
c1 1.1346 1.0176 0.9122 
c2 0.1147 0.8082 0.3930 
c3 -1.5232 0.1693 1.5566 
c4 -1.2625 0.6891 0.1957 
c5 16.8279 9.8414 8.6792 

A0.01 25.4999 23.0226 23.3953 
 0.0381 0.0426 0.0226 

 
 And the profiles of Fig. 5 describe how predictions 
by the QMM models and their associated base 
models compare with measurement data, for the 
three sets of data considered.  
 

 
Fig. 5. Comparison of rain attenuation predicted by QMM 
models developed with (8) and data from [3], with the 
measurement data.  
 

    With root mean square prediction errors recorded 
as 0.5713dB, 0.3555dB, and 0.4138dB, for the 
QMM models developed using the ‘Cameroon’, 
‘Eindhoven’, and ‘Nigeria’ measurement data, 
respectively, computations reveal that on the 
average, QMM modeling produced close to a 93% 
improvement on the prediction performances of the 
base models. It is worth  pointing out that this 
example also serves to underscore the fact that no 
scaling (or normalization) scheme is required for 
the implementation of the QMM algorithm, when 
exceedance probability is such that  .  

IV. CONCLUDING REMARKS 
This paper has presented the Quasi-Moment-

Method (QMM) as a tool for the modeling of rain 
attenuation prediction along both slant path and 
terrestrial links. A succinct, but representative 
presentation of the algorithm for QMM rain 
attenuation modeling identified the two important 
requirements of ‘base models’ as i) being known to 
have predicted rain attenuation anywhere, with 
reasonable accuracy; and ii) having an analytical 
format that will admit expression as a linear 
combination of the model parameters. Using a 
comprehensive set of measurement data extracted 
from five different publications in the literature, the 
validity of the modeling algorithm was established 
with examples of varying complexities. In addition, 
and through the same examples, the performances 
of various QMM models were evaluated, and found 
to be excellent. For example, compared against a 
number of published best fit models, the QMM 
models recorded root mean square prediction errors 
(RMSE) that were an average of close to 60% 
better. As a matter of fact, the RMSE values 
recorded for the QMM models ranged between 
0.1599dB and 2.9dB (excluding those for ‘power 
law models of Table II), indicative of a remarkably 
excellent performance. Indeed, these RMSE values 
were, in many cases, consistently greater than 90% 
better than those of the base models from which 
they derived. 

   One other main contribution of the paper is the 
establishment, through two examples (involving 
eight (8) different data sets) of the fact that when 
the range of exceedance probabilities (p) specified 
by measurement data is outside  , 
the normalization scheme developed as part of the 
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QMM modeling algorithm, leads to near perfect 
prediction models.  

   Finally, outcomes of investigations reported in 
the paper indicate a number of possibilities for 
future work. The more obvious of these may be set 
forth in the form of the following questions: 

a) are there existing models, which satisfy the 
requirements of the QMM algorithm, and 
through which the inner product quantities on 
both sides of (6) can be given useful physical 
interpretations concerning electromagnetic 
wave-matter interaction ? 

b) is it feasible to hybridize the QMM algorithm 
with some machine learning-based or physical 
rain attenuation prediction models? 

c) how can the QMM algorithm be implemented 
towards developing a ‘cross-application’ 
model of the type proposed in [1]?   

On-going investigations are directed at providing 
possible answers  to these questions. 
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