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Distributional Transform Based Information
Reconciliation

Micael Andrade Dias and Francisco Marcos de Assis

Abstract—In this paper, we present an information reconcil-
iation protocol designed for Continuous-Variable QKD using
the Distributional Transform. By combining tools from copula
and information theory, we present a method for extracting
independent symmetric Bernoulli bits for Gaussian-modulated
CVQKD protocols, which we called the Distributional Transform
Expansion (DTE). We derived the expressions for the maximum
reconciliation efficiency for both homodyne and heterodyne
measurements, which, for the last, is achievable with an efficiency
greater than 0.9 at a signal-to-noise ratio lower than -3.6 dB.

Index Terms—Information Reconciliation, Distributional
Transform, CVQKD.

I. INTRODUCTION

Quantum key distribution protocols perform the task of
transmitting secret keys using quantum systems such that,
in the end, Alice and Bob share identical binary sequences
unknown to any other third part [1]. A broad family of QKD
protocols uses continuous variable quantum systems to encode
the secret key, called CVQKD protocols [2]–[8]. A CVQKD
protocol with Gaussian modulation of coherent states results
in Alice and Bob sharing a pair of correlated sequences of
Gaussian random variables.

In the standard GG02 protocol [2], Alice prepares a coherent
state |αi⟩, where αi = qi + jpi comes from realizations of
i.i.d. random variables Q ∼ P ∼ N (0, Ṽm). She sends it to
Bob through a quantum channel, and at reception, Bob will
perform homodyne detection by randomly switching between
the quadratures. After N rounds, Alice and Bob keep the
matching values, owning the sequences XN = x1, · · · , xN

and YN = x1, · · · , yN , respectively. A random subset of
length m << N of both sequences is used to estimate
the channel parameters, and the remaining sequences Xn =
XN \X[m] and Yn = YN \ Y[m] are called the raw key.

Once the final secret key must be binary, the raw key values
must be quantized and further corrected, both procedures that
constitute the information reconciliation (IR) protocol [1], [9]–
[13]. This is in fact a crucial step for distilling secret keys
and may be realized in a direct reconciliation (DR) direction,
meaning that Bob must correct his binary sequences to match
Alice’s, or in a reverse reconciliation (RR), when Alice’s is the
one correcting her sequences towards Bob’s key [14]. Despite
counterintuitiveness, reverse reconciliation is preferable as it

Micael A. Dias and Francisco M. de Assis are with the Department of Elec-
trical Engineering, Federal University of Campina Grande, Campina Grande,
Brazi, e-mails: micael.souza@ee.ufcg.edu.br and fmarcos@dee.ufcg.edu.br,
ORCID: 0000-0001-6394-9174 and 0000-0002-8619-0874.

This work was supported in part by the National Council for Scientific and
Technological Development (CNPq) under research Grant No. 311680/2022-4
and the Coordination of Superior Level Staff Improvement (CAPES/PROEX).

Digital Object Identifier: 10.14209/jcis.2024.6

allows the QKD protocol to run beyond the 3 dB loss limit of
DR.

Two widely used reconciliation protocols propose different
ways to perform quantization. One is the Sliced Error Cor-
rection (SEC) protocol [15], [16], which consists of a set of
slicing functions for Alice and a set of estimators on Bob’s
side. After the slicing procedure has taken place, each emerg-
ing binary symmetric channel (BSC) can be treated separately
with multilevel coding and multistage decoding (MLC-MSD),
applying LDPC codes to perform error correction close to
channel capacity [16]–[18]. The efficiency of the protocol
depends not only on the error correction codes, but also on
the quantization efficiency. However, the overall efficiency
has been shown to lie above 0.9, specifically in the interval
1 ∼ 3 dB of SNR (signal to noise ratio).

Another widely used method is multidimensional (MD) rec-
onciliation, which applies d-dimensional rotations to simulate
virtual channels close to BIAWGNC (Binary input AWGN
channel) [7], [17], [19], [20]. This means that d uses of the
physical channel are assigned to d approximate copies of a
virtual BIAWGNC. Again, LDPC codes are used and MD
reconciliation shows a high reconciliation efficiency for SNR
around 0.5 dB.

It is clear that the design of good reconciliation protocols
for the low SNR regime is critical for CVQKD operation at
long distances [21]. Here, we present an alternative method for
extracting binary sequences from continuous-valued raw keys
based on arguments from copula and information theories.
More specifically, we extend the method presented in [22],
which uses the distributional transform of continuous random
variables (which is the principle of arithmetic source coding)
to map the raw keys into the unit interval with uniform
distribution. The bit sequences are then extracted with a simple
binary expansion. We call this technique the Distributional
Transform Expansion, the DTE.

In contrast with SEC and MD reconciliation, the process of
distilling bit sequences with DTE does not use any estimator or
rotations in high-dimensional algebraic structures prior to the
usage of error-correcting codes. In fact, a DTE reconciliation-
based protocol has an analogous structure of SEC, that is, it
allows for MLC-MSC, for example, but, as the results show,
its best performance lies at very low signal-to-noise ratio,
typically below -3.6 dB.

The paper is structured as follows. Section II defines the
expansion of the distributional transformation and its applica-
tion to the reconciliation problem. Its properties are explored in
Section III by analyzing the subchannels induced by the binary
expansions. Section IV develops its reconciliation efficiency
and presents the main results. We conclude at Section V with
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the final considerations.

II. DISTRIBUTIONAL TRANSFORM EXPANSION

Information reconciliation protocols aim to produce identi-
cal binary keys for both Alice and Bob with high probability
using the data coming from the measurement outcomes of
quantum communication, the raw key. Although it is possible
to perform corrections on the continuous-valued data [ref
shannon], there is no much practicality on this strategy. Then,
the raw key must be quantized on at least one side (depending
on whether DR or RR is performed) and the resulting bit
sequences give rise to virtual classical channels modeling the
correlations between Alice and Bob’s strings.

The main approach to this problem are the SEC and MD
reconciliation procedures, which present a way to extract
bit sequences from continuous-valued data so that an error
correction code could be applied, typically an LDPC code
[17], [20], [23], [24]. The SEC protocol performs partitions
on the real line (Alice’s side) in order to assign bit sequences
to each interval, and estimators are designed to recover such
sequences on Bob’s side. The resulting sequences are treated
as bits transmitter through a binary symmetric channel. The
MD reconciliation performs rotations such that the rotated
values “looks like” are the result of transmitting bit sequences
through a BIAWGN channel.

A relatively recent alternative, proposed by Araújo and
Assis, proposes a different approach [22]. It is based on two
fundamental results of information theory and copula theory,
which can be used to extract independent bit sequences from
numbers lying in the unit interval. In the following, we present
the definition of a generalized inverse of a distribution function
and then the result affirming its uniform distribution in the unit
interval.

Definition 1. Let F : R → I be a distribution function. The
quasi-inverse of F , also known as the generalized inverse, is
the function F (−1) : I → R given by

F (−1) = inf{x ∈ R : F (x) ≥ t}, t ∈ (0, 1], (1)

where F (−1)(0) = inf{x ∈ R : F (x) > 0}.

Theorem 1 ( [25]). Let X be a random variable with
distribution function FX and F

(−1)
X its quasi-inverse. Then

1) If F is continuous, then U = FX(X) is uniformly
distributed on [0, 1].

2) If U is a uniformly distributed random variable in [0, 1],
then Y = F

(−1)
X (U) has a distribution function according

to FX .

The transformation mentioned in the first part of Theorem 1
is known as the Distributional Transform and ensures that
transforming a random variable by its continuous distribution
function always leads to a uniform distribution in the unit
interval. Together with the fact that the bits in the binary
expansion of a random variable with uniform distribution on
[0, 1] are independent and Bernoulli( 12 ) [26], one can use the
distributional transform to map the raw key values on the unit
interval and apply a binary expansion on the resulting value.

0 1
2 1

0 0 0 0 1 1 1 1

0 0 0 01 1 1 1

0 0 0 01 1 1 1

B1

B2

B3

Fig. 1: Unit interval partition according to a 3-bit binary
expansion and the bits corresponding values.

The number d ∈ [0, 1] can be expanded in the binary basis
with l bit precision according to the following rule,

d 7→ 0.b1b2 · · · bl,
l−1∑
i=1

bi
1

2i
≤ d ≤

l−1∑
i=1

bi
1

2i
+

1

2l
, (2)

and we call b = b1b2 · · · bl the corresponding bit sequence.
Each bit has information about where the real number d lies
in the unit interval: the first bit (b1) announces if d ∈ [0, 1

2 )
or d ∈ [ 12 , 1], the second one (b2) informs if d lies in the left
or right quarter of the 1/2 interval indicated by b1, that is, if
d ∈ [0, 1

4 ) or d ∈ [ 14 ,
1
2 ] given b1 = 0 or b1 = 1, respectively,

and so on. In the Fig. 1 it is depicted the bit values for each
interval in a 3-bit expansion.

This procedure for extracting independent equiprobable bits
from realizations of a continuous-valued random variable X
can be formalized as what we call the distributional transform
expansion of X .

Definition 2. Let X be a random variable with a continuous
distribution function FX and Q : [0, 1] 7→ {0, 1}l a function
that gives a binary expansion as in Equation (2). The Distri-
butional Transform Expansion (DTE) is defined as

D(X) = Q(FX(X)). (3)

Once the bits in the binary expansion are independent, it
is possible to factor D(X) = D1(X) · · · Dl(X), where
Di(X) = Qi(FX(X)) is the function Qi : [0, 1] 7→ {0, 1}
that computes the i-th bit in Equation (2) with the property
Di(X) ∼ Bern( 12 ). We call by l-D(X) the DTE expansion of
F with length l.

Alice and Bob can use the DTE to produce binary sequences
from their continuous-valued data:

1) Alice and Bob have the sequences of Gaussian variables
X = X1, · · · , Xn and Y = Y1, · · · , Yn after quantum
communication and parameter estimation;

2) Alice [Bob in RR] compute D(X) =
(D1(X), · · · ,Dl(X))T for each raw key element
[D(Y ) = (D1(Y ), · · · ,Dl(Y ))T , in RR]. The resulting
bit sequences can be expressed as matrices,

X 7→


D1(X1) · · · D1(Xn)
D2(X1) · · · D2(Xn)

...
...

Dl(X1) · · · Dl(Xn)

 =


D1(X)
Dl(X)

...
Dl(X)

, (4)
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Y 7→


D1(Y1) · · · D1(Yn)
D2(Y1) · · · D2(Yn)

...
...

Dl(Y1) · · · Dl(Yn)

 =


D1(Y )
Dl(Y )

...
Dl(Y )

, (5)

3) Each one of the l pairs of sequences (Di(X), Y )
[(Di(Y ), X) in RR] can be interpreted as a Binary-
Input AWGN channel and Bob [Alice in RR] can retrieve
Alice’s [Bob in RR] binary sequences by using an error
correcting code.

Example 1. Let X ∼ N (0, 1), Z ∼ N (0, 0.5) with
X ⊥ Z and Y = X + Z. Assume the realizations
x = {0.491, 0.327,−0.652,−1.096,−0.023} and z =
{−0.722, 0.942, 0.191, 0.198,−0.370}. Then

FX(x) = (0.688, 0.628, 0.257, 0.136, 0.491)

7→


1 1 0 0 0
0 0 1 0 1
1 1 0 1 1
1 0 0 0 1
0 0 0 0 1


FY (y) = (0.425, 0.850, 0.353, 0.231, 0.374)

7→


0 1 0 0 0
1 1 1 0 1
1 0 0 1 0
0 1 1 1 1
1 1 1 1 1

.
As the bits in the expansion are pairwise independent, it is

also possible that Alice and Bob perform the DTE on their
sequences and treat the errors between Di(X) and Di(Y )
as transmitted over a binary symmetric channel (BSC) with
transition probability pi. This approach was used in [22] where
they showed that reconciliation can be obtained in the first
two subchannels with 4 · 104 sized LDPC codes in at most 40
decoding iterations with 4.5 dB SNR. However, the analysis
was restricted to CVQKD protocols with homodyne detection,
and reconciliation efficiency was not addressed.

Those two possible approaches, error correction over the
BSC and BIAWGN induced channels, are the ones that
intuitively appears after performing DTE on the raw key
sequences X and Y . Clearly, the BSC approach must not have
a better performance than BIAWGN due to the data processing
inequality that ensures that I(Di(X);Y ) ≤ I(Di(X),Di(Y )).
The next section will focus on characterizing those two
kinds of subchannel and providing an upper bound on the
reconciliation efficiency.

A. Impracticality of Bivariate DTE

The DTE defined as in Definition 2 uses the univariate dis-
tributional transform to extract independent binary sequences
from continuous valued data. Then, one could reasonably
ask: what about a bivariate distributional transform such as
V = FQP (Q,P )? This goes back to CVQKD protocols with
heterodyne measurement, where both quadratures modulation
and detection outcomes are used to distill a secret key. It turns
out that the Kendall distribution function [27] of a random vec-
tor X = X1, · · · , Xd with joint distribution F and marginals

F1, · · · , Fd defined as κF = Pr {F (X1, · · · , Xd) ≤ t} does
not need to be uniform in [0, 1] [25, Definition 3.9.5]. In fact,
for the bivariate case of independent random variables, κF is
not uniform, which is exactly the case of heterodyne measured
CVQKD protocols and the DTE reconciliation would not
work.

III. DTE SUB-CHANNELS CAPACITIES

Given that Alice and Bob can use the DTE to extract binary
sequences from the continuous valued raw keys and those
binary sequences can behave as a BSC or BIAWGN depending
on whether the DTE is performed only on X , Y or both,
it is necessary to estimate those BIAWGN and the BSC’s
subchannel capacities. This will allow one to obtain an upper
bound to reconciliation efficiency. For BSC’s, the transition
probabilities pi = Pr {Di(X) ̸= Di(Y )} must be obtained,
which is the approach in [22]. The BIAWGN capacities are
more involved and require estimating I(Di(X);Y ) for DR and
I(Di(Y );X) for RR.

In the following, the induced AWGN channel connecting
the classical random variables X of Alice’s modulation and
Y of Bob’s measurement outputs, whose noise appears as
a function of the quantum channel parameters. Expressions
for reconciliation efficiency are also given for both direct and
reverse reconciliation.

A. Equivalent AWGN Channel

Starting with a Gaussian modulated protocol with homo-
dyne detection (the GG02 [2]), in the EB protocol version,
Alice and Bob’s shared state after the quantum channel trans-
mission and prior the detection has the following covariance
matrix [6],

Σ′AB =

(
V I2

√
τ
√
V 2 − 1Z√

τ
√
V 2 − 1Z [τVm + 1 + ξ]I2

)
, (6)

where V = V (q̂) = V (p̂) = Vm + 1 is the total quadrature
variance, Vm = 4Ṽm and ξ = 2n̄(1− τ) is the channel excess
noise from the thermal noise ε = 2n̄ + 1, being n̄ the mean
thermal photons excited in the mode. Bob’s mode is in a zero
mean thermal state with Σ′B = [τVm + 1 + ξ]I2 and, when he
homodynes, its output probability distribution is the Gaussian
[28],

pY (y) =

√
1

2πσ2
Y

exp

(
−1

2

y2

σ2
Y

)
, (7)

where we made σ2
Y = (τVm + ξ + 1)/4. Recalling that X ∼

N (0, Ṽm), we can restate Bob’s output as Y =
√
τX + Z ′,

with Z ′ ∼ N
(
0, ξ+1

4

)
and X ⊥ Z. With a normalization, we

get the AWGN channel model Y = X + Z, with Z ′/
√
τ =

Z ∼ N (0, σ2
Z1

= (ξ + 1)/4τ) and σ2
Y = Ṽm + ξ+1

4τ . It yields
the signal to noise ratio

SNRhom =
τVm

1 + ξ
. (8)

When Bob performs heterodyne (or double homodyne)
detection, which is the case in the no-switching protocol [4],
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his mode goes through a 50:50 beam spliter, the two resulting
modes are described by the covariance matrix [6],

Σ′B1B2
=

(
τ
2Vm + 1 + ξ

2

)
I2 − τVmξ

2 I2
τVmξ

2 I2

(
τ
2Vm + 1 + ξ

2

)
I2

 , (9)

and each splitted mode is homodyned such that the q̂/p̂
quadrature measurements are equally distributed as Yq ∼
Yp ∼ N (0, σ2

Y = ( τ2Vm + 1 + ξ
2 )/4) and they can be

seen as Y∗ =
√
τ/2X + Z ′ where Z ′ ∼ N (0, 1+ξ/2

4 ).
As in the homodyne case, it can be normalized and we get
Y∗ = X + Z with

√
2
τZ
′ = Z ∼ N (0, σ2

Z2
= 1+ξ/2

2τ ) and

σ2
Y = Ṽm + (ξ/2 + 1)/2τ . The resulting SNR is then,

SNRhet =
τ
2Vm

1 + ξ
2

. (10)

It is important to note that for homodyne or heterodyne
detection, the signal-to-noise ratio is a function of the modu-
lation variance (known by Alice e Bob prior to the protocol
execution) and the channel invariants (τ and ξ, both to be ob-
tained by parameter estimation). Therefore, given the values of
Ṽm, τ and ξ, SNRhom ̸= SNRhet. Also, given the symmetry
in modulation and the independence between the quadratures,
the homodyne and heterodyne reconciliation efficiencies can
be estimated simply by simulating an AWGN channel with the
appropriate noise variance. For the heterodyne measurement,
it is sufficient to estimate only one quadrature measurement
once both quadratures are statistically equivalent.

B. DTE Sub-channels Capacities

With the AWGN channels connecting X and Y set up, it
is possible to simulate what Alice and Bob would have after
exchanging coherent states and performing coherent measure-
ment by randomly drawing Gaussian random variables. For
the continuously valued raw keys, the N realization of X ∼
N (0, Ṽm) corresponds to Alice’s modulated states, as well as
the N realizations of Z ∼ N (0, σ2

Z1
) or Z ∼ N (0, σ2

Z2
) to

give Bob’s output measurements Y = X + Z. Then, an l-
DTE with l = 4 is applied to X , Y or both to estimate the
subchannel parameters.

First, we characterize the BSC’s subchannels by estimating
the transition probabilities pi = Pr {Di(X) ̸= Di(Y )}. For
the BIAWGNs, we used the entropy estimators available in
[29], which implement Kraskov’s mutual information estima-
tor [30] to get I(Di(X);Y ) and I(Di(Y );X). The results are
plotted in Figs. 2 and 3. It can be seen that as the expansion
goes further on gathering bits from the continuous sequences
X and Y , the resulting subchannels becomes more noisy,
easily approaching the behavior of a fair coin in Fig. 2. It
is worth pointing out that the BSC’s transition probabilities
do not depend on the reconciliation direction, as well as its
capacity.

The subchannel capacities for BIAWGN and BSC are
plotted in Fig. 3 for both RR and DR with heterodyne and
homodyne detection. First, the BSC’s capacities (dashed lines
in Fig. 3a and Fig. 3c) are far apart from the BIAWGN ones
(solid lines), from which we conclude that applying the DTE

−6 −4 −2 0 2
0

0.1

0.2

0.3

0.4

0.5

SNR(dB)

P
r{
D i

(X
)
̸=

D i
(Y

)}

D1

D2

D3

D4

Fig. 2: Transition probability in the four-bit DTE on both Alice
and Bob’s side in a Gaussian modulated CVQKD protocol.
The probabilities were estimated drawing N = 104 realiza-
tions of Alice’s random variable and repeating the experiment
103 times. The parameters were Ṽm = 1 and ξ = 0.02 for both
heterodyne (solid lines) and homodyne (dashed line) detection.

on both Alice’s and Bob’s sequences will not result in a good
reconciliation efficiency.

The respective capacities for the BIAWGN channels when
DR is considered are plotted in Figs. 3b and 3d, which can
be seen to be very close to the RR direction. Although DR is
restricted to τ > 0.5 and, as will be seen in the next section,
the best efficiency of DTE is found in the region with SNR <
0 dB. Then, further analysis on the reconciliation efficiency
will be restricted to the RR direction.

IV. RECONCILIATION EFFICIENCY

The l bit quantization process performed by the DTE is a
function D : R 7→ {0, 1}l that can be broken down as l single-
bit quantization functions Di : R 7→ {0, 1}, i = 1, · · · , l, as
stated in Definition 2. Here, we derive the general expressions
for the reachable reconciliation efficiencies when using the
DTE to distill secret keys. In the following, we use the right
and left arrows in the exponent to indicate direct and reverse
reconciliation directions, respectively.

A. Direct reconciliation

First, consider that Alice applies the DTE to the n realiza-
tions of her Gaussian variables X so that Bob must recover
her binary sequence. The secret rate per transmitted state in
direct reconciliation (DR) is given by [1],

K→ = H(D(X))− χ(X,E)− l−1|M→|, (11)
= β→I(X;Y )− χ(X,E), (12)

where χ(X,E) is the Holevo bound on Eve’s accessible infor-
mation, being E her ancilla systems, |M→| the amount of side
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(a) Heterodyne detection, reverse reconciliation.
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(b) Heterodyne detection, direct reconciliation.
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(c) Homodyne detection, reverse reconciliation.
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(d) Homodyne detection, direct reconciliation.

Fig. 3: Sub-channels capacities of the BIAWGN and BSC induced by the DTE in a Gaussian modulated CVQKD protocol
with heterodyne/homodyne detection and direct/reverse reconciliation directions. Capacity was obtained by drawing N = 104

realizations of Alice’s random variable and estimating the mutual information I(Di(Y );X) (solid lines) and I(Di(X);Y ) for
BIAWGN, and computing CBSCi

= 1−H(pi) for BSC (dashed lines), where pi is the estimated transition probability shown
in Fig. 2. The experiments were repeated 103 times for both detection methods and the results presented are the mean values.
In any plot (solid/dashed lines or cross dots), D1 is the at the top and D4 at the bottom.

information Alice must send to Bob in direct reconciliation,
and

β→ =
H(D(X))− l−1|M→|

I(X;Y )
. (13)

The upper bound on the reconciliation efficiency is reached
when Alice uses the minimum amount of side information,
that is, when |M | · l−1 = H(D(X)|Y ) and the maximum
reconciliation efficiency reads

β→max =
H(D(X))−H(D(X)|Y )

I(X;Y )
≥ β→. (14)

With a closer look at the conditional entropy in Equa-
tion (14), one derives

H(D(X)|Y )
(a)
= H(D1(X), · · · ,Dl(X)|Y ), (15)

(b)
= H(D1(X)|Y ) +H(D2(X)|D1(X), Y )+

· · ·+H(Dl(X)|Dl−1(X), · · · ,D1(X), Y )
(16)

(c)
=

l∑
i=1

H(Di(X)|Y )) (17)

(d)
=

l∑
i=1

(H(Di(X))− I(Di(X);Y )) (18)

(e)
= l −

l∑
i=1

I(Di(X);Y ), (19)

where (a) comes from Definition 2, (b) is the chain rule for the
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joint entropy, (c) is due to Di(X) ⊥ Dj(X), i ̸= j, (d) comes
from the identity H(A|B) = H(A)− I(A;B) and (e) follows
from Di(X) ∼ Bern( 12 ), which gives H(Di(X)) = 1. This
concludes

β→max =
H(D(X))− l +

∑l
i=1 I(Di(X);Y )

I(X;Y )
, (20)

=

∑l
i=1 I(Di(X);Y )

I(X;Y )
. (21)

once H(D(X)) = H(D1(X), · · · ,Dl(X)) = H(D1(X)) +
· · · + H(Dl(X)) = l. That is, the maximum efficiency is
proportional to the fraction of mutual information in the
subchannels that the DTE can extract from the actual AWGN
channel.

B. Reverse reconciliation

In the case of reverse reconciliation, Bob is the one per-
forming the DTE on his Gaussian sequence Y and must send
some side information to Alice so that she can recover his
sequences. In this way, the secret key rate per transmitted
state in reverse reconciliation becomes

K← = H(D(Y ))− χ(Y,E)− l−1|M←|, (22)
= β←I(X;Y )− χ(Y,E), (23)

and, analogously to the DR case, χ(Y,E) the Holevo bound
on Eve’s accessible information to Bob’s system, |M←| is the
amount of side information Bob must send to Alice, and

β← =
H(D(Y ))− l−1|M←|

I(X;Y )
. (24)

Following the same procedure of direct reconciliation, when
l−1|M←| → H(D(Y )|X), the maximum reconciliation effi-
ciency in the reverse direction is given by

β← ≤ β←max =
H(D(Y ))−H(D(Y )|X)

I(X;Y )
,

=

∑l
i=1 I(Di(Y );X)

I(X;Y )
. (25)

C. Some Comments on the Reconciliation Efficiency

Firstly, in both direct and reverse reconciliation, exchanging
the minimum amount of side information implies that error
correction codes must run at channels capacity, and this is
the only factor that affects the efficiency of the protocol.
The Equation (20) is the same as in several information
reconciliation papers using SEC [16]. Although, the entropy1

H(Q(X)) in the SEC protocol does not necessarily equals to
|Q(X)|, and such equality comes naturally in the DTE due to
the independency between its bits.

We plotted the reconciliation efficiencies of Equations (21)
and (25) in Fig. 4 for heterodyne and homodyne detections
with Ṽm = 1, ξ = 0.02 and considering l ∈ {2, 3, 4} for
binary expansion (corresponding to the black, red, and blue
graphs, respectively). There are some interesting points to be
highlighted. One is that a l-DTE-based reconciliation seems to

1In this paragraph we use Q as a generic quantization function.
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Fig. 4: Reconciliation efficiency reached by l-DTE according
to Equations (21) and (25), l ∈ {2, 3, 4} (black, red and blue
plots, respectively), Ṽm = 1 and ξ = 0.02. Solid and dashed
lines correspond to the efficiency considering heterodyne and
homodyne detection, respectively.

have the same performance for RR and DR (in the applicable
range of snr for both directions), which can imply a symmetry
between I(Di(X);Y ) and I(Di(Y );X).

Second, the maximum reconciliation efficiency appears as
a decreasing function of the SNR. Although DTE does not
perform well with homodyne-based CVQKD protocols, its
usage should be restricted to protocols that use heterodyne
measurements. In this case, a three-bit expansion is present
for β←max > 0.8 for SNR < 0 dB and β←max > 0.9 for
SNR < −3.6dB. Here, another operational difference appears
between SEC and DTE. In the SEC protocol, the subchannels
with mutual information less than 0.02 bits (usually the first
two bits in the sequence) are commonly disclosed, while in
the DTE, even the fourth subchannel, which presents mutual
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information around 0.01 bits for SNR < −3.6 dB, is crucial
for the reconciliation efficiency to be greater than 0.9. The
DTE-induced BIAWGN subchannels with SNR > −2 dB
have the first three bits above the 0.02 bit threshold commonly
adopted for the SEC protocol.

The difference in efficiencies of DTE reconciliation with
homodyne and heterodyne detections is also notable; to discuss
this, we consider the RR case. In the case of a homodyne
protocol, Alice and Bob have correlated random Gaussian
variables X and Y and by so, in Equation (25), I(X;Y ) =
log(1 + SNRhom)/2 which gives

βhom
max =

H(D(Y ))− l +
∑l

i=1 I(Di(Y );X)

log(1 + SNRhom)/2
. (26)

When heterodyne detection is used, both quadratures are
homodyned and there are 2l binary sequences extracted using
DET, l for each quadrature. Due to the symmetry on the
modulation and noise model, the i -th subchannel from the
q and p quadrature is statistically identical. Then,

βhet
max = 2 · H(D(Y ))− l +

∑l
i=1 I(Di(Y );X)

log(1 + SNRhet)
. (27)

It is worth noting that the results in Fig. 4, as well as in
Fig. 3, rely on the estimated mutual information of Alice
and Bob sequences considering the induced BSC/BIAWGN
subchannels and show some bumps on the plotted lines, which
idealy should be smooth. We address this to the statistical
behavior of the entropy estimator used to assess the mutual
information I(Di(X);Y ) and I(Di(Y );X).

V. CONCLUSION

We have presented an information reconciliation protocol
designed for Continuous Variable QKD using the Distribu-
tional Transform, a tool from copula theory. Together with
arguments from information theory, it was made possible to
extract bit sequences from Gaussian random variables whose
bits are undoubtedly independent. We showed that each bit in
the binary expansion can be treated as an independent channel,
and its capacities were estimated considering direct and reverse
reconciliation for homodyne and heterodyne detection. We
also derived the expressions for the reconciliation efficiency
in both reconciliation directions and the results showed that
maximum efficiency is reached in protocols with heterodyne
detection and low SNR. More specifically, it is possible to
reach β←max > 0.9 for SNRhet < −3.6 dB with a DTE of four
bits. Future work could focus on the design of error-correcting
codes for the DTE induced subchannels.
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