
JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 128

Reinforcement Learning-based Wi-Fi Contention
Window Optimization

Sheila C. da S. J. Cruz, Messaoud Ahmed Ouameur, and Felipe A. P. de Figueiredo

Abstract—The collision avoidance mechanism adopted by the
IEEE 802.11 standard is not optimal. The mechanism employs
a binary exponential backoff (BEB) algorithm in the medium
access control (MAC) layer. Such an algorithm increases the
backoff interval whenever a collision is detected to minimize
the probability of subsequent collisions. However, the increase
of the backoff interval causes degradation of the radio spectrum
utilization (i.e., bandwidth wastage). That problem worsens when
the network has to manage the channel access to a dense
number of stations, leading to a dramatic decrease in network
performance. Furthermore, a wrong backoff setting increases
the probability of collisions such that the stations experience
numerous collisions before achieving the optimal backoff value.
Therefore, to mitigate bandwidth wastage and, consequently,
maximize the network performance, this work proposes using
reinforcement learning (RL) algorithms, namely Deep Q Learn-
ing (DQN) and Deep Deterministic Policy Gradient (DDPG), to
tackle such an optimization problem. In our proposed approach,
we assess two different observation metrics, the average of the
normalized level of the transmission queue of all associated
stations and the probability of collisions. The overall network’s
throughput is defined as the reward. The action is the contention
window (CW) value that maximizes throughput while minimizing
the number of collisions. As for the simulations, the NS-3 network
simulator is used along with a toolkit known as NS3-gym, which
integrates a reinforcement-learning (RL) framework into NS-
3. The results demonstrate that DQN and DDPG have much
better performance than BEB for both static and dynamic
scenarios, regardless of the number of stations. Additionally,
our results show that observations based on the average of the
normalized level of the transmission queues have a slightly better
performance than observations based on the collision probability.
Moreover, the performance difference with BEB is amplified as
the number of stations increases, with DQN and DDPG showing
a 45.52% increase in throughput with 50 stations. Furthermore,

Sheila C. da S. J. Cruz and Felipe A. P. de Figueiredo are with the
National Institute of Telecommunications (INATEL), Minas Gerais, Brazil
(e-mail: sheila.cassia@mtel.inatel.br, felipe.figueiredo@inatel.br); Messaoud
Ahmed Ouameur is with Université du Québec à Trois-Rivières (UQTR),
Quebec, Canada (e-mail: messaoud.ahmed.ouameur@uqtr.ca).

This work was partially funded by Fundação de Amparo à Pesquisa do
Estado de Minas Gerais (FAPEMIG) - Grant No. 2070.01.0004709/2021-
28, by FADCOM - Fundo de Apoio ao Desenvolvimento das Comunicações,
presidential decree no 264/10, November 26, 2010, Republic of Angola, by
Huawei, under the project Advanced Academic Education in Telecommu-
nications Networks and Systems, Grant No. PPA6001BRA23032110257684,
by the Brazilian National Council for Research and Development (CNPq)
under Grant Nos. 313036/2020-9 and 403827/2021-3, by São Paulo Research
Foundation (FAPESP) under Grant No. 2021/06946-0, by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brazil (CAPES) and
RNP, with resources from MCTIC, under Grant Nos. 01250.075413/2018-
04, 01245.010604/2020-14, and 01245.020548/2021-07 under the Brazil 6G
project of the Radiocommunication Reference Center (Centro de Referência
em Radiocomunicações - CRR) of the National Institute of Telecommuni-
cations (Instituto Nacional de Telecomunicações - Inatel), Brazil; and by
FCT/MCTES through national funds and when applicable co-funded EU funds
under the Project UIDB/EEA/50008/2020.

Digital Object Identifier: 10.14209/jcis.2023.15

DQN and DDPG presented similar performances, meaning that
either one could be employed.

Index Terms—Wi-Fi, contention-based access scheme, channel
utilization optimization, machine learning, reinforcement learn-
ing, NS-3.

I. INTRODUCTION

THE IEEE 802.11, or simply Wi-Fi, is a set of wire-
less network standards designed and maintained by the

Institute of Electrical and Electronics Engineers (IEEE) that
defines MAC and physical layer (PHY) protocols for deploy-
ing wireless local area networks (WLANs). Their MAC layer
implements a contention-based protocol, known as carrier-
sensing multiple access with collision avoidance (CSMA/CA),
for the nodes to access the wireless medium (i.e., the channel)
efficiently [1], [2]. With CSMA/CA, the nodes compete to
access the radio resources and consequently, the channel [3],
[4].

One of the most critical parameters of the CSMA/CA
mechanism is the contention window (CW) value, also known
as back-off time, which is a random delay used for reducing
the risk of collisions. If the medium is busy, an about-to-
transmit Wi-Fi device selects a random number uniformly
distributed within the interval [0, CW] as its back-off value,
which defers its transmission to a later time. CW has its value
doubled every time a collision occurs (e.g., when an ACK
is not received), reducing the likelihood of multiple stations
selecting the same back-off value. CW values range from
the minimum contention window (CWMin) value, generally
equal to 15 or 31 depending on the Wi-Fi standard, to the
established maximum contention window (CWMax) value,
which is equal to 1023. CW is reset to CWMin when an ACK
is received, or the maximum number of re-transmissions has
been reached [5]. This deferring mechanism is also known as
binary exponential back-off (BEB) [6] and is shown in Fig 1.

The BEB algorithm has several limitations and may not
always be the best solution for collision avoidance, often
providing suboptimal solutions [7], [8]. These limitations
include inefficiency under high loads, lack of fairness among
competing nodes, inability to adapt to changing network condi-
tions, vulnerability to the hidden node problem, and no global
optimization. While the BEB algorithm is widely used in Wi-
Fi networks, it may not always be the best solution for collision
avoidance. Other approaches, such as machine learning-based
ones, may be better able to address the limitations of the
BEB algorithm and provide more effective collision avoidance
strategies.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 129

𝑪𝑾𝟎 = 𝟏𝟔 𝑪𝑾𝟏 = 𝟑𝟐 𝑪𝑾𝟐 = 𝟔𝟒 𝑪𝑾𝟑 = 128 𝑪𝑾𝟒 = 256 𝑪𝑾𝟓 = 512 𝑪𝑾𝟔 = 1024

𝐶𝑜𝑙𝑙𝑖𝑠𝑜𝑛 ∶ 𝐶𝑊𝑖 = 𝐶𝑊𝑖−1x2

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ∶ 𝐶𝑊𝑖 = 𝐶𝑊0

Fig. 1. Binary Exponential Back-off.

In scenarios with few nodes, collisions will be less frequent
and impactful, especially in static scenarios, where the number
of nodes remains the same. On the other hand, in dynamic sce-
narios, where the number of nodes increases throughout time,
collisions will be commonplace. Furthermore, the high number
of collisions reduces the network throughput drastically since
CW has its value doubled when collisions are detected, leading
to an inefficient network operation [9].

As can be seen, optimizing the CW value could be beneficial
for Wi-Fi networks since the traditional BEB algorithm does
not scale well when many nodes compete for the medium
[10]. Once network devices with high computational capa-
bilities become increasingly common, CW can be optimized
through machine learning (ML) algorithms. In ML, the most
common learning paradigms are supervised, unsupervised,
and reinforcement learning. Supervised algorithms require a
labeled dataset where the outcomes for the respective inputs
are known. Still, creating such a dataset requires a model and a
solution to the problem. Developing accurate models is, in sev-
eral cases, a challenging and troublesome task. Besides that,
many solutions are suboptimal, and supervised ML algorithms
learning from datasets created with those solutions will never
surpass its performance since the algorithm tries to replicate
the input to label mapping present in the dataset [11].

Unsupervised learning occurs when the ML algorithm is
trained using unlabeled data. The idea behind this paradigm is
to find hidden (i.e., latent) patterns in the data. This paradigm
could be used to identify hidden patterns in Wi-Fi traffic that
could be contributing to collisions. By clustering similar traffic
patterns, it may be possible to identify common sources of
interference or other issues that are leading to collisions and
take actions to mitigate them. Nonetheless, unsupervised learn-
ing can be limited in its applicability to collision avoidance
in Wi-Fi networks due to the lack of labeled data, limited
interpretability of results, limited control over the learning
process, and lack of a feedback loop for ongoing adjustment
and optimization. While unsupervised learning can be useful
for analyzing Wi-Fi traffic data and identifying patterns, other
machine learning paradigms, such as reinforcement learning,
may be better suited to the problem of collision avoidance.

Finally, reinforcement learning occurs when the ML algo-

rithm (a.k.a. agent in this context) interacts with the environ-
ment through trial and error action attempts without requiring
labels, only reward information about the taken actions. This
paradigm allows the agents (e.g., Wi-Fi nodes) to explore the
environment by taking random actions and finding optimal
solutions. This paradigm can be employed to optimize the
actions of Wi-Fi nodes in a network to minimize collisions and
maximize throughput. The nodes can learn to take actions that
lead to higher reward values (e.g., successful transmissions)
while avoiding actions that lead to lower reward values (e.g.,
collisions). This paradigm presents several advantages for col-
lision avoidance, including the ability to learn from experience,
optimize long-term performance, handle complex and dynamic
environments, explore and exploit different strategies, and
adapt to different contexts. RL algorithms can learn from the
state of the network and adapt to changing network conditions,
optimizing cumulative rewards over time. This makes RL
well-suited to handle the complexity of Wi-Fi networks, find
optimal solutions, and navigate different scenarios. Addition-
ally, RL is flexible and adaptable, making it a powerful
tool for collision avoidance in Wi-Fi networks. Therefore,
since there is no optimal solution for the CW optimization
(BEB is known to be suboptimal) [12]–[14], RL may offer
more effective collision avoidance strategies. However, despite
the increasing state-of-the-art contributions presented, RL-
based algorithms are complex, presenting high computational
requirements, require fine-tuned hyperparameters since they
are sensitive to their settings, the training process might take
several hours and need extensive exploration, requiring a
significant amount of computing power, and present difficulties
in handling continuous and high-dimensional state and action
spaces [15].

