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Modeling Noise as a Bernoulli-Gaussian Process
Weiler A. Finamore, Marcelo da S. Pinho, Manish Sharma, Moisés V. Ribeiro

Abstract—The transmission medium is always disturbed by
noise with a random nature which can be characterized by taking
a sequence of noise samples and, after analyzing the sequence,
attributing a probabilistic model to represent the randomness
of the noise. If thermal noise (receiver generated) is the only
noise impairing the transmission (our focus is digital transmission
only), the memoryless stationary discrete-time Gaussian process
is the best model to represent the noise probabilistically. The
mathematical representation of the transmission medium in such
a situation yields the well-known Gaussian Channel. As Infor-
mation Theory points out, for a fixed noise power, the Gaussian
channel is the worst channel to send information through. If
thermal noise is not the only noise impairing the transmission (as
in sonar communication and power line communication), finding
the probabilistic model other than the single-parameter Gaussian
process that best matches the noise can much improve the
communication system design. The Bernoulli-Gaussian process,
a three parameters model, is a commonly considered option.
Actually, this is a popular alternative to model the communication
using power lines, which is modeled as Middleton Class-A oftenly.
Finding the three parameters of the Bernoulli-Gaussian model
(from known noise samples) is a formidable task that can be
made simpler by considering the (original) results presented
in the current paper. The Bernoulli-Gaussian model can be
characterized, analytically, by using the noise power and two
additional quantities: the expectation of the absolute value of the
noise process plus the expected value of the third power of the
absolute value. In practice, the parameters would be calculated
using estimates of the mentioned expected values. In this work, it
is also shown that the rate harvested when modeling the medium
as a Bernoulli-Gaussian channel is increased when compared to
modeling the medium with the easily obtained Gaussian channel.

Index Terms—Bernoulli-Gaussian parameters, Noise modeling,
Non-Gaussian stochastic process, Power Line Communication.

I. INTRODUCTION

TRANSPORTING discrete-time information through a
transmission medium from one point to another can

be mathematically modeled in many ways. A common
assumption is to mathematically describe the system as
transmitting a sequence of samples {xi} (the index i is
an integer usually identifying a time instant) through a
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transmission medium perturbed by additive noise. To each
channel input xi belonging to the set of real numbers R,
there corresponds thus a channel output yi = xi + zi such
that a sequence of samples {yi}, which is the addition of the
signal value xi to a noise component zi ∈ R, is delivered at
the destination.

The noise is a random phenomenon. The simplest way
to probabilistically model the noise1 is to consider that the
behavior of a sequence of noise samples is described by a
Gaussian stochastic process, viz. a sequence of discrete-time,
stochastic process {Zi} in which all Zi are independent and
identically distributed (i.i.d.), zero mean, Gaussian random
variables (r.v.s), all with variance σ2

Z . Thermal noise, generated
at the receiver, is long known to be well-modeled as a Gaussian
stochastic process. The power of the process, σ2

Z , is well
estimated by a value σ̂2

0 , usually available2. Yet simple this
model corresponds to the description of the hardest to cope
with noise. Being σ̂2

0 the only history that can be taken
into account to characterize the noise, adopting the Gaussian
Channel (G-channel) to model the transmission medium would
be the only choice but it would be the most conservative pick
since, as it is well know [1], under equal conditions—same
input and output alphabet and signal-to-noise ratio—the G-
channel is, among all choices, the worst channel to transmit
information through.

One can measure/sample noise and easily estimate the
variance of the thermal noise, say σ̂2

0 but, if by any chance,
the behavior of the noise under question does not match a
Gaussian process (the noise is not due only to thermal causes
but to man-made causes as well), the capacity of the medium
would be underestimated.

In the current investigation, we tackle, however, the not
so easy problem in which the sequence of samples {zi} is
provided, and we seek to model the noise by a Bernoulli-
Gaussian (BG) process or, explicitly, to model the noise by
the stochastic process expressed as

{Zi} = σ0{R[0]
i }+ σ1{SiR

[1]
i }. (1)

The first component in this expression is a product of σ0, a
strictly positive real constant, and a sequence in which all R[0]

i

are i.i.d. Gaussian r.v.s with zero mean and unity variance.
We will usually refer to the noise which is well modeled as a
Gaussian Process as Gaussian Noise. In the same vein noise
which is well modeled by a BG-process, is said to behave
as a BG process or simply to be a BG noise. The second
component in (1) is considered to correspond to an intermittent
stochastic process σ1{SiR

[1]
i } in which Si is a Bernoulli r.v.

1Band-limited noise.
2Usually this is provided by the maker of the receiver.
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such that for all integer i, Prob{Si = 1} = p1, 0 < p1 ≤ 1

and Prob{Si = 0} = p0 = 1 − p1. Furthermore, R
[1]
i are

i.i.d. Gaussian r.v.s with zero mean and unity variance. The
quantity σ1 is a real positive constant. Finding the model is, in
summary, to take the available measured noise samples {zi}
and obtain the parameters σ̂0, σ̂1, and p̂1 which best specify
the process.

As highlighted in [2], there are many modern communica-
tion systems that deal with intermittent noise, such as power
line communications (PLC) [3], wireless sensor networks [4],
sonar communications [5], and vehicular communications [6].
In such cases, the transmitted signal is disturbed by noise
which is better modeled by a non-Gaussian stochastic process.
A mathematical model as the one in (1)—encompassing more
sophistication than the one parameter Gaussian model—would
be a good candidate (in the sense that the randomness of the
physical phenomenon would be well captured by the theoreti-
cal model). An extra motivation for trying a more sophisticated
model relies on the fact that non-Gaussian channels render
channels less stringent than the more severe Gaussian channel
(more severe in the sense that, for the same signal-to-noise
power ratio, the Gaussian channel renders a smaller capacity).

Regarding communication systems with impulsive noise, we
see that simplified mathematical noise models are based on
BG-process [7], [8], Middleton Class-A [9]–[11], Gaussian
mixtures [12], [13], and α-stable [14] random processes.
Among them, Middleton Class-A and BG models can be
considered the simplest because they depend on a reduced
number of parameters. Even though the Middleton model
contains a large number of states, the probabilities of these
states follow a Poisson distribution, and thus its complexity is
similar to that of the BG-process [9].

A model with a large number of parameters can yield,
certainly, a probabilistic description better matched to the
random behavior of the noise disturbing the transmission.
The Generalized Bernoulli-Gaussian (gBG), a well-known
stochastic process briefly discussed in Appendix A, is one
such process. Finding a large number of parameters would
be, however, a cumbersome task. In search for an easy to
characterize model, we analyze, in this paper, the BG-process
and present a closed formula solution for the determination
of the parameters of the BG model when the expected values
E[|Z|], E[Z2], and E[|Z|3] are known (in practice, a finite-
length sequence of noise samples {zi}, obtained from mea-
surements, are available and one can only hope to find a good
estimate of these expected values).

Of course, the higher the number of parameters, the larger
the freedom to adjust the model to improve the probabilistic
characterization of the noise. Yet, a simple model with a
small number of parameters, but still acceptable (in the sense
that it still reasonably represents the noise), is always more
convenient. We conjecture that the current analysis opens up
the way to study the gBG model, with a number of parameters
larger than three, as well as other processes (processes that
include memory, for instance).

Although the Middleton Class-A and the BG-process are

both well suited to model3 the noise in different applications
with intermittent noise, the most important aspect of the
modeling problem is to know how to find the parameters of
the model from a sequence of measured noise samples. There
are many methods that can be used to find the parameters
of a process. In [15], [16] a numerical algorithm has been
proposed to find the parameters of the Middleton Class-A.
In the current work, an analytical solution to determine the
three parameters of the BG model, when three moments of the
stochastic process are known, is presented (for the first time to
the authors knowledge). This is the main contribution of this
paper. Yet simple the analytical solution is a very powerful
tool for designing a communication system disturbed by non-
Gaussian noise as we briefly discuss.

This paper presents in Section II the description of the
Bernoulli-Gaussian (BG) stochastic process and introduces
some theorems leading to the calculation of the parameters
of the BG-process when three moments of the process are
known. Proofs of theorems are placed in appendices. The
discussion in Section III presents a fair comparison of the
capacities of BG channels and Gaussian channels revealing
the losses that are incurred when modeling noise with a BG
behavior as Gaussian. Section IV is a short section describing
the procedure to estimate parameters of a BG-process from a
finite-length sequence of noise samples. Some results obtained
by using computer generated samples of noise meant to behave
as BG stochastic process are presented in Section V in order
to illustrate the use of the procedure. Samples of noise over
power lines obtained by measurements were also used to
enhance the illustration. Section VI discusses the performance
(obtained by computer simulation) of communication systems
when data, encoded using Low-Density Parity Check (LDPC)
code, is transmitted over the BG channel, which models the
transmission medium disturbed by BG noise.

II. THE BERNOULLI-GAUSSIAN STOCHASTIC PROCESS

The block diagram of a communication channel in which
the disturbing noise is a BG-process is schematically shown in
Fig. 1. Our assumption is that information samples xi are fed
to the channel input and the corresponding values observed
at the output of the channel (available to the decoder) are
the addition of signal plus noise yi = xi + zi. We consider
that the disturbing noise is expressed mathematically as a
sequence {zi} = σ0{r[0]i } + siσ1{r[1]i } given by the sum
of two noise components with r

[0]
i and r

[1]
i corresponding to

variables with values belonging to the set R of real numbers. A
particular noise sample zi can be viewed as the manifestation
of a perturbation that is in either the state si = 0 or state
si = 1 (the impulsive state that occurs with probability p1).
In the first case zi = σ0r

[0]
i is the ubiquitous thermal noise

modeled as a Gaussian r.v. Zi = σ0R
[0]
i in which R

[0]
i are

zero mean, Gaussian r.v.s, all with unity variance, and, when
the noise is in state si = 1, the sample values are expressed
as zi = σ0r

[0]
i + σ1r

[1]
i , the addition of the always present

background noise plus an intermittent component σ1r
[1]
i .

3It should be noticed that only extensive noise measurement can allow to
figure out which mathematical model better represent the true noise.
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Fig. 1: Block diagram of a Bernoulli-Gaussian communication channel. The
value yi = xi + zi observed at the output of the channel, is either xi added
to zi = σ0r

[0]
i or, to zi = σ0r

[0]
i + σ1r

[1]
i .

We now, to make the mathematical manipulation easier,
introduce some auxiliary r.v.s. We let Wi = σ0R

[0]
i + σ1R

[1]
i .

We introduce, furthermore, the non-Gaussian i.i.d. r.v.s Vi =
SiR

[1]
i (all Si have the same probability mass function). The

r.v.s σ0R
[0]
i + σ1Vi are non-Gaussian. The i.i.d. assumption

allows us to write fZi(ζ) = fZ(ζ) in which

fZ(ξ) =
1− p1

σ0

√
2π

e
− ξ2

2σ2
0 +

p1

σW

√
2π

e
− ξ2

2σ2
W (2)

is not dependent on the index i. Since all pairs of distinct
r.v.s are pairs of independent r.v.s we have that the sequences
σ0{R[0]

i } and σ1{SiR
[1]
i } have power σ2

0 and p1σ
2
1 , respec-

tively. As for the sequence {Zi} its power σ2
Z = E

[
Z2
]

can
be written, it can be demonstrated, as

σ2
Z = σ2

0 + p1σ
2
1 (3)

or yet, more conveniently, in terms of σ2
W = σ2

0 + σ2
1 , as

σ2
Z = (1− p1)σ

2
0 + p1(σ

2
0 + σ2

1). (4)

Observe that Vi = SiR
[1]
i are i.i.d. r.v.s all having the

same variance p1σ
2
1 and the same probability density function

(p.d.f.) fVi
(ζ) = fV (ζ). The three parameters (σ0, σ1, p1)

completely specify the BG-process {Zi}. For convenience, we
introduce the ratios

α2
1Z = σ2

1/σ
2
Z , and (5)

α2
10 = σ2

1/σ
2
0 . (6)

Another quantity of interest, which we will call the “process
impulsivity” is defined as

Λ ≜ p1σ
2
1/σ

2
0 (7)

Notice that if σ2
1 = 0, which is equivalent to saying that p1 =

0, the impulsivity is zero (and the process is a purely Gaussian
process).

The main issue when choosing a model to represent noise
with known samples {zi} is to find the parameters of that
model. The models used in this work are those with a
description as in (1) and the parameter finding procedure

is based on three absolute moments (which in practice can
only be estimated). As will be shown, the parameters can
be computed by analytically solving a system of non-linear
equations. We next present some results which related the
absolute moments of the BG-process to the parameters and
are useful when solving the system of non-linear equations.

A. Some useful theorems

Let us consider that the process {Zi} = σ0{R[0]
i } +

σ1{SiR
[1]
i } is stationary and that the expected values E[|Zi|],

E[|Zi|2], and E[|Zi|3] which, since they are not dependent
on the index i, are all equal to E[|Z|], E[|Z|2], and E[|Z|3]
respectively. We can write thus [17]

E[|Z|] =

(
p0 + p1

√
α2
10 + 1

)
σ0︸ ︷︷ ︸

µ1

√
2

π
, (8)

E[|Z|2] =
(
p0 + p1

(
α2
10 + 1

))
σ2
0︸ ︷︷ ︸

µ2

, (9)

E[|Z|3] =

(
p0 + p1

(√
α2
10 + 1

)3
)
σ3
0︸ ︷︷ ︸

µ3

√
8

π
. (10)

For convenience, we introduce the notations

µ1 = E[|Z|]
√

π

2
, (11)

µ3 = E[|Z|3]
√

π

8
. (12)

Next theorems show important relationships among these
moments.

Theorem 1 (Feasible region). The set of values E[|Z|],
E[|Z|2], and E[|Z|3] of a BG-process are restricted to a
region of R3 which we call feasible region. The feasible values
of E[|Z|], E[|Z|2] and E[|Z|3] are such that the following
inequalities hold:

E[|Z|] ≤
√

2

π
E[Z2], (13)

E[|Z|3] ≥ 2E[|Z|]E[Z2], (14)

E[|Z|3] ≥ 4

π

(
E[Z2]

)2
E[|Z|]

, (15)

(relations will be equalities if, and only if, the r.v. Z is
Gaussian).

Proof: The proof is trivial. (See Appendix B)
For BG-processes with p1 ∈ (0, 1) (i.e., for non-gaussian

processes), define, the parameter

κ ≜
(µ3 − µ1µ2)

2

(µ1µ3 − µ2
2) (µ2 − µ2

1)
. (16)

Next theorem deals with the just defined parameter κ.

Theorem 2 (Range of κ). Let σ0 > 0 and p1 ∈ (0, 1). Let
Z = σ0R

[0]+σ1SR
[1] denote a r.v. with associated parameter

κ, defined as in (16). We have then the inequality κ > 4.
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Proof: The proof is trivial. (See Appendix B)
Parameter κ, for reasons to become clear, is related to the

impulsivity Λ of the BG-process. We can see that while the
process impulsivity is near zero (i.e., Λ ≈ 0), and if σ2

0 is
near E|Z2|, then process impulsivity Λ = E[|Z2|]

σ2
0

− 1 grows
indefinitely as σ2

0 goes to zero.
Results presented next are central to the calculation of the

main parameters of the process.

B. Finding the parameters (σ0, σ1, p1) of a BG-process from
expected values.

Next theorem is of paramount importance when calculating
the parameters of a BG-process.

Theorem 3 (Parameters from moments). Recall that R[0]
i and

R
[1]
i are two independent, zero mean Gaussian r.v.s with, unity

variance, and Si is a binary r.v. Let p0 = Prob{Si = 0} and
consider, furthermore, that any pair formed with these r.v.s is
a pair of independent r.v.s. Consider the Bernoulli-Gaussian
stochastic process {Zi} with parameters (σ0, σ1, p1) which
can be written as {Zi} = σ0{R[0]

i } + σ1{SiR
[1]
i }. Consider

also that
ξ =

1

2

(
κ− 2 +

√
κ(κ− 2)

)
(17)

is a root of the equation α̃2 − (κ − 2)α̃ + 1 = 0. If E[|Zi|],
E[|Zi|2], and E[|Zi|3], the first three moments of the r.v.s |Zi|,
are known then the three parameters can be computed by

σ0 =
µ3µ2 − µ1µ

2
2

(µ2
2 − µ2

1)(ξ + 1)
(18)

σ1 = σ0

√
ξ2 − 1, and (19)

p1 =
σ2
Z − σ2

0

σ2
1

. (20)

The proof of Theorem 3 is presented in Appendix B.

III. MODELING COMMUNICATION OVER NOISY
TRANSMISSION MEDIA

The analysis and understanding of communication systems
usually starts with measurement in order to obtain samples of
the disturbing noise and, from so obtained samples {zi}, the
specification of a suitable mathematical model to probabilis-
tically model this noise is sought. Estimating the moments of
the model from the measured samples is the first step. Upon
having the estimated moments the parameters of the model
can be calculated. Each set of parameters specifies a given
channel that can have its capacity obtained.

We proceed by plotting and examining the capacity of
channels with binary input whose output are the samples of the
signal added to samples of the noise. The graphics in Fig. 2
display the capacities of several channels plotted against the
signal-to-noise ratio SNR ≜ A2/σ2

Z (ratio of the signal power
when the input signal is restricted to binary samples belonging
to the set {−A,A}, voltage unities, to the variance of process
{Zi} chosen to model the noise). The lower curve displays

the capacity of the biG-channel (Gaussian-channel with input
restricted to binary values) given by [18]

CbiG = g0

(
A
σZ

)
, (21)

in which

g0(v) =
1√
2π

∫ ∞

−∞
e−

(γ−v)2

2 log2
2

1 + e−2γv
dγ. (22)

Also plotted in terms of SNR, with assorted values of param-
eters (α10, p1), are the capacities CbiBG of BG-channels with
binary input (middle curves). The analysis presented in [18]
to the biG-channel can be extended to the biBG-channel, and
its capacity can be expressed as

CbiBG = g1

(
A

σZ
, p1, α10

)
(23)

in which

g1 (v, p1, α10) =

=

∫ ∞

−∞
g2(v, γ, p1, α10) log2

2

1 + g2(−v,γ,p1,α10)
g2(v,γ,p1,α10)

dγ (24)

and, besides,

g2(v, γ, p1, α10) =
1− p1√

2π
e
− 1

2

(
γ−v

√
1+α2

10

)2

+

+
p1√

2π(1 + α2
10)

e
− 1

2(1+α2
10)

(
γ−v

√
1+α2

10

)2

. (25)

It is also interesting to notice that the parameter κ (which is
a function of the values p1 = 1 − p0 and of α10 = σ1/σ0)
determines, in fact, the impulsivity of the process — and the
larger its value is, the larger is the discrepancy between the
capacity of the biBG-channel and that of the biG-channel.

Another interesting aspect (not mentioned in similar pub-
lished results) is that at moderate and small values of SNR,
the “non-harvested rate” when modeling the noisy communi-
cation system with a purely Gaussian channel is much more
noticeable than at larger SNR. At large values of SNR (above
10 dB), a region in which the Gaussian component with largest
variance is predominant, corresponding to the impulsive noise,
there is not much harvested rate loss.

Finding the parameter of a Gaussian process chosen to
model any given noise is straightforward— the usual, simple
and efficient approach is to sample the noise and use the
arithmetic average of the squared sample values as the noise
variance estimate. As for the parameters of a non-Gaussian
process the calculation, at first sight, might not be so easy
[21]. The main contribution of this work is to present a
simple technique which allows to easily find the parameters
of the BG-process that best4 fit the noise, given a set of noise
samples.

4It should be noticed that the noise might not have a random behavior that
is well described by the selected BG stochastic process. The expression “non-
harvested rate” is used to reveal that the designer throws away available rate
by choosing a channel model that do not fully match the random behavior of
the noise.
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Fig. 2: Graphs illustrating the capacity CbiG (dashed line) of the Gaussian-channel with input restricted to binary values and the capacity CbiBG of several
Bernoulli-Gaussian channels also with input restricted to a binary alphabet. The capacity curve CciG of a continuous input Gaussian-channel is also plotted
(dashed line). The variance of the process, E[Z2], as well as the background noise power, σ2

0 are held constant (fixing the impulsivity to Λ = p1α2
10 = 1.25)

in all cases (except for the Gaussian process, for which Λ = 0 and the variance is E[Z2] = σ2
0 .)

IV. SIMPLE PROCEDURE TO OBTAIN THE PARAMETERS OF
A BERNOULLI-GAUSSIAN PROCESS FROM NOISE SAMPLES

When a sequence {zi}Ni=1 of values sampled from a “truly
BG-noise” is available, a simple procedure — based on
Theorem 3 — to find the parameters of the BG model that
matches the sampled noise can be obtained by just calculating,
for ℓ = {1, 2, 3}, the quantities

Mℓ =
1

N

N∑
i=1

|zi|ℓ. (26)

Quantities M1, M2, and M3 are estimates of E[|Z|], E[|Z|2],
and E[|Z|3] (the first, the second, and the third moments,
respectively, of the r.v. |Z|.) With the values in (26) in hand
and Theorem 3, the BG model parameters can be obtained
(This procedure is based on the assumption that the noise is
truly BG. If this is not the case, a mismatch will become
evident).

To make the calculation more manageable we choose to
work with normalized values. In other words, we use the
notation σ0 = σ0/σZ and σ1 = σ1/σZ and introduce the
normalized variable Zi = Zi/σZ to construct the normalized
stochastic process

{Zi} = σ0{R[0]
i }+ σ1{SiR

[1]
i } ∈ R. (27)

This modification enforces the condition E[Z2

i ] = 1 and
introduces no loss of generality since, once (σ0, σ1, p1) is
obtained, the triplet (σ0, σ1, p1) is easily obtainable. It is worth
noticing that σ0 is strictly positive, i.e. σ0 > 0. Also, from
the ratio defined in (6), we can state that α10 = σ1/σ0.

With some manipulation, we rewrite equations (8), (9), and

(10), and get

µ1 = E
[
|Z|
]√π

2
, (28)

µ2 = 1, (29)

µ3 = E
[
|Z|3

]√π

8
. (30)

With the introduced changes, Theorem 1 is restated next
showing how to get the parameters (σ0, σ1, p1) by using only
the two expected values in (28) and (30).

Theorem 4 (Normalized parameters from moments). Let
{Zi} = {σ0R

[0]
i + σ1SiR

[1]
i } be a normalized (unity power)

Bernoulli-Gaussian process characterized by the parameters
(σ0, σ1, p1) such that p0 = Prob{Si = 0} and SiR

[1]
i is the

product of independent r.v.s Si and R
[1]
i .

If the two moments E[|Zi|], and E[|Zi|3] of the r.v.s |Zi|,
are known then the parameter σ0 can be obtained by first
finding the roots of the equation

α̃2 + (2− κ)α̃+ 1 = 0, (31)

in which

κ =
(µ3 − µ1)

2

(µ1µ3 − 1)
(
1− µ2

1

) . (32)

And then, if ξ is a non-negative real root of (31), we have

σ0 =
µ3 − µ1(

1− µ2
1

)
(ξ + 1)

, (33)

σ1 = σ0

√
ξ2 − 1, (34)

and

p1 =
1− σ2

0

σ2
1

. (35)
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The parameters (σ0, σ1, p1) of the stochastic process {Zi}
are finally obtained by taking σ0 = σ0 σZ and σ1 = σ1 σZ .

V. COMPARING ACHIEVABILITY AND COMMENTING SOME
EXPERIMENTAL RESULTS

Plots in Fig. 2 exhibit the code rate limits for several values
of the parameters (σ0, σ1, p1). As it is well known [1] if
symbols x generated by a source (modeled by a r.v. X) are
sent to a destination (by using a rate Rc = k/n ideal code
to transmit through a channel) the corresponding symbols
x̂ (modeled by a r.v. X̂) delivered to the destination are
subject to negligible error probability (Prob{X̂ ̸= X}) if
CbiBG(SNR) > Rc.

To transmit with negligible probability of error, at a rate
of Rc = 1/2 bits-per-channel-use, for instance, when the
transmission medium noise is modeled as a BG-process with
parameters p1 = 0.05 and α10 = σ1/σ0 = 10, the SNR
is required to be larger than about −3.0 dB. In contrast,
if the transmission medium is modeled as a biG-channel
(with σ2

Z = σ2
0 = 1) the SNR requirement surpasses 0 dB.

Another way to evaluate the loss of modeling the BG-process
by a Gaussian stochastic process is by using the Kullback-
Leibler divergence [1]. Computing numerically the divergence
between a Gaussian r.v. with unitary variance for the BG-
process with the given parameters, a value of 0.3 bits has
been obtained.

A good communication system design benefits from the
choice of efficient error control codes and the implementation
of the corresponding receiver rewards from the selection of a
representative channel to model the transmission medium. To
assess the benefit we have generated samples belonging to a
BG-process (using MATLAB) and for the sequence of samples
so generated the corresponding parameters were obtained.
Many synthetic noise sequences (pseudo-random generated
noise samples), were examined. Synthetic noise generated with
the parameters σ0 = 0.8165, σ1 = 4.0825, and p1 = 0.05
(α10 = 5), is illustrated by the plots in Fig. 3. The expected
values of the BG-process having such parameters—calculated
with (8), (9), and (10)—are respectively E[|Zi|] = 0.6420,
E[|Zi|2] = 1, and E[|Zi|3] = 3.4475. The estimated mo-
ments, empirically calculated, are respectively M1 = 0.6427,
M2 = 0.9999, and M3 = 3.5357. The parameter estimation
procedure used the estimated moments (M1, M2, and M3) and
produced the estimated values σ̂0 = 0.8162, σ̂1 = 4.0811, and
p̂1 = 0.0500, (α̂10 = 4.9981), — which are satisfactorily close
to the true parameters.

Finding the model is one question, how well does the BG-
process model the random phenomenon is a separate question.
Not surprisingly, when opting to model noise with an impul-
sive nature as a BG stochastic process rather than Gaussian,
one incurs in a smaller mismatch between the mathematical
results and empirical results (since the simple biG-channel is
a particular instance of the more sophisticated biBG-channel,
the parameter estimation procedure would deliver a Gaussian
model if the estimated moments are compatible with a Gaus-
sian model).
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Fig. 3: Plots exhibiting segments of a pseudo random sequence of a BG-
process {Zi} with p1 = 0.05, σ2

0 = 0.6667, and σ2
1 = 16.6667.

The capacity versus SNR curves, pictured in Fig. 2, show
that at around SNR = 0 dB, the disregarded capacity runs
in the order of 0.25 bits-per-channel-use (0.5 instead of the
0.75 available). In other words, all theoretical analysis based
on the choice of the biG-channel to model the transmission
medium instead of the biBG-channel, would be, at the onset,
neglecting the available channel capacity.

Many sequences of noise (BG and others) were analyzed
and the corresponding BG parameters were estimated. As an
illustration, the parameters of a 65, 536 samples long sequence
of measured noise are presented in Fig. 4.

The measured noise estimated moments (normalized to
enforce unitary power) namely M1 = 0.5932, M2 = 1.0000,
and M3 = 4.1865, yielded estimated parameters σ̂0 = 0.5878,
and σ̂1 = 3.5677, and p̂1 = 0.0514, (i.e., α̂10 = 6.0700).
This noise, as can be perceived from the Power Spectral
Density (PSD) (see Fig. 4(c)), is far from a BG noise. One can
surely infer that the transmission is clearly also impaired by
interference5 and not disturbed by only noise. In spite of this
fact, the procedure manage to find the parameters and inform
that if one’s choice is to model this “strange” noise as a BG
random process {Zi} = {σ̂0Si + σ̂1SiZ1,i}, the parameters
to be used are given by the triple values (σ̂0, σ̂1, p̂1) just
found. From another perspective: the procedure informs that
the best BG-process (built from the estimated moments) that
models this “strange” noise is characterized by the obtained
parameters. Even though the estimator indicates that the best
model for the measured noise is not the Gaussian one, since

5The disturbing effect of interference and other impairments can, of course,
be mitigated by using specific schemes. The current investigation is not aimed
at combating these impairments and, for this reason, all that is not signal were,
in the described experiment, treated as plain noise.
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Fig. 4: Graphs of noise measured over power line.

the parameters obtained indicate a value of α10 significantly
greater than zero, it is interesting to evaluate the gain of using
the BG model. The log-likelihood ratio is a tool that allows
a simple evaluation of this gain. Using the measured noise,
{zi}Ni=1, illustrated in Fig. 4, and the p.d.f.s: fBG (for BG
i.i.d. r.v.s), and fG (for Gaussian model), the results show
that

1

N
log2

fBG(z1, . . . , zN )

fG(z1, . . . , zN )
= 0.3925 (36)

It is important to mention that for a long sequence of BG
r.v.s, {Zi}Ni=1, the Asymptotic Equipartition Property (AEP)
states that the log-likelihood ratio is approximately equal
to the Kullback-Leibler divergence, 0.4685 bit (numerically
computed). Therefore, the result presented in (36) shows a
significant gain of the model.

In general, tests run with BG pseudo-random noise having
large values of α10 yielded good parameters calculation. If
pseudo-random samples are taken from a BG-process with
very low values of α10 (α10 < 0.1) the estimated moments
fall outside the feasible region and the results are not quite
as accurate as those obtained when α10 is large. But, it is
important to emphasize, the benefit when using the BG-model
over the G-model is larger when α10 has large values. For low
values of α10 the gains are meager (and modeling the samples
as BG or G would not lead to a large mismatch).

VI. ASSESSING THE UTILITY OF THE MODEL

To assess the utility of the proposed model, the performance
of communication systems in three distinct scenarios has been
investigated and compared.

The performance of a system disturbed by Gaussian noise
(computer generated pseudo-Gaussian noise) designed by con-
sidering that the noise that disturbs the transmission is modeled

as a Gaussian channel was analyzed for reference purposes
(case 1). This means, in other words, that the channel is
Gaussian and the receiver is matched to Gaussian noise (the
model is good and the design is matched). In the second
approach, the situation is such that the channel is, in fact,
a BG channel (in the sense that the synthetically generated
noise is a sequence of pseudo-random BG r.v.s) but since the
receiver does not have access to enough knowledge (knows
only the power of the noise) the channel is modeled as
Gaussian. In other words, in case 2, the channel is BG and
the receiver is matched to Gaussian noise (the model is bad
and the design is mismatched). In the third approach (i.e.,
case 3), the noise behaves as BG (a sequence of pseudo-
random BG r.v.s) and the receiver knows the parameters α10

and p1 to perform its task. In other words, the channel is
BG and the receiver is matched to BG noise (the model is
good and the design is matched). In all cases, X ∈ {±1}
and Prob{X = −1} = Prob{X = +1} = 1/2. Bit value 0
is associated with the symbol value A = +1. The SNR is
changed by varying σ2

Z , the noise variance.
The impact of using the correct channel model at the

receiver is analyzed by using the same channel code in all
cases. A length n = 4096, rate 1/2 LDPC code was designed
using EXIT (extrinsic information transfer) charts consider-
ing transmission over a biG channel. The Progressive Edge
Growth Algorithm was used to design the encoder. The factor-
graph based LDPC decoder uses soft a priori messages from
the channel to perform decoding. The three cases contemplated
build the receiver (the LDPC decoding algorithm) based on
the log-likelihood function metric, named log likelihood rate
(LLR), and given by

LLR(y) = log

(
Prob{X = 1 | Y = y}
Prob{X = −1 | Y = y}

)
(37)

In the case #1, z is modeled by a Gaussian r.v., while in the
cases #2 and #3 it is modeled by the BG distribution given in
(2).

Under the assumption that the noise is Gaussian with zero
mean and variance σ2

Z , the corresponding LLR value [22] is

LLRG(y) =
2y

σ2
Z

. (38)

The second LLR is expressed by taking into consideration
the p.d.f. of the BG-process r.v.s, leading to the LLR soft
messages with values that depend on channel output y. Using
the notation pX(±1 | y) = Prob{X = ±1 | Y = y} we have

LLR(y) = log

(
pX(1 | y)
pX(−1 | y)

)
= log

(
fY |X=1(y)

fY |X=−1(y)

)
, (39)

where fY |X=±1(y) represents the p.d.f. of the output Y ,
calculated at point y, given that the input is equal to 1 or
to −1.

When the channel is BG, and the receiver has knowledge of
α10, and p1, it may use the probabilistic relationship between
transmitted symbol x and received value y to generate the
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appropriate LLR value as:

LLRBG(y) = log
(1− p1) e

−(y−1)2

2σ2
0 + p1 e

−(y−1)2

2(1+α2
10)σ2

0

(1− p1) e
−(y+1)2

2σ2
0 + p1 e

−(y+1)2

2(1+α2
10)σ2

0

. (40)

The decoder in cases #1 and #2 would employ (38), while
a decoder in case #3 would employ (40). The difference
in performance between cases #2 and #3 would be due to
knowledge of the BG model. The effect of this difference
may be observed in Fig. 5 which exhibits the performance
of a few communication systems perturbed by BG noise. The
system which incorporates a decoder designed by considering
that the noise is modeled as a BG-process renders a better
performance (upper-triangles curve). The curve marked with
upper-triangles shows that a probability of error of 10−5 can
be achieved at a SNR ≈ −1.2 dB indicating a gain of about
4.5 dB over the system designed by considering that the noise
is purely Gaussian. The performance (marked by circles) of the
system which wrongfully considers the noise to be Gaussian,
and therefore uses a Gaussian metric, is penalized even when
compared to the performance (marked by squares, in the same
figure) of a system that transmits over a Gaussian channel
(and uses a decoder designed under a Gaussian channel
assumption). Several combinations of parameters values have
been examined and the mismatch loss observed is large if
the process impulsivity, p1α

2
10, is high. For low values of

impulsivity, the observed mismatch loss is small.
For illustration purpose, the LLRs for three scenarios are

displayed in Fig. 6. The larger slope line is the LLR meant to
be used by a decoder which faces a noise that is modeled as
Gaussian having variance σ2

1 . The smaller slope line, on the
other hand, is the LLR for a decoder facing noise modeled as
Gaussian with variance σ2

0 .
The sinusoidal shaped line, on is turn corresponds to

the LLR used by a decoder designed to cope with a
Bernoulli Gaussian noise with parameters (σ0, σ1, p1) =
(0.6667, 3.3333, 0.05). The curious (and desirable) behavior
of the decoder is that it naturally switches the weighing of
the decoder income information (the log-likelihood which is
calculated with the value y observed at the channel output).
In one hand, if a small likelihood value is obtained, the
decoder operates as if under good channel conditions. On
the other hand, if a large likelihood value is observed, the
decoder operates as if under an impulsive channel condition.
In between the two situations, it is noticed a soft transition
between good and impulsive states.

VII. CONCLUSION

The increased flexibility brought when modeling the trans-
mission medium by a probabilistic model with a large number
of parameters leads to a model that can better reflect the
behavior of the true noise—the observed medium noise. The
two states BG-channel with three parameters (σ0, σ1, p1) is a
model more flexible than the purely Gaussian channel with a
single parameter, say σ′

0. Using a number of parameters higher
than three can render, of course, a mathematical model even
better adjusted to the real phenomenon—but at the expense

of higher modeling complexity and, we conjecture, with most
the harvested with the BG model.

This paper main contribution is a closed form calculation
which helps to obtain the three parameters (σ0, σ1, p1) of a
Bernoulli-Gaussian stationary stochastic process {Zi}, when
the three absolute moments E[|Zi|], E[|Zi|2] and E[|Zi|3] of
the process are known. In practice, when trying to find the
three parameters of the BG-channel modeling the true noise
(the noise that actually disturbs the transmission) only an
estimation of the three moments is available. The disparity, due
to the fact that the estimates are not exact, is not of paramount
concern. The most important disparity might come from the
fact that the noise behavior is not BG (this mismatch can only
be spelled by practical measurements).

Modeling the effect of noise disturbing the transmission
with a BG-channel brings to light that extra rate can be
harvested when compared to using the G-Channel (the latter,
according to a well-known result from Information Theory, is
the most severe assumption — which can be true or not).
If the true noise is ingrained with memory a model that
does not contemplate memory will not expose the available
capacity. Better rate harvesting will be achieved, as it is well
known [19], by using a model which tries to capture the
random phenomenon memory. Modifying the BG-model to
create a model that incorporates memory is a subject for
further investigation.

Our investigation immediate target was to find the BG
parameters. The large target, though, is to reach reliable
communication through the use of error control codes for
transmission over a medium disturbed by only additive noise.
The capacity of the channel and the theoretical limits for
the transmission rate were discussed in this paper. Studies
engaged in analyzing impairments other than noise (like for
instance fading, interference, and so on — impairments which
are usually overcome with techniques other than error control
codes) can also benefit from the current discussion.

Other existing estimation algorithms (log-likelihood estima-
tion, etc.) will lead to a pair of estimates M1,M3, in a small
neighborhood of the values obtained by the approach we have
presented, which can better match the data to the theoretical
model. This line of investigation—which relies on an explicit
definition of the meaning of “better match”—was not pursued
in the present article. It might prove fruitful but we conjecture
that will not render significantly higher gains. We also con-
jecture that exploiting models which contemplate stochastic
process embedded with memory will not significantly carve
higher gains.

The PSD of a BG-process is flat. No attempt is made
to shape the PSD, yet, if producing a process with a PSD
exhibiting a specific shape is required, we envision that a
filtered BG-process can produce the specified shape.

A question that naturally arises is: is the BG-model better
than the Middleton model? This question was not addressed
directly in the current paper — although we conjecture that BG
might be, in general, as good as the Middleton model. Without
significant distinction, it might happen that one model prevails
in some scenarios and not in others. Investigation considering
measured noise is needed to properly answer this question.
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The issue just settled is not which model is better but how
easy it is to find the BG parameters and how much can be
gained when choosing to model non-Gaussian noise with a
stochastic process other than the Gaussian process.

APPENDIX A
(A NOTE ON MODELING WITH MORE THAN TWO STATES)

The two states BG model just discussed might be extended
to contemplate more than two states. Let us consider the set
Θ = {0, 1, . . . ,M}, in which M is an integer, to be the set
of states. We will need the set indicator function I{Si = θ}
which is defined to be 1 if, for a given θ, the statement
Si = θ is true and, otherwise, this function of θ is defined
to be zero. The noise samples perturbing the transmission can
thus be expressed as zi = σθ z

[θ]
i I{Si = θ} and we would

be modeling this noise as a generalized-Bernoulli-Gaussian6

(gBG) stochastic process {Z̆i}, namely,

Z̆i = σ0 R
[0]
i +

M∑
θ=1

σθ R
[θ]
i I{Si = θ}. (41)

In (41) the r.v.s R
[θ]
i have associated zero mean, Gaussian

p.d.f.s with variance σ2
θ . If si = θ the process is said to be in

state θ (if si = 0 the process is in the background state). The
process is specified if all the probabilities

Prob{Si = θ} = pθ (42)

as well as all the parameters σθ are known. Of course it is

6As many readers might recognize the gBG is also know as Mixture of
Gaussian process.
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required to impose the condition

0 <

M∑
θ=1

pθ < 1. (43)

When θ ̸= θ′ we have two r.v.s R
[θ]
i and R

[θ′]
i which are

considered as i.i.d. In the same vein, independents are the r.v.s
R

[θ]
i and R

[θ′]
j if i ̸= j. With these considerations in mind, we

thus conclude that any pair of distinct r.v.s Z̆i and Z̆j are i.i.d.
If M = 0 the sequence {Si} is, with probability 1, the

sequence of all zeros, and the gBG becomes the Gaussian
process. If M = 1 the gBG-process becomes the plain,
two states, BG-process. The sequence {si}, probabilistically
modeled by the sequence of i.i.d. r.v.s {Si}, informs the state
of the channel at time index i.

Choosing to model the noise with a gBG-process, as
specified in (41), by taking M > 1 leads, of course, to a
potentially better mathematical representation (better than that
reached by selecting a BG model—which is a special instance
of the gBG model with M = 1). But, since finding the
parameters of this even more sophisticated model is a hard
task, we aimed at the still sophisticated but simpler model.
The procedure presented allows to find, with easiness, the BG
model parameters (σ0, σ1, p1) when a sequence of samples of
the noise which perturbs the transmission is known. Yet simple
the three-parameters model enlarges the insights brought by
theoretical studies of a transmission media perturbed by noise
which is not well modeled as a Gaussian noise (such as noise
perturbing transmission over power lines). The examination
of the capacities, as evaluated by using the two models
(Gaussian and Bernoulli-Gaussian), showed that under the
same conditions, a non-negligible amount of capacity might
be overlooked.

Examining Fig. 2 one can see that there is extra room for
improvement by choosing to model the noise using the more
flexible (parameters) BG-process rather than picking the more
restricted (single parameter) G-channel. Error control codes
design relying on the BG-channel model can benefit from the
choice of a better model. A number of examined examples
(one of which is discussed in Section VI) corroborate this
fact.

A well-known probabilistic model for impulsive noise,
proposed by Middleton [20], is an instance of the generalized
BG stochastic process in (41). It is a three parameter model
that can be written as

Ži =

∞∑
θ=0

σθ R
[θ]
i I{Si = θ}, (44)

with the channel states running over an infinite set, namely,
θ ∈ {0, 1, . . . ,∞}. Middleton model [21] imposes also that
Poisson be the probability law which is to rule the probability
pθ = Prob{Si = θ} or, specifically,

pθ =
Aθ

θ!
e−A. (45)

In this case, it should be noticed that the probability of
observing a noise sample in the background state is p0 = e−A.

The power of the sequence of samples in state θ, (θ > 0) can
be expressed, following the current paper notation, through

σθ =

√
1 + θ(σ2

Z̆
− σ2

0)

A
. (46)

The p.d.f. of the r.v. Z̆ is,

fZ̆(ζ) =
∞∑
θ=0

pθ

(
1

σθ

√
2π

e−ζ2/2σ2
θ

)
. (47)

Since σ2
Z̆
=
∑∞

θ=0 pθσ
2
θ one needs thus, to specify the process,

just to know the three parameters, A, σ0 and σ2
Z̆

. Techniques
to estimate the parameters of the Middleton Model have been
presented in [9], [16], [20].

The Middleton model yet admitting that the noise goes
through a very large number of states (as does the gBG)
is, however, a model which restricts the states to obey a
Poisson distribution, and depends on only three parameters.
In scenarios in which the noise is non-Gaussian one can thus,
potentially, provide equivalent estimates of the process p.d.f.
by using either the BG model or the Middleton model (only
practice can tell apart which model fits better — the authors
conjecture that the models using one model or the other would
have close performance).

APPENDIX B
(PROOFS OF THEOREMS)

Proof of Theorem 1: From the definition of µ1, µ2, and
µ3, and considering α̃ =

√
α2
10 + 1 it can be observed that

µ1 = (p0 + p1α̃)σ0 (48)
µ2 =

(
p0 + p1α̃

2
)
σ2
0 (49)

µ3 =
(
p0 + p1α̃

3
)
σ3
0 (50)

Therefore, µ3−µ1µ2, µ1µ3−µ2
2, and µ2−µ2

1 can be factored as

µ3 − µ1µ2 = σ3
0 p0 p1 (α̃− 1)

2
(α̃+ 1) , (51)

µ1µ3 − µ2
2 = σ4

0 p0 p1α̃ (α̃− 1)
2
, (52)

µ2 − µ2
1 = σ2

0 p0 p1 (α̃− 1)
2
. (53)

Since p0 ∈ (0, 1] and α̃ ≥ 1, the theorem is proved.
Proof of Theorem 2: From (51), (52) and (53), we get

κ =
(µ3 − µ1µ2)

2

(µ1µ3 − µ2
2) (µ2 − µ2

1)

=
(α̃+ 1)

2

α̃
(54)

which rewritten becomes

κ = α̃+
1

α̃
+ 2.

Since

α̃ =

√(
σ1

σ0

)2

+ 1 ≥ 1

and σ1

σ0
> 0, we have that (α̃− 1)

2
> 0 and, thus,

α̃2 − 2α̃+ 1 > 0. (55)
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This is equivalent to say that

α̃+
1

α̃
> 2,

and, therefore, κ > 4.
Proof of Theorem 3: From (54), it can be seen that

α̃2 − (κ− 2)α̃+ 1 = 0, (56)

has two roots, namely, ξ = 1
2

(
κ− 2±

√
(κ− 2)2 − 4

)
.

However, since√
(κ− 2)

2 − 4 =
√
κ (κ− 4)

> κ− 4

one of the roots is lower than one. Since α̃ > 1, this root has
no meaning within the probabilistic model. Therefore

ξ =
1

2

(
κ− 2 +

√
κ(κ− 4)

)
(57)

is the root of interest, justifying equality (17). The parameters
of the model can be easily found once it is known that α̃ = ξ
is the root. The value of σ0, established in (18), comes from
the division of (51) by (53). The computation of p0, posted in
(20), comes directly from (49).

APPENDIX C
(NOTES ON THE IMPLEMENTATION OF THE PROCEDURE)
If the expected values E [|Zi|], E

[
|Zi|2

]
and E

[
|Zi|3

]
of

the stochastic process {Zi} = {σ0R
[0]
i + σ1SiR

[0]
i } are known,

the values (σ0, σ1, p1) of the parameters can be obtained right
away by using Theorem 3. In practice, this never happens and
estimated moments have to be used.

In our implementation of the procedure to find the BG
parameters we work with normalized absolute moments (as
if all the samples had been divided by σ̂Z) or, in other
words, the estimated moments used are M1 = M1/

√
M2 and

M3 = M3/(
√
M2)

3 with, obviously, setting M2 = 1.
When attempting to find the parameters (σ0, σ1, p1) by

using normalized estimates M1 and M3 (obtained from a
given set of samples {zi}Ni=1) of the moments E

[
|Zi|

]
and

E
[
|Zi|3

]
an estimation error is inevitable. Usually, the mo-

ment estimates are quite precise. If the imprecisions of the
estimated values M1 and M3 drive the algorithm to solutions
falling in the feasible region there is no immediate action to
be taken and the obtained parameters (σ̂0, σ̂1, p̂1) are taken as
the estimated parameters. If, on the other hand, the solution
does not fall in the feasible region, actions have to be provided
to circumvent the imprecision of the estimated parameters. Or,
maybe, admit an inconsistency of the model since finding a
point far outside the feasible region can be taken as a sign
that the true noise definitely does not have a behavior that can
be described by a BG-process. In the current investigation,
no attempt was made to obtain the best estimation (a concept
which needs a definition and justification). A way around this
difficulty (if the estimated moments fall outside the feasible
region) is to alter the values (M1,M3) and find a near point
(M

′
1,M

′
3) falling in the feasible region.

A plot of σ̂|Z|2 versus σ̂|Z|, using the inequalities in (13),
(14), and (15), exhibit, on Fig. 7, the feasible region.
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Fig. 7: The cloud of red points indicates the feasible region. Dark lines
are the frontiers of the region. The feasible region corresponds to all points
(M1,M3) to which points (σ0, p1) in the region and (0, 1]×, [0, 1] are
mapped to.

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken,
NJ, USA: John Wiley & Sons, Inc., 2nd ed. 2006. ISBN-13 978-
0471241959.

[2] L. Clavier, G. W. Peters, F. Septier, and I. Nevat, “Impulsive noise
modeling and robust receiver design,” J. Wireless Com. Network, no. 13,
2021. doi: 10.1186/s13638-020-01868-1.

[3] M. Zimmermann and K. Dostert, “Analysis and modeling of impul-
sive noise in broad-band power-line communications,” IEEE Trans.
Electromag. Compat., vol. 44, no. 1, pp. 249–258, Feb. 2002. doi:
10.1109/15.990732.
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