RL algorithms have addressed their limitations through vari-
ous approaches. To mitigate high computational requirements,
techniques like parallelization (i.e., distributed computing) and
hardware acceleration have been employed to leverage the
power of multiple processors or machines, and hardware accel-
eration using specialized processors like graphics processing
units (GPUs) or tensor processing units (TPUs) to expedite the
training process [16]. To tackle the need for extensive training
data and exploration, methods such as experience replay,



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 130

where past experiences are stored and randomly sampled
during training, allowing for efficient and effective utilization
of data [17]. Exploration strategies, such as epsilon-greedy
or Thompson sampling, strike a balance between exploit-
ing learned knowledge and exploring new possibilities [18].
Moreover, curiosity-driven or intrinsic motivation learning
techniques have been explored to encourage agents to explore
novel states or seek out new experiences, thereby reducing the
reliance on vast amounts of explicit training data [19]. Sensi-
tivity to hyperparameters is addressed through techniques like
grid search, systematically exploring different hyperparameter
combinations to find optimal settings [20]. More advanced
approaches, such as Bayesian optimization, leverage proba-
bilistic models to search the hyperparameter space intelligently
[21]. Furthermore, algorithmic advancements like automatic
hyperparameter tuning methods, utilizing meta-learning or
reinforcement learning itself, have been developed to automate
the selection of hyperparameters, enhancing the performance
of the algorithms [22]. Difficulties in handling continuous
and high-dimensional spaces are overcome using deep neural
networks and parameterization methods. Deep neural networks
are used to function approximation, allowing for learning
policies directly from raw sensory inputs [23]. Continuous
action spaces are handled through parameterization methods,
such as using Gaussian distributions or policy parameterization
[24]. Additionally, actor-critic architectures, combining policy
and value function approximators, have shown promise in
effectively handling high-dimensional state and action spaces
[25]. These ongoing advancements aim to improve the effi-
ciency and performance of reinforcement learning algorithms
across different domains.

This work proposes using deep reinforcement learning
(DRL) algorithms to optimize the CW value selection and
improve the performance of Wi-Fi networks by maintaining
a stable throughput and minimizing collisions1. More specif-
ically, we propose an RL-aided centralized solution aimed
at finding the best CW value that maximizes the overall
Wi-Fi network’s throughput by properly setting CW values,
especially in dense environments, with dozens to hundreds of
stations. The proposed solution takes actions, i.e., selects a CW
value based on the observation metric adopted. In this work,
we study and compare the use of two distinct DRL algorithms,
namely, DQN and DDPG, and two different observation met-
rics, namely, averaged normalized transmission queues’ level
of all associated stations and the collision probability, to tackle
the CW optimization problem. DQN was chosen because it is
relatively simple and has a discrete action space. However,
despite its simplicity, DQN generally displays performance
and flexibility that rivals other methods [26]. DDPG was
selected since it is a more complex method that represents
actions as continuous values, yielding an exciting comparison
with DQN [27]. By using DDPG, we want to explore the
hypothesis that the proposed solution can adjust the CW value
more precisely and in a more fine-grained fashion with a
continuous action space. Therefore, the main contributions of

1The source code for the reproduction of the results is available on:
https://github.com/sheila-janota/RLinWiFi-avg-queue-level

this work are as follows:
1) Adoption of the averaged normalized transmission queue

level as observation information used by the RL agent
to take actions.

2) The comparison and assessment of two different obser-
vation metrics, namely, the averaged normalized trans-
mission queue level and the collision probability.

3) A CW optimization solution that applies to any of the
802.11 standards.

The remainder of the paper is organized as follows. Section
II discusses related work. Section III presents a brief machine
learning overview. Section IV describes the materials and
methods used in the simulations. Section V presents the
simulation results. Finally, Section VI presents conclusions
and future works.

II. RELATED WORK

The literature presents adequate and excellent contributions
of ML methods applied to CW optimization in wireless
networks. For example, in [28], the authors propose a CW
optimization mechanism for IEEE 802.11ax under dynami-
cally varying network conditions employing DRL algorithms.
The DRL algorithms were implemented on the NS-3 [29]
simulator using the NS3-gym [30] framework, which enables
integration with python frameworks [30]. They proved to have
efficiency close to optimal according to the throughput result
that remained stable even when the network topology changed
dynamically. Their solution uses the collision probability, i.e.,
the transmission failure probability, to observe the overall
network’s status.

To allow channel access and a fair share of the unlicensed
spectrum between wireless nodes, the authors in [31] propose
an intelligent ML solution based on CWmin (minimum CW)
adaptation. The issue is that aggressive nodes, as they refer
to in the paper, try to access the medium by forcefully
choosing low CWmin values, while CSMA/CA-based nodes
have a fixed CWmin set to 16, leading to an unfair share of
the spectrum. The intelligent CW ML solution consists of a
random forest, which is a supervised classification algorithm.
Simulations were conducted on a C++ discrete-event-based
simulator called CSIM [32] to evaluate the algorithm’s per-
formance. It was possible to obtain high throughput efficiency
while maintaining fair allocation of the unlicensed channels
with other coexisting nodes.

In [33], the authors present a Deep Q-learning algorithm
to dynamically adapt CWmin to random access in wireless
networks. The idea is to maximize a network utility function
(i.e., a metric measuring the fair use of the medium) [34] under
dynamic and uncertain scenarios by rewarding the actions that
lead to high utilities (efficient resource usage). The proposed
solution employs an intelligent node, called node 0, that imple-
ments the DQN algorithm to choose the CWmin for the next
time step from historical observations. The simulation was
conducted on NS-3 to evaluate the performance against the
following baselines: optimal design, random forest classifier,
fairness index, optimal constant, and standard protocol (with
its CWmin fixed at 32). Two scenarios were considered for



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 131

the simulation. The first scenario uses two states and follows
a Markov process for CWmins of all nodes except node 0. The
RL algorithm and random forest classifier reach outstanding
performance for this case. The second scenario considers five
states, and CWmins of all nodes different from node 0 follow
a more complex process. The RL algorithm achieves utility
close to optimal when compared to a supervised random forest
classifier.

In [10], the authors propose an ML-based solution using
a Fixed-Share algorithm to adjust the CW value to improve
network performance dynamically. The algorithm comprises
CW calculation, Loss/Gain function, and sharing weights. The
algorithm considers the present and recent past conditions
of the network. The NS-3 network simulator was used to
evaluate the proposed solution, and the performance metrics
used were average throughput, average end-to-end delay, and
channel access fairness. The Fixed-Share algorithm achieves
excellent performance compared to the other two conventional
algorithms: binary exponential backoff (BEB) and History-
Based Adaptive Backoff (HBAB).

To optimize CW in a wireless local area network, [35]
presents three algorithms based on genetic fuzzy-contention
window optimization (GF-CWO), which is a combination of
fuzzy logic controller and a genetic algorithm. The proposed
algorithm is intended to solve issues related to success ratio,
packet loss ratio, collision rate, fairness index, and energy con-
sumption. Simulations were conducted in Matlab in order to
evaluate the performance of the proposed solution, producing
better results when compared to the BEB.

To avoid packet collisions in Mobile ad hoc networks
(MANETs) [36], [37], the authors of [38] propose a Q-
learning-based solution to optimize the CW parameter in
an IEEE 802.11 network. The proposed CW optimization
method considers the number of packets sent and the collision
generated from each station. Simulation results show that
selecting a good CW value improves the packet delivery ratio,
channel access fairness, throughput, and latency. The benefits
are even more significant when the queue size is less or equal
to 20.

In [39], a different approach to controlling the CW value,
named contention window threshold, is used. It employs
deep reinforcement learning (DRL) principles to establish a
threshold value and learn the optimal settings under various
network scenarios. The method used is called the smart
exponential-threshold-linear backoff algorithm with a deep Q-
learning network (SETL-DQN). Its results demonstrate that
this algorithm can reduce collisions and improve throughput.

The authors of [40] apply DRL to the problem of random
access in machine-type communications networks adopting
slotted ALOHA access protocols. Their proposed solution
aims at finding a better transmission policy for slotted ALOHA
protocols. The proposed algorithm learns a policy that es-
tablishes a trade-off between user fairness and the overall
network throughput. The solution employs centralized training,
which makes the learned policy equal for all users. Their
approach uses binary feedback signals and past actions to learn
transmission probabilities and adapt to traffic scenarios with
different arrival processes. Their results show that the proposed

algorithm outperforms the classical solution, i.e., the exponen-
tial backoff, in terms of user fairness and overall throughput.
Our proposed solution differs from this one because it tackles
the problem of random access in slot-free and contention-
based networks, aiming to maximize the network’s throughput
and, consequently, the throughput of individual users.

Differently from the previous works, in this work, we
propose leveraging an alternative observation metric that is
based on the average of all stations’ normalized transmission
queue levels, which seems a more informative and straight-
forward way to understand and capture the overall network’s
status, to train DRL agents to take actions aiming at finding
the best CW value, which in turn, optimizes the network
performance. Moreover, we compare the observation metric
proposed in [28] (i.e., the collision probability observed by
the network) with the proposed one, i.e., the stations’ averaged
normalized transmission queue levels. The normalized trans-
mission queues’ level provides more information, taking into
account the congestion level of the network and the behavior
of all nodes, not just the individual node. It also leads to
better performance, allows for adaptation to changing network
conditions, and avoids myopic decisions. In contrast, using the
collision probability alone can result in suboptimal decisions
that do not take into account the impact on the overall network
performance. Therefore, the averaged normalized transmission
queues’ level seems to be a more suitable metric for RL
solutions to solve the collision avoidance problem in Wi-Fi
networks.

The ML-based approaches presented in this section show
how well ML algorithms can be applied to reach optimal
performance in the wireless network field. Therefore, this
motivated us to study and propose a DRL-based solution to
reduce collisions by optimizing CW in different scenarios.

III. MACHINE LEARNING OVERVIEW

ML algorithms, also called models, have been widely ap-
plied to solve different problems related to optimization in
wireless network communications systems [41]–[44]. These
algorithms construct a model based on historical data, known
as a training dataset, to perform tasks, for example, solving op-
timization problems, without being explicitly programmed to
do so [45], [46]. ML algorithms can provide self-management,
self-learning, and self-optimizing solutions for an extensive
range of issues in the context of dynamic resource allocation,
spectrum resource management, wireless network optimiza-
tion, and so much more [47].

The learning process of an ML model is called training,
and it is used for the model to gain knowledge (i.e., infer a
solution) and achieve the desired result. It is possible to clas-
sify the ML model learning based on the type of its training,
also called learning paradigm [48]. The learning paradigms can
be classified as Supervised learning, Unsupervised learning,
and Reinforcement Learning (RL). Fig 2 shows the relations
between the ML paradigms. Therefore, next, we provide a
brief overview of these learning paradigms.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 132

Fig. 2. ML learning paradigms based on the type of training.

A. Supervised Learning

In this paradigm, the ML model uses labeled data during
the training phase. Each input sample is accompanied by
its desired output sample, called a label. It is suitable for
applications with plenty of historical data [49]. Some well-
known algorithms following this paradigm are linear and
logistic regression, support vector machine (SVM), K-nearest
neighbors (KNN), and artificial neural networks (ANN).

B. Unsupervised Learning

Here in this paradigm, the ML model learns to find
(sometimes hidden) useful patterns by exploring the input
data without labels (i.e., without expected output values).
The model is trained to create a small representation of
the data [49]. This learning paradigm includes the following
algorithms: K-means, isolation forest, hierarchical clustering,
and expectation–maximization.

C. Reinforcement Learning

In this learning paradigm, an agent, in this context, the ML
model, learns by continuously interacting with the environ-
ment and decides which action to take based on its own experi-
ence, mapping the current observed state of the environment to
an action. The agent aims to learn a function known as policy
in this context that models the environment and maps observed
states into the best actions. The agent performs a decision-
making task by trial and error in a self-learning manner [49].
This paradigm includes the following algorithms: Q-learning,
Deep Q-learning, policy gradient learning, deep deterministic
policy gradient, and the multi-armed bandit.

The environment is where the information (observed state
and reward) is produced, and it has a dynamic nature com-
pared to supervised and unsupervised learning paradigms.
The Markov Decision Process (MDP) is generally adopted to
represent the environment because it has a mathematical struc-
ture suitable for modeling decision-making problems [49]. It

Agent

Environment

Action
𝑨𝒕

𝑹𝒕+𝟏

𝑺𝒕+𝟏

Reward
𝑹𝒕

State
𝑺𝒕

Fig. 3. An RL agent interacting with the environment.

consists of a tuple of five elements M = {S,A,P, γ,R},
where S is the state space, A is the action space, P is the
transition probability, γ is the discount factor, and R is the
reward. A reward is a positive or negative numeric value that
indicates the quality of the action taken at a particular state
[45]. The higher the reward, the better the action taken at
that state. Conversely, the lower the reward, the worse the
action. RL algorithms aim to find a policy that maximizes the
total future reward. Fig 3 shows the interaction of the agent
with the environment, which occurs in the following way: the
agent observes (senses) the current state of the environment,
St, based on this observation, the agent selects an action, At,
and executes the action in the environment, this action on the
environment returns information (i.e., results) in the form of
reward, Rt+1 and next-state, St+1, reached due to the action
taken at the t-th time interval.

To better explain the RL learning cycle shown in Fig 3,
we provide a classic, well-known RL algorithm presented in
the literature, that is, the Q-learning algorithm, which has
its pseudo-algorithm shown in Algorithm 1. Q-learning is a
tabular RL method where the training process occurs basically
in a table with the rows as the states, the columns as the
actions, and each element inside the table as the Q-value. The
goal of Q-learning is to find an optimal Q-value (i.e., measures
the quality of the action) that maximizes the reward through
iterative updates of the Q-table Qt(s, a) using the Bellman
equation presented in (1) [50].

Qt+1(s, a) = (1− α) (Qt(s, a)) + α [r + γmax (Qt(s
′, a′))] ,

(1)
where s is the state, a is the action, r is the reward, α is
the learning rate that undertakes an interval of values between
[0, 1], γ is the discount rate and uses values between [0, 1],
s′ is the next-state, a′ the next action, and max(Qt(s

′, a′)
represents the possible maximum reward based on the next-
state s′ and next-action a′.

The basic idea of how Q-learning works after training is
shown in Fig 4. For each action that is fed into the Q-
table, there is a corresponding action, which is the action
corresponding to the maximum Q-value for that given input
state. In other words, given a line (the state), which action (the
column) has the highest Q-value?

Next, we explain how the policy is learned through a process
of exploration-exploitation of the environment.

Policy: is a rule that helps the agent select the best action



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 133

Algorithm 1 Q-learning
▷ Parameters initialization

1: Learning rate, α
2: Discount rate, γ
3: Exploration rate, ϵ, ϵMin, ϵDecay

4: Initial state s0
5: Action space size, j
6: Initialize Q-table with zero for all possible (state, actions) pair

Qt(s, a)← 0

7: for each Episode do
8: Reset the state to its initial state s← s0

9: if random.uniform (0, 1)<ϵ then
10: a← uniform random integer in [0, j]
11: else
12: a← argmax(Qt(s))
13: end if

14: After selecting the action a and applying it to the environ-
ment, a new reward r and next-state s′ are returned from the
environment.

▷ Learning stage : Qt+1(s, a) is updated with new q-values
15: Qt+1(s, a)← (1−α)(Qt(s, a))+α[r+γmax(Qt(s

′, a′))]
16: s← s′

17: Less exploration of the environment is achieved by decreasing
ϵ.

18: if ϵ > ϵMin then
19: ϵ← ϵ× ϵDecay

20: end if
21: end for

Q-Table
Actions 

States 

1
1.5
6

14
7
2

3
5.5
6Input

Output

12 3 9 

𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑄(𝑠, 𝑎 )
𝑛

𝑆𝑡𝑎𝑡𝑒 (𝑠)

a0 a a a

8
4.5
4

25 

s0

s
s

s

𝑆𝑡𝑎𝑡𝑒 (𝑠)

... 

... 

... 

... 

... 

... 
... ... ... ... ... 

Fig. 4. Q-learning.

in a specific state. The primary objective of an RL algorithm
is to learn a policy that maximizes the expected cumulative
reward. The policy is a function that gives the probability of
taking a given action when the environment is in a given state.
The policy is learned by employing a method of exploring
unknown actions in a given state and exploiting the current
acquired knowledge. There must be a trade-off between ex-
ploration of the environment and exploitation of the learned
policy [51]. Simple exploration-exploitation methods are the
most practical and used ones. One such method is the ϵ-greedy,
where ϵ ∈ [0, 1] is a parameter controlling the amount of
exploration and exploitation [52]. Normally, ϵ is a fixed hyper-
parameter, but it can have its value decreased so that the agent
explores the environment progressively less. Eq. 2 summarizes
the ϵ-greedy exploration-exploitation mechanism used by RL
algorithms to learn the best policy.

Action =
{

Random action (Exploration), if random number < ϵ,
Best long-term action (Exploitation), otherwise.

(2)
Exploration: in this phase, the agent randomly selects an

action from a uniformly distributed random variable with the

Agent

Environment

Action
𝑨𝒕

𝑹𝒕+𝟏

𝑺𝒕+𝟏

Reward
𝑹𝒕

State
𝑺𝒕

Agent

State

Parameter 𝜽

DNN Policy
𝝅𝜽(𝒔, 𝒂)

Fig. 5. DRL Structure.

number of possible values equal to the number of actions.
Non-optimal actions are chosen to explore the environment,
i.e., uncharted actions in a given state.

Exploitation: in this phase, the agent selects the action with
the maximum quality value for that given state, i.e., it selects
the action that has the best long-term effect in maximizing the
expected cumulative reward.

D. Deep Reinforcement Learning

DRL is an improved extension of RL that integrates deep
learning (DL), i.e., ANNs, with reinforcement learning algo-
rithms [53]. This integration happens because RL algorithms
present limitation problems related to state/action spaces, com-
putational, and sample complexity [54]. That is, RL algorithms
are not scalable and are limited to low-dimensional data issues,
i.e., problems with a small number of actions and states [55].
Therefore, the integration with DL improves the scalability
issue and makes RL algorithms support high-dimensional
data tasks. Compared to conventional RL, DRL explores a
large dimensional neural network to speed up convergence.
Fig 5 shows the deep reinforcement learning structure. The
interaction with the environment occurs in the same way as
with the RL agent. The only difference is that now the agent is
an ANN model. DRL includes the following algorithms: DQN,
DDPG, Twin Delayed Deep Deterministic Policy Gradient
(TD3), and Double Deep Q-learning Network (DDQN). This
work focuses on using DQN and DDPG algorithms to assist
in the optimization of CW with the primary goal of reducing
node collisions while improving network performance. This
way, next, we present a brief overview of these two DRL
algorithms.

1) Deep Q Network: DQN is an off-policy DRL algorithm
based on Q-learning with discrete action space and continuous
state space [56]. It is the result of incorporating deep learning
into RL since, in many practical situations, the state space
is high-dimensional and cannot be solved by traditional RL
algorithms, For example, Q-learning has scaling issues to
larger amounts of state and action space for being a tabular
method. Therefore, DQN was developed to fix the Q-learning’s
scaling problem. Being an off-policy algorithm means that
DQN uses an experience replay memory, where the agent
learns from a batch of randomly selected prior experiences
instead of the most recent one [57]. This random set of past
experiences mitigates the bias that might stem from the fact
that some environments have a sequential nature [57]. Here the



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 134

Deep Q-learning

Input

Output 1

Output N

...

Output 2

...

Deep Neural Network

𝐴𝑐𝑡𝑖𝑜𝑛 =
𝑎𝑟𝑔𝑚𝑎𝑥𝑄(𝑠, 𝑎 )

𝑄(𝑠, 𝑎 )

𝑖

𝑄(𝑠, 𝑎 )

𝑄(𝑠, 𝑎 )

𝑆𝑡𝑎𝑡𝑒 (𝑠)

Fig. 6. Deep Q-learning (DQN).

agent is represented by a deep neural network(DNN) that uses
the state as the input of the neural network, and the outputs
are the Q-values corresponding to the possible actions, where
the action taken by the agent is that which maximizes the
Q-values, as shown in Fig 6.

The Q-value represents the quality of the action in a
given state. The idea is for the neural network to output the
highest Q-value for the action that maximizes the cumulative
expected reward. However, using a single neural network
renders training very unstable [53]. The trick to mitigate this
problem and add stability to the training process is using two
neural networks, predictive and target networks. They have
the same structure (i.e., number of layers and neurons in
each layer and activation functions) but have their weights
updated at different times. The weights of the target network
are not trained. Instead, they are periodically synchronized
with the weights of the predictive network. The idea is that
fixing the target Q values (outputs of the target network) for
several updates will improve the predictive network’s training
stability. DQN employs batch training and experience replay
memory, making the agent learn from randomly sampled
batch experiences. It also employs the ϵ-greedy exploration-
exploitation mechanism.

2) Deep Deterministic Policy Gradient: DDPG is another
off-policy DRL algorithm with continuous action and state
spaces proposed in [58]. It is the result of the combination
between deterministic policy gradient (DPG) and DQN algo-
rithms, the former related to the actor-critic algorithm [25],
[59]. DQN avoids instability during the Q-function learning
by employing a replay buffer and a target network. DQN
has a discrete action space, while DDPG extends it to a
continuous action space. The algorithm simultaneously learns
a Q-function and a policy. Since DDPG inherits from the actor-
critic algorithm, it is a combination of both policy (actor)
and Q-value (critic) functions, where the actor takes actions
according to a specific policy function, and the critic plays the
role of an evaluator of the action taken [25]. Fig 7 presents
a general view of how DDPG works. Here, the actor takes
as input the state and outputs an action. The critic receives
as input the state and the action from the actor, which are
used to evaluate the actor’s actions, and outputs Q-values
corresponding to the set of possible actions. The Q-values
outputted by the critic indicate to the agent how good the
action taken by the actor for that specific state was.

DDPG consists of four networks: actor prediction, critic
prediction, actor target, and critic target networks. The target
networks have their weights copied from the prediction net-
works periodically. As with DQN, this procedure is adopted
in order to stabilize the learning process, moving the unstable

Input
Output 1

Output N

Output 2

...

Critic
Deep Neural Network

𝐴𝑐𝑡𝑖𝑜𝑛 =
𝑎𝑟𝑔𝑚𝑎𝑥𝑄(𝑠, 𝑎 )

𝑄(𝑠, 𝑎 )

𝑖

𝑄(𝑠, 𝑎 )

𝑄(𝑠, 𝑎 )

𝑆𝑡𝑎𝑡𝑒 (𝑠)

DDPG

Input

Input 
Actor Actions

Actor
Deep Neural Network ...

Fig. 7. Deep Deterministic Policy Gradient (DDPG).

problem of learning the action-value function to a stable
supervised learning problem [58].

Similarly to DQN, DDPG uses an experience replay mem-
ory to minimize correlations between samples. Regarding the
policy aspect of exploration and exploitation, DDPG differs
from DQN. Since DDPG works in continuous action space,
exploring such space constitutes a significant problem. How-
ever, as it is an off-policy algorithm, the exploration problem
can be treated independently from the learning algorithm [58].
DDPG creates an exploration policy that adds a noise value
to the actor policy to solve this issue. By default, the noise is
added following the Ornstein-Uhlenbeck process [60].

IV. APPLYING DRL TO THE CW OPTIMIZATION

In order to apply DRL algorithms (DQN and DDPG) to
optimize Wi-Fi networks, we propose a centralized approach
to solving the CW optimization in this work. Our proposed
approach consists of a centralized algorithm (i.e., the agent),
which is a module running on the Wi-Fi access point (AP)
that observes the state of the network (i.e., the environment)
and chooses suitable CW values (i.e., the actions) to optimize
the network’s performance (i.e., the reward). Next, we present
some details on the agent and its inputs and outputs values.

1) Agent: the agent represents the proposed DRL algo-
rithms (i.e., DQN and DDPG). The agent is chosen to
run on the AP since it has a general view of the whole
network and then can control the stations associated with
it through beacon frames in a centralized way. Therefore,
as can be noticed, this is a centralized approach where
the AP decides the best CW value that will be used
across the network.

2) Current state (s): the current state of the environment
is the status of all stations associated with the AP. So,
it is impossible to get this information because of the
nature of the problem. Therefore, we model the problem
as a Partially Observable Markov Decision Process
(POMDP) instead of an MDP one. POMDP assumes the
environment’s state cannot be perfectly observed [61].

3) Observation (o): is the acquired information from the
network based on the averaged normalized transmission
queues’ level of all associated stations or on the prob-
ability of collision proposed in [28]. We will employ
and compare the performance attained by these two dif-
ferent types of information obtained from the network.
Sections IV-A and IV-B explain how each one of these
observation values is calculated.

4) Action (a): the action corresponds to the CW value.
Since the CW value is directly connected to the network
performance, longer back-off periods lead to longer



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 135

waiting times for retransmitting packets in case of col-
lisions, degrading the spectrum usage and the network
performance. The RL scheme brings the idea that for
every action, there is a related maximized reward. Thus,
applying RL concepts to optimize the CW value aiming
to maximize the network’s throughput is what this work
proposes. Therefore, we use the CW value as the RL
action. As we compare DRL algorithms with discrete
and continuous action spaces, the actions are integer
values between 0 and 6 in the discrete case and real
values within the interval [0, 6] in the continuous case.
The set of actions follows these specific values (i.e., 0
through 6) to define the back-off interval used by IEEE
802.11a for a station to retransmit its packet, establishing
the limit condition of retransmission retries. Therefore,
the CW value to be broadcast to the stations can be
obtained through the application of (3). This interval
is selected so that the action space is within 802.11
standard’s CW range, which ranges from 15 up to 1023.
An action, a, taken by the agent in the state, s, makes
the environment switch to its next state, s′, with a given
transition probability, T (s′|s, a). Note that the action,
a, is mapped into the CW value by using equation (3).
When using (3), the CW interval, which is broadcast by
the AP, is in the range of 15 to 1023, according to the
802.11 standard.

CW =
⌊
2a+4

⌋
− 1. (3)

5) Reward (r): the reward is defined as the normalized
network throughput, which can be observed at the AP, by
the agent, by taking action, a, in the state, s. Therefore,
the reward is a real value in the interval [0, 1]. This
normalized metric is obtained by dividing the actual
throughput by its expected maximum.

A. Averaged transmission queues’ level

Since the metric characterizing the environment should pro-
vide the best possible understanding of the current network’s
status, we propose using the averaged normalized transmission
queues’ level of all associated stations, Q̄NL, as observation.
This metric is adopted as observation because it offers a more
direct way of obtaining information about the overall network
status. Next, we describe how it is calculated. Conversely,
as will become clear next, the collision probability requires
the AP to determine the number of transmitted and correctly
received frames, which is, in turn, determined based on the
number of transmitted or received acknowledgment frames.

The normalized level of the transmission queue of the i-th
station, Q(i)

NL, is calculated according to (4), where (i) indi-
cates the station number. The queue level, Q(i)

l , is normalized
(i.e., divided) by the maximum queue size value of that station,
Q

(i)
max.

Q
(i)
NL =

Q
(i)
l

Q
(i)
max

. (4)

The measurement of Q
(i)
NL is carried out at predefined

intervals at each station and indicates the result of the currently
chosen CW value on the network’s performance. For example,
a value close to 1 indicates the queue is full, meaning the
station cannot transmit packets as quickly as it receives them
from the upper layers. On the other hand, if it is close to 0,
the queue is almost empty, indicating the station can access
the medium as frequently as necessary. A high Q

(i)
NL value

indicates a high number of collisions. Conversely, a low value
indicates a small number of collisions. The normalized level of
the transmission queue of each station, Q(i)

NL, is concatenated
(i.e., piggybacked) to data frames sent to the AP so that the
agent has access to this information. At the AP, the agent
normalizes the sum of Q

(i)
NL coming from the stations by the

total number of stations associated with the AP, Nstations, as
shown in (5). This is the observation used by the agent to
gather insights into the network’s status.

Q̄NL =
1

Nstations

Nstations∑
i=1

Q
(i)
NL. (5)

B. Collision Probability

Another metric characterizing the environment, proposed
in [28], is the probability of collision, pcol, observed by
the network. It can also be interpreted as the probability of
transmission failure. This probability is calculated based on
the number of transmitted, Nt, and correctly received, Nr,
frames, as shown in (6).

pcol =
Nt −Nr

Nt
. (6)

This collision rate approximates the actual probability of
collision as the number of frames used to calculate it increases.
Thus, this rate represents the probability of a frame not being
received due to another station transmitting a frame at the same
time. These probabilities are calculated within the interaction
periods and provide information on the performance of the
selected CW value.

C. Centralized DRL-based CW Optimization Method

The proposed method has three stages. The first is a pre-
learning stage, where the legacy Wi-Fi contention-based mech-
anism manages the network. This stage is used to initialize
the observation buffer with information that will be used to
train the DRL algorithm being used (either DQN or DDPG).
Next, in the learning stage, the agent chooses CW values (i.e.,
actions) according to what is shown in Algorithm 2.

The mean, µ, and variance, σ2, of the history of recent ob-
servation values (either the averaged normalized queues’ level
or the collision probability) are calculated as a preprocessing
step. Moving average with window and stride of fixed sizes is
used to calculate both statistics. This calculation renders the
observation into a two-dimensional vector for each stride of
the moving average. Therefore, the agent is trained based on
this two-dimensional vector of observations as illustrated in
Fig 8.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 136

History of observation values

0.430, 0.419, 0.100, 0.125, 1.000, 0.515, 0.345, 0.763, 0.714, 0.001, ⋯ , 0.221, 0.274, 0.950

���� �
���(�)

������ (�)������ (�)

0.415, 0.241
0.876, 0.146

0.345, 0940
0.235, 0.209

⋮
0.150, 0.599

� ��

Fig. 8. Bi-dimensional observation vector used in the preprocessing phase.

Exploration of the environment is enabled by adding a
noisy factor to each action the agent takes. This noisy factor
decreases throughout the learning stage. This addition of noise
is different for each of the two considered DRL algorithms.
When DQN is used, the noisy factor corresponds to the
probability of taking a random action instead of an action
predicted by the agent. In DDPG’s case, the noisy factor comes
from a Gaussian-distributed random variable and is added
directly to the action taken by the agent. As mentioned, this is
done to find a trade-off between exploring the environment and
exploiting the acquired knowledge, which chooses the action
that maximizes future rewards.

The last stage is called the operational stage. This stage
starts when the training is over. The user defines the training
stage’s period by setting the variable trainingPeriod. At this
stage, the noisy factor is set to zero, so the agent always
chooses the action it learned to maximize the reward. At
this stage, as the agent has already been trained, it does not
receive any additional updates to its policy, so rewards are
unnecessary.

Finally, it is essential to mention that the hyperparameters
of the DRL models (i.e., learning rate, reward discount rate,
batch size, epsilon decay) need to be fine-tuned for the agent
to achieve its optimal performance. Lastly, as both DQN and
DDPG employ replay memory (called in this work as the
experience replay buffer, E), a size limit has to be configured
for this memory. The replay memory stores past interactions
of the agent with the environment, i.e., it records the current
state, the action taken at that state, the reward received in that
state, and the next state resulting from the action taken. When
its limit is reached, the oldest record is overwritten by a new
one (i.e., it is implemented as a circular buffer).

A brief description of the pseudo-code shown in Algorithm
2 is provided next. The initialization phase goes from lines 1
to 13. It initiates the input parameters such as observation and
replay buffers, agent weights, initial state, noisy factor, CW
value, and variables used to select the current stage and the
type of observation employed.

Then, the pre-learning stage (lines 15 to 24) starts by filling
in the observation buffer with the selected type of observation
metric (either the averaged normalized queues’ level or the
collision probability). The flag useQueueLevelF lag sets the
type of observation value to be calculated. In this stage, the
observation value (either the averaged normalized transmission
queues’ level or the network’s collision probability) results
from the application of the legacy Wi-Fi contention-based
mechanism. After envStepT ime, which is the period between
interactions of the proposed algorithm with the environment,

has elapsed, the algorithm selects the CW value, and then, the
observation value results from the application of the DRL-
based CW optimization algorithm. Therefore, one should note
that the instructions in lines 15 to 24 are shared between the
pre-learning and learning stages.

Next, from lines 26 to 29, the information in the observation
buffer is pre-processed by applying a moving average opera-
tion to the data, which results in a two-dimensional vector,
observation, with the mean, µ, and variance, σ2 of the data
in the buffer. With the pre-processed data, the action function,
Aθ, returns the action, a. The action is then used to determine
a new CW value that will be broadcast to all associated
stations. The instructions in lines 26 to 29 are shared between
the learning and operational stages. The difference between
these two stages is how the action, a, is selected. In the
learning stage, the trainingF lag is equal to True, which
tells the action function, Aθ, to choose actions following the
exploration-exploitation approach described previously. In the
operational stage, the trainingF lag is equal to False, which
tells the action function, Aθ, to choose actions optimizing the
network’s performance. In the learning stage, a noisy factor
is used to explore the environment, which does not happen in
the operational stage.

After that, from lines 31 to 38, the algorithm is solely in the
learning stage. In this section of the algorithm, the DRL agent
learns from previous experiences; that is, it has its weights,
θ, updated by using mini-batches of samples randomly picked
from the replay buffer, E. These mini-batches are composed
of the current µ, σ2, and action, a, values, the reward (i.e., the
normalized throughput), r, and the previous values of µ and
σ2.

Finally, in line 42, the algorithm checks if the training period
has elapsed. If so, the trainingF lag is set to False, and the
algorithm enters the operational stage. In this stage, the noisy
factor is disabled, and the algorithm only exploits the acquired
knowledge.

D. Experimentation Scenario

The proposed centralized DRL-based CW optimization so-
lution is implemented on NS3-gym [30], which runs on top of
the NS-3 simulator [29]. NS3-gym enables the communication
between NS-3 (c++) and OpenAI gym framework (python)
[62]. NS-3 is a network simulator based on discrete events
mainly intended for academic research. It contains the im-
plementation of several wired and wireless network standards
[29]. In this work, we use version NS-3.29 of the NS-3
simulator. The DRL algorithms used here were implemented
with TensorFlow and PyTorch.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 137

Algorithm 2 DRL-based CW Optimization
▷ ### Initialization ###

1: Initialize the observation buffer, O, with zeroes
2: Initialize the weights, θ, of the agent
3: Get the action function, Aθ , which the agent uses to choose the

action according to the current stage
4: Initialize the algorithm’s interaction period with the environment,

envStepT ime
5: Initialize the number episodes, Nepisodes

6: Initialize the number of steps per episode, Nspe

7: Initialize the training stage period, trainingPeriod
8: Set trainingFlag← True to tell the algorithm is in the training

stage
9: Initialize the experience replay buffer, E, with zeroes.

10: trainingStartTime← currentTime
11: lastUpdate← currentTime
12: µprev ← 0 (previous mean value)
13: σ2

prev ← 0 (previous variance value)
14: Set useQueueLevelF lag ← True to use the averaged normal-

ized transmission queues’ level as observation.
15: CW← 15

16: for e = 1, ..., Nepisodes do
17: Reset and run the environment, i.e., reset and run the NS-3

simulator
18: for t = 1, ..., Nspe do

▷ ### Pre-learning stage ###
19: if useQueueLevelF lag == True then
20: Get Q(i)

NL received from each associated station
21: Calculate Q̄NL

22: observation← Q̄NL

23: else
24: Nt ← get number of transmitted frames
25: Nr ← get number of received frames
26: observation← Nt−Nr

Nt
27: end if
28: O.append(observation)

29: if currentT ime ≥ lastUpdate+ envStepT ime then

▷ ### Learning and operational stages ###
30: µ, σ2 ← preprocess(O)
31: a← Aθ(µ, σ

2, trainingFlag)
32: CW ← 2a+4 − 1
33: Broadcast the new CW value to all associated stations

34: if trainingF lag == True then
35: NRP ← get the number of received packets.
36: tput← NRP

envStepTime

37: r ← normalize(tput)
38: E.append((µ, σ2, a, r, µprev , σ2

prev))
39: µprev ← µ
40: σ2

prev ← σ2

41: mb← get random mini-batch from E
42: Update θ based on mb
43: end if

44: lastUpdate← currentTime
45: end if

▷ ### Makes the transition between learning and operational
stages ###

46: if currentT ime ≥ trainingStartT ime +
trainingPeriod then

47: trainingF lag ← False
48: end if
49: end for
50: end for

LSTM

Input Layer Fully Connected Layers Output LayerLSTM Layer

H1

H1

H1

H2

H2

H2

OUT

Hn Hn

IN 1

IN 2

.

.

.

.

.

.

Fig. 9. Architecture of the Deep Learning Network.

The system model considered in this work is depicted in Fig
10. We consider a linear topology comprised of one AP and
several stations transmitting packets. The AP plays the role of
the DRL agent, selecting a new CW value according to the
current observation. The stations send data packets to the AP,
and the deployment of the stations can happen statically or
dynamically. So, two scenarios are considered, one with static
topology and the other with dynamic topology.

Table I presents the NS-3 parameters necessary to create the
environment in which the agent will learn. Apart from those
parameters, we assume single-user transmissions, a packet
load adjusted to saturate the network with constant bit rate
(CBR) UDP traffic of 150 Mbps, instant and faultless trans-
ference of network information, e.g., the normalized queue
level of each station, Q

(i)
NL, or the number of transmitted

packets, Nt, of each station, to the DRL agent, and that each
station receives the selected CW value instantly. The last two
assumptions allow the assessment of the proposed solution
in an idealized scenario before going to more realistic ones.
Realistic scenarios will require the transmission of Q

(i)
NL or

Nt from each station to the AP and the periodic broadcast
of the chosen CW to all stations through beacon frames.
The only differences we foresee in the results presented here
are a slower convergence of the agent and a slightly smaller
throughput due to the transmission of the required overhead,
i.e., Q(i)

NL or Nt and CW.
Table II presents the agent parameters used in NS3-gym

for the experiments. These parameters were empirically found
through several simulations. The network architecture used
by both DRL algorithms has one recurrent long short-term
memory (LSTM) layer and two fully connected layers leading
to an 8 × 128 × 64 topology. An illustration of the network
architecture is shown in Fig 9

The simulation experiment was executed for 15 episodes
of 60 seconds. This configuration was also found by employ-
ing cross-validation strategies. The recurrent long short-term
memory layer allows the DRL algorithms to consider past
observations when predicting the best action in a given state.
The moving average window is half the size of the observation
history memory, and the stride is a fourth of its size.

Each one of the experiments consisted of 15 executions
of 60-second long simulations, where the first 14 executions
were part of the training stage (thus, the training stage period,



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 138

TABLE I
NS-3 ENVIRONMENT CONFIGURATION PARAMETERS.

Configuration Parameter Value

Wi-Fi standard IEEE 802.11ax
Number of APs 1

Number of static stations 5,15, 30 or 50
Number of dynamic stations increases steadily from 5 to 50

Frame aggregation disabled
Packet size 1500 bytes

Max Queue Size 100 packets
Frequency 5 GHZ

Channel BW 20 MHz
Traffic constant bit-rate UDP of 150 Mbps
MCS HeMcs (1024-QAM with a 5/6 coding rate)

Guard Interval 800 [ns]
Propagation delay model ConstantSpeedPropagationDelayModel
Propagation loss model MatrixPropagationLossModel

Simulation time 60 [s]

TABLE II
NS3-GYM AGENT CONFIGURATION PARAMETERS.

Configuration Parameter Value

DQN’s learning rate 4x10−4

DDPG’s actor learning rate 4x10−4

DDPG’s critic learning rate 4x10−3

Reward discount rate 0.7
Batch size 32

Replay memory size 18,000
Size of observation history memory 300

trainingPeriod 840 [s]
envStepT ime (i.e., interaction interval) 10 [ms]

Fig. 10. Scenario for assessing the proposed centralized DRL-based CW
optimization method.

trainingPeriod, is equal to 14 × 60[s] = 840[s]), and the
last one was the operational stage. Each one of the simulations
consisted of 10 [ms] interaction intervals (i.e., envStepT ime).
Algorithm 2 was run between these interaction intervals.

V. SIMULATION RESULTS

This section presents and discusses the results obtained
during the experiments. The performance of the proposed DRL
algorithms is compared against the BEB algorithm, which is
used in 802.11 wireless networks. Simulations were executed
on NS-3 and NS3-gym simulators considering static and dy-
namic scenarios. The graphical results allow a better evaluation

of the network efficiency achieved by the proposed centralized
DRL-based CW optimization method in both scenarios. Next,
we separate the results and discussion into two sets, static
and dynamic. Our study considers and compares the averaged
normalized transmission queues’ level of all stations and the
probability of collision as two different types of observation
metrics to train the DRL-based CW optimization agent. The
simulation results presented in this section demonstrate the
performance achieved by the DRL-based solution employing
either one of the observations in the previously mentioned
scenarios.

A. Metrics and their connection with the reward function

In this work, we assess two metrics: the network’s overall
throughput and the CW value. The network’s overall through-
put measures how much data is successfully transmitted over a
period over the network. The CW value is a random parameter
that determines how long a station must wait before it can
transmit data. Therefore, one can see that a longer CW value
means that stations must wait longer before transmitting,
which can lead to lower throughput. However, a longer CW
value means a lower chance of collisions. On the other hand,
the smaller the CW value, the shorter the waiting time and,
consequently, the higher the chance of collisions, which is
detrimental to the network’s overall throughput.

The DRL agent employs the CW values as actions and the
average of the normalized level of the transmission queues of
the stations or the collision rate as observations. Its reward



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 139

function is the normalized network’s overall throughput. The
agent’s objective is maximizing its received reward over time
based on observations of the environment. Therefore, the
reward’s connection with the throughput is straightforward,
i.e., the higher the reward, the higher the network’s overall
throughput.

The reward’s connection with the CW value is also direct
if we understand that the longer the CW value, the lower
the throughput. It happens because a station cannot transmit
during the CW wait time, penalizing its throughput since it is
calculated during a given period. On the other hand, the higher
the CW value, the lower the chance of collisions, and vice
versa. Therefore, the DRL agent aims to find a CW value that
maximizes the network’s overall throughput while minimizing
frame collisions., i.e., a trade-off between throughput and
collisions.

B. Static scenario

In this scenario, the number of stations associated with the
AP is kept constant throughout the experiment. As it is a static
scenario, the optimal CW value should be constant, and so
should the throughput. Therefore, this scenario is used to prove
this hypothesis and to evaluate possible improvements over
802.11’s BEB algorithm.

Fig 11 shows the throughput achieved by the network for
different numbers of stations. As can be seen, the network
throughput decreases as the number of stations increases when
BEB is employed. On the other hand, when either DQN or
DDPG is used with either one of the observation metrics,
it remains practically constant as the number of stations
increases, proving the hypothesis. In this scenario, the graph
shows that the throughput values achieved by our DRL-based
solution with four different numbers of stations (5, 15, 30, 50)
are very similar when using either one of the metrics. This is
indicated by the matching points on the graph, demonstrating a
close value of throughput. The improvement over BEB varies
from 5.19% for 5 stations to 48.5% for 50 stations. As can be
seen, DDPG has a slightly better performance than DQN (with
either one of the observation metrics), which can be explained
due to its capability to choose any real CW value within the
[0, 6] range. In the static scenario, the performance achieved
by the solution employing either one of the two observation
metrics shows a minimal difference. When compared, there is
no significant variance in their behavior.

Fig 12 shows the mean CW value and its variance for
15 simulation episodes when DQN or DDPG is used with
either one of the two observation metrics considered. This
experiment considers 30 stations in the static scenario. The
mean CW is the arithmetic mean of all CW values selected
during one episode and serves as an indicator of how well
the training agents can adjust and select the CW values to a
more stable one. It shows that as the agent learns, it exploits
more of the acquired/learned knowledge than explores the
environment with random actions. Therefore, as the DRL agent
learns, the number of random actions decreases, decreasing
the variance of the CW values. It is pretty clear that the 14
episodes selected for the learning stage are enough for the

0 10 20 30 40 50
Number of stations

26

28

30

32

34

36

38

40

42

Ne
tw

or
k 

th
ro

ug
hp

ut
 [M

b/
s]

Improvement
over BEB

BEB
DQN-Pcol
DDPG-Pcol
DQN-Avg Queue Level
DDPG-Avg Queue Level

Fig. 11. Comparison of the network throughput for the static scenario.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Episodes

0

100

200

300

400

500

600

700

M
ea

n 
CW

DQN-Pcol
DDPG-Pcol
DQN-Avg Queue Level
DDPG-Avg Queue Level

Fig. 12. Mean CW value for 30 stations in the static scenario.

proposed solution to converge to an optimal and practically
constant mean CW value for both DRL algorithms, regardless
of the observation metric considered. We can see that the mean
value of all considered options (DQN/DDPG and Average Tx
Queue level/Pcol) stabilizes around the same value after the
10th episode. It is also possible to see that the CW variance
of all options decreases along the learning stage, meaning that
initially, the algorithm explores the environment more (i.e.,
it takes uncharted actions). Then, as the number of episodes
progresses, it exploits more of the acquired knowledge, which
maximizes the received reward. Finally, the variance during
the final episodes of the learning stage is small because the
proposed algorithm correctly selected the CW value, which
maximizes the throughput. In the final episodes, where the
algorithm exploits more than explores the environment, DDPG
presents a smaller variance than DQN, meaning it is more
assertive in choosing the ideal CW value.

C. Dynamic scenario

In the dynamic scenario, the number of stations increases
progressively throughout the experiment, going from 5 to 50.
The higher the number of stations, the higher the collision



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 140

Fig. 13. Selected CW value for different numbers of stations in a dynamic
scenario.

probability. This experiment assessed whether the DRL algo-
rithms appropriately act upon network changes.

Fig 13 depicts the chosen CW value for the dynamic
scenario, where the number of stations progressively increases
from 5 to 50. As shown, the chosen CW value increases as
the number of stations increases, meaning the back-off interval
has to be increased to accommodate the transmissions of the
higher number of stations, mitigating the number of collisions.
As can be noticed, DQN jumps between discrete neighbor
CW values. At the same time, DDPG continuously increases
the CW value, reaching a lower CW value for 50 stations
independently of the adopted observation metric, which pos-
itively reflects on the attained throughput. When comparing
DQN for both observation metrics, it is possible to see a
similarity in selecting the adequate CW value. Furthermore,
DDPG with the averaged normalized transmission queues’
level as observation presents higher CW values than when
the probability of collision is used. This behavior, which is
supported by the results in Fig 14, can be partially explained
by the fact that the normalized transmission queues’ level
of all associated stations offers more information than just
the collision probability. This metric takes into account the
congestion level of the network, and subsequently helps the
DRL-based solution select a CW value that allows the network
to achieve higher throughput. This insight suggests that the use
of this metric in the RL solution for collision avoidance could
result in improved network performance.

Fig 14 compares the instantaneous network throughput in
the dynamic scenario when the number of stations grows from
5 to 50. The increased number of stations alters the CW value,
impacting the instantaneous network throughput. When the
number of stations associated with the AP reaches 50, the
throughput of the BEB drops to approximately 26 Mbps of that
presented by DQN and DDPG. The proposed DRL algorithm
(with either DQN or DDPG) presents an almost constant be-
havior, keeping a high and stable throughput as the number of
stations progressively increases. Both DRL algorithms present
an approximately constant throughput. Comparing the two ob-
servation metrics reveals a difference in the network through-

Fig. 14. Comparison of the instantaneous network throughput as the number
of stations increases from 5 to 50.

put. Using the collision probability as the observation, the
resulting throughput is approximately 37.5 Mbps, presenting
an increase of 43.68% over BEB, whereas using the averaged
normalized transmission queues’ level yields a throughput of
up to 37.98 Mbps with an increase of 45.52% over BEB. This
difference suggests that the averaged normalized transmission
queues’ level is a superior observation metric for dynamic
scenarios. However, it is essential to note that both observation
metrics achieve significantly better throughput values than the
standard BEB algorithm. This finding underscores the potential
value of utilizing RL solutions for collision avoidance in Wi-Fi
networks.

Fig 15 confirms that both DRL algorithms significantly
enhance the network’s throughput in comparison to the BEB
algorithm in dynamic scenarios. The degree of improvement
varies from 6.84% (using either observation metric) for 5
stations, to 25.56% for the collision probability metric when
50 stations are in use. Notably, when the averaged normal-
ized transmission queues’ level is employed for 50 stations,
the throughput is enhanced by as much as 28.43%, thereby
indicating the superior performance of this observation metric
over the collision probability in dynamic scenarios with 50
stations. These findings demonstrate once more the potential
value of using DRL algorithms to address collision avoidance
challenges in dense Wi-Fi networks.

VI. CONCLUSIONS

Wireless network transmissions are prone to various im-
pairments (e.g., interference, path loss, channel noise, etc.)
that lead to packet loss and collisions, making re-transmission
and channel access mechanisms required. Furthermore, in
environments with a dense number of stations, more collisions
will occur while the stations attempt to access the wireless
channel. Consequently, the network efficiency and channel
utilization will both degrade. This work proposes a central-
ized solution that employs DRL algorithms (i.e., DQN and
DDPG) to optimize the CW parameter from the MAC layer.
Regarding the number of stations associated with the AP,
two experimental scenarios are considered for assessing the



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 141

0 10 20 30 40 50
Number of stations

26

28

30

32

34

36

38

40

42
Ne

tw
or

k 
th

ro
ug

hp
ut

 [M
b/

s]

Improvement
over BEB

BEB
DQN-Pcol
DDPG-Pcol
DQN-Avg Queue Level
DDPG-Avg Queue Level

Fig. 15. Comparison of the network throughput for the dynamic scenario.

proposed centralized DRL-based CW optimization solution:
static and dynamic. Simulation results show that the proposed
solution outperforms the 802.11 default BEB algorithm by
maintaining a stable throughput while reducing collisions.
Moreover, the results attest to DQN’s and DDPG’s superior
performance compared to BEB for both scenarios, regardless
of the observation metric used and the number of stations
associated with the AP. Our results show that the difference
increases as the number of stations increased, with DQN and
DDPG showing a 45.52% increase in throughput with 50
stations compared to BEB.

Additionally, the results show that DQN and DDPG had
similar performances, which means that either could be used
in a solution deployed in Wi-Fi APs. However, since DQN
presents a lower computational complexity and lower training
period, it would be the preferable choice. Furthermore, the
presented results show that the network’s performance can be
dramatically improved when CW is chosen based on informa-
tion from the network, such as the level of the transmission
queues or the network’s probability of collision.

Regarding the two considered observation metrics used for
capturing the network’s status, our simulation results show
that in the static scenario, they confer similar performance
when applied to the DRL-based algorithms. However, in the
dynamic case, the averaged normalized transmission queues’
level grants the algorithms higher throughput when compared
to the observation based on the collision probability. These
findings suggest that the averaged normalized transmission
queues’ level provides more information to the DRL agent than
the collision probability. Moreover, the centralized DRL-based
solution for selecting CW values outperformed the classical
802.11 BEB algorithm, regardless of which observation metric
was used. Therefore, it can be concluded that either observa-
tion metric is suitable for obtaining the network’s status and
improving the CW selection, which ultimately leads to better
network utilization and higher throughput.

Future work could use other ML algorithms to optimize
CW, such as Soft Actor-Critic (SAC) and Proximal Policy
Optimization (PPO). These two algorithms make an interesting
topic of investigation because they both use advantage instead

of Q-Value as the operator. The difference between them is that
SAC is off-policy, and PPO is on-policy. In addition, a study
that included these methods could be interesting because DQN
and DDPG are both off-policy and use a Q-value operator,
which would contrast with SAC and PPO, potentially provid-
ing precious insights into the effect of these different operators
in the final result. Moreover, another research direction would
be the assessment of decentralized DRL-based solutions.

REFERENCES

[1] X. Guo, S. Wang, H. Zhou, J. Xu, Y. Ling, and J. Cui, “Performance
evaluation of the networks with wi-fi based tdma coexisting with
csma/ca,” Wireless Personal Communications, vol. 114, no. 2, pp. 1763–
1783, 2020. doi: 10.1007/s11277-020-07447-3

[2] W. Auzinger, K. Obelovska, I. Dronyuk, K. Pelekh, and R. Stolyarchuk,
“A continuous model for states in csma/ca-based wireless local networks
derived from state transition diagrams,” in Proceedings of International
Conference on Data Science and Applications. Springer, 2022. doi:
10.1007/978-981-16-5348-3 45 pp. 571–579.

[3] G. Wang and Y. Qin, “Mac protocols for wireless mesh networks
with multi-beam antennas: A survey,” in Future of Information and
Communication Conference. Springer, 2019. doi: 10.1007/978-3-030-
12388-8 9 pp. 117–142.

[4] Z. Beheshtifard and M. R. Meybodi, “An adaptive channel assign-
ment in wireless mesh network: the learning automata approach,”
Computers & Electrical Engineering, vol. 72, pp. 79–91, 2018. doi:
10.1016/j.compeleceng.2018.09.004

[5] S.-C. Wang and A. Helmy, “Performance limits and analysis of
contention-based ieee 802.11 mac,” in Proceedings. 2006 31st IEEE
Conference on Local Computer Networks. IEEE, 2006. doi:
10.1109/LCN.2006.322129 pp. 418–425.

[6] M. Yazid, N. Sahki, L. Bouallouche-Medjkoune, and D. Aı̈ssani, “Mod-
eling and performance study of the packet fragmentation in an ieee
802.11 e-edca network over fading channel,” Multimedia Tools and
Applications, vol. 74, no. 21, pp. 9507–9527, 2015. doi: 10.1007/s11042-
014-2131-y

[7] P. Patel and D. K. Lobiyal, “A simple but effective collision and
error aware adaptive back-off mechanism to improve the performance
of ieee 802.11 dcf in error-prone environment,” Wireless Personal
Communications, vol. 83, pp. 1477–1518, 2015. doi: 10.1007/s11277-
015-2460-9

[8] ——, “An adaptive contention slot selection mechanism for improving
the performance of ieee 802.11 dcf,” International Journal of Informa-
tion and Communication Technology, vol. 10, no. 3, pp. 318–349, 2017.
doi: 10.1504/IJICT.2017.083272

[9] R. A. da Silva and M. Nogueira, “Mac protocols for ieee
802.11 ax: Avoiding collisions on dense networks,” arXiv preprint
arXiv:1611.06609, 2016. doi: 10.48550/arXiv.1611.06609

[10] Y. Edalat and K. Obraczka, “Dynamically tuning ieee 802.11’s con-
tention window using machine learning,” in Proceedings of the 22nd
International ACM Conference on Modeling, Analysis and Simulation
of Wireless and Mobile Systems, 2019. doi: 10.1145/3345768.3355920
pp. 19–26.

[11] E. Bjornson and P. Giselsson, “Two applications of deep learning in
the physical layer of communication systems [lecture notes],” IEEE
Signal Processing Magazine, vol. 37, no. 5, pp. 134–140, 2020. doi:
10.1109/MSP.2020.2996545

[12] H. Anouar and C. Bonnet, “Optimal constant-window backoff scheme
for ieee 802.11 dcf in single-hop wireless networks under finite load
conditions,” Wireless Personal Communications, vol. 43, no. 4, pp.
1583–1602, 2007. doi: 10.1145/1164717.1164765

[13] M. A. Bender, J. T. Fineman, S. Gilbert, and M. Young, “How to
scale exponential backoff: Constant throughput, polylog access at-
tempts, and robustness,” in Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2016. doi:
10.1137/1.9781611974331.ch47 pp. 636–654.

[14] H. Al-Ammal, L. A. Goldberg, and P. MacKenzie, “Binary exponential
backoff is stable for high arrival rates,” in Annual Symposium on Theo-
retical Aspects of Computer Science. Springer, 2000. doi: 10.1007/3-
540-46541-3 14 pp. 169–180.

[15] M. Kulin, T. Kazaz, E. De Poorter, and I. Moerman, “A survey on
machine learning-based performance improvement of wireless networks:
Phy, mac and network layer,” Electronics, vol. 10, no. 3, p. 318, 2021.
doi: 10.3390/electronics10030318



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 142

[16] C. Silvano, D. Ielmini, F. Ferrandi, L. Fiorin, S. Curzel, L. Benini,
F. Conti, A. Garofalo, C. Zambelli, E. Calore et al., “A survey on deep
learning hardware accelerators for heterogeneous hpc platforms,” arXiv
preprint arXiv:2306.15552, 2023. doi: 10.48550/arXiv.2306.15552

[17] Q. Cai, C. Cui, Y. Xiong, W. Wang, Z. Xie, and M. Zhang, “A survey
on deep reinforcement learning for data processing and analytics,” IEEE
Transactions on Knowledge amp; Data Engineering, vol. 35, no. 05, pp.
4446–4465, may 2023. doi: 10.1109/TKDE.2022.3155196

[18] G. Aridor, Y. Mansour, A. Slivkins, and Z. S. Wu, “Competing
bandits: The perils of exploration under competition,” arXiv preprint
arXiv:2007.10144, 2020. doi: 10.48550/arXiv.2007.10144

[19] X. Lu, B. V. Roy, V. Dwaracherla, M. Ibrahimi, I. Osband, and
Z. Wen, “Reinforcement learning, bit by bit,” Foundations and Trends®
in Machine Learning, vol. 16, no. 6, pp. 733–865, 2023. doi:
10.1561/2200000097

[20] S. Shekhar, A. Bansode, and A. Salim, “A comparative study
of hyper-parameter optimization tools,” in 2021 IEEE Asia-Pacific
Conference on Computer Science and Data Engineering (CSDE).
Los Alamitos, CA, USA: IEEE Computer Society, dec 2021. doi:
10.1109/CSDE53843.2021.9718485 pp. 1–6.

[21] P. I. Frazier, “A tutorial on bayesian optimization,” arXiv preprint
arXiv:1807.02811, 2018. doi: 10.48550/arXiv.1807.02811

[22] A. Karras, C. Karras, N. Schizas, M. Avlonitis, and S. Sioutas, “Automl
with bayesian optimizations for big data management,” Information,
vol. 14, no. 4, p. 223, 2023. doi: 10.3390/info14040223

[23] P. Beneventano, P. Cheridito, R. Graeber, A. Jentzen, and
B. Kuckuck, “Deep neural network approximation theory for
high-dimensional functions,” arXiv preprint 2112.14523, 2021.
doi: 10.48550/arXiv.2112.14523

[24] J. Zhu, F. Wu, and J. Zhao, “An overview of the action space for deep
reinforcement learning,” in Proceedings of the 2021 4th International
Conference on Algorithms, Computing and Artificial Intelligence, 2021.
doi: 10.1145/3508546.3508598 pp. 1–10.

[25] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural
information processing systems, vol. 12, 1999.

[26] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[27] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep re-
inforcement learning,” arXiv preprint arXiv.1509.02971, 2015. doi:
10.48550/arXiv.1509.02971

[28] W. Wydmański and S. Szott, “Contention window optimization in ieee
802.11 ax networks with deep reinforcement learning,” in 2021 IEEE
Wireless Communications and Networking Conference (WCNC). IEEE,
2021. doi: 10.1109/WCNC49053.2021.9417575 pp. 1–6.

[29] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010, pp. 15–34.

[30] P. Gawłowicz and A. Zubow, “Ns-3 meets openai gym: The playground
for machine learning in networking research,” in Proceedings of the 22nd
International ACM Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, 2019. doi: 10.1145/3345768.3355908 pp.
113–120.

[31] A. H. Y. Abyaneh, M. Hirzallah, and M. Krunz, “Intelligent-cw: Ai-
based framework for controlling contention window in wlans,” in 2019
IEEE International Symposium on Dynamic Spectrum Access Networks
(DySPAN). IEEE, 2019. doi: 10.1109/DySPAN.2019.8935851 pp. 1–10.

[32] Y. Xiao, M. Hirzallah, and M. Krunz, “Distributed resource allocation
for network slicing over licensed and unlicensed bands,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 10, pp. 2260–2274,
2018. doi: 10.1109/JSAC.2018.2869964

[33] A. Kumar, G. Verma, C. Rao, A. Swami, and S. Segarra,
“Adaptive contention window design using deep q-learning,” in
ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2021. doi:
10.1109/ICASSP39728.2021.9414805 pp. 4950–4954.

[34] X. Fu and E. Modiano, “Learning-num: Network utility maximization
with unknown utility functions and queueing delay,” in Proceedings
of the Twenty-second International Symposium on Theory, Algorithmic
Foundations, and Protocol Design for Mobile Networks and Mobile
Computing, 2021. doi: 10.48550/arXiv.2012.09222 pp. 21–30.

[35] I. A. Qureshi and S. Asghar, “A genetic fuzzy contention window opti-
mization approach for ieee 802.11 wlans,” Wireless Networks, vol. 27,
no. 4, pp. 2323–2336, 2021. doi: 10.1007/s11276-021-02572-8

[36] T. K. Saini and S. C. Sharma, “Prominent unicast routing pro-
tocols for mobile ad hoc networks: Criterion, classification, and
key attributes,” Ad Hoc Networks, vol. 89, pp. 58–77, 2019. doi:
10.1016/j.adhoc.2019.03.001

[37] S. Giannoulis, C. Donato, R. Mennes, F. A. de Figueiredo, I. Jabandžic,
Y. De Bock, M. Camelo, J. Struye, P. Maddala, M. Mehari et al.,
“Dynamic and collaborative spectrum sharing: The scatter approach,”
in 2019 IEEE International Symposium on Dynamic Spectrum Access
Networks (DySPAN). IEEE, 2019. doi: 10.1109/DySPAN.2019.8935774
pp. 1–6.

[38] N. Zerguine, M. Mostefai, Z. Aliouat, and Y. Slimani, “Intelligent cw se-
lection mechanism based on q-learning (misq).” Ingénierie des Systèmes
d Inf., vol. 25, no. 6, pp. 803–811, 2020. doi: 10.18280/isi.250610

[39] C.-H. Ke and L. Astuti, “Applying deep reinforcement learning to
improve throughput and reduce collision rate in ieee 802.11 networks,”
KSII Transactions on Internet and Information Systems (TIIS), vol. 16,
no. 1, pp. 334–349, 2022. doi: 10.3837/tiis.2022.01.019

[40] M. A. Jadoon, A. Pastore, M. Navarro, and F. Perez-Cruz, “Deep rein-
forcement learning for random access in machine-type communication,”
in 2022 IEEE Wireless Communications and Networking Conference
(WCNC), 2022. doi: 10.1109/WCNC51071.2022.9771953 pp. 2553–
2558.

[41] R. Mennes, F. A. P. De Figueiredo, and S. Latré, “Multi-agent
deep learning for multi-channel access in slotted wireless networks,”
IEEE Access, vol. 8, pp. 95 032–95 045, 2020. doi: 10.1109/AC-
CESS.2020.2995456

[42] R. Mennes, M. Claeys, F. A. P. De Figueiredo, I. Jabandžić, I. Moer-
man, and S. Latré, “Deep learning-based spectrum prediction collision
avoidance for hybrid wireless environments,” IEEE Access, vol. 7, pp.
45 818–45 830, 2019. doi: 10.1109/ACCESS.2019.2909398

[43] M. Ahmed Ouameur, L. D. T. Anh, D. Massicotte, G. Jeon, and
F. A. P. de Figueiredo, “Adversarial bandit approach for ris-aided ofdm
communication,” EURASIP Journal on Wireless Communications and
Networking, vol. 2022, no. 1, pp. 1–18, 2022. doi: 10.1186/s13638-022-
02184-6

[44] M. V. C. Aragão, S. B. Mafra, and F. A. P. de Figueiredo, “Otimizando
o treinamento e a topologia de um decodificador de canal baseado em
redes neurais,” Polar, vol. 2, p. 1. doi: 10.14209/sbrt.2022.1570823833

[45] F. Adib Yaghmaie and L. Ljung, “A crash course on rein-
forcement learning,” arXiv e-prints, pp. arXiv–2103, 2021. doi:
10.48550/arXiv.2103.04910

[46] M. G. Kibria, K. Nguyen, G. P. Villardi, O. Zhao, K. Ishizu, and F. Ko-
jima, “Big data analytics, machine learning, and artificial intelligence
in next-generation wireless networks,” IEEE access, vol. 6, pp. 32 328–
32 338, 2018. doi: 10.1109/ACCESS.2018.2837692

[47] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Machine
learning for wireless networks with artificial intelligence: A tutorial on
neural networks,” arXiv preprint arXiv:1710.02913, vol. 9, 2017. doi:
10.48550/arXiv.1710.02913

[48] H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao, and K. Wu,
“Artificial-intelligence-enabled intelligent 6g networks,” IEEE Network,
vol. 34, no. 6, pp. 272–280, 2020. doi: 10.1109/MNET.011.2000195

[49] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. USA: Prentice Hall Press, 2009. ISBN 0136042597

[50] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-learning algorithms:
A comprehensive classification and applications,” IEEE access, vol. 7,
pp. 133 653–133 667, 2019. doi: 10.1109/ACCESS.2019.2941229

[51] A. N. Burnetas and M. N. Katehakis, “Optimal adaptive policies
for markov decision processes,” Mathematics of Operations Research,
vol. 22, no. 1, pp. 222–255, 1997. doi: 10.1287/moor.22.1.222

[52] M. Tokic and G. Palm, “Value-difference based exploration: adaptive
control between epsilon-greedy and softmax,” in Annual conference on
artificial intelligence. Springer, 2011. doi: 10.1007/978-3-642-24455-
1 33 pp. 335–346.

[53] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015. doi: 10.1038/nature14236

[54] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L.
Littman, “Pac model-free reinforcement learning,” in Proceedings of
the 23rd international conference on Machine learning, 2006. doi:
10.1145/1143844.1143955 pp. 881–888.

[55] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“A brief survey of deep reinforcement learning,” arXiv preprint
arXiv:1708.05866, 2017. doi: 10.48550/arXiv.1708.05866

[56] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI conference on arti-
ficial intelligence, vol. 30, no. 1, 2016. doi: 10.48550/arXiv.1509.06461

[57] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized
experience replay,” arXiv preprint arXiv:1511.05952, 2015. doi:
10.48550/arXiv.1511.05952



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 143

[58] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep rein-
forcement learning,” arXiv preprint arXiv:1509.02971, 2015. doi:
10.48550/arXiv.1509.02971

[59] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International conference
on machine learning. PMLR, 2014, pp. 387–395.

[60] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian
motion,” Physical review, vol. 36, no. 5, p. 823, 1930. doi: 10.1103/Phys-
Rev.36.823

[61] A. R. Cassandra, “A survey of pomdp applications,” in Working notes
of AAAI 1998 fall symposium on planning with partially observable
Markov decision processes, vol. 1724, 1998.

[62] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016. doi: 10.48550/arXiv.1606.01540

Sheila C. da S. J. Cruz received a bachelor’s degree
in computer engineering from the National Institute
of Telecommunications (Inatel), Brazil, in 2016. She
is currently working towards completing her mas-
ter’s degree at Inatel. Her research interests include
digital communications, Wi-Fi, link adaptation, and
machine learning. Orcid ID: 0000-0002-4905-518X

Felipe A. P. de Figueiredo received the B.Sc.
and M.Sc. degrees in telecommunication engineering
from the National Institute of Telecommunications
(Inatel), Brazil, in 2004 and 2011, respectively. He
received his first Ph.D. degree from the State Uni-
versity of Campinas (UNICAMP), Brazil, in 2019
and the second one from the University of Ghent
(UGhent), Belgium, in 2021. He has been working
on the research and development of telecommunica-
tion systems for more than 15 years. His research
interests include digital signal processing, digital

communications, mobile communications, MIMO, multicarrier modulations,
FPGA development, and machine learning. Orcid ID: 0000-0002-2167-7286

Messaoud Ahmed Ouameur received a bachelor’s
degree in electrical engineering from the Institute
national d’électronique et d’électricité (INELEC),
Boumerdes, Algeria, in 1998, the M.B.A. degree
from the Graduate School of International Studies,
Ajou University, Suwon, South Korea, in 2000, and
the master’s and Ph.D. degrees (Hons.) in electrical
engineering from the Université du Québec à Trois-
Rivières (UQTR), QC, Canada, in 2002 and 2006,
respectively. He has been a Regular Professor at
UQTR since 2018. His research interests include

embedded real-time systems, parallel and distributed processing with applica-
tions to distributed Massive MIMO, deep learning and machine learning for
communication system design, and the Internet of Things with an emphasis on
end-to-end systems prototyping and edge computing. Orcid ID: 0000-0003-
1095-8012


	Introduction
	Related Work
	Machine Learning Overview
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning
	Deep Reinforcement Learning
	Deep Q Network
	Deep Deterministic Policy Gradient


	Applying DRL to the CW optimization
	Averaged transmission queues' level
	Collision Probability
	Centralized DRL-based CW Optimization Method
	Experimentation Scenario

	Simulation Results
	Metrics and their connection with the reward function
	Static scenario
	Dynamic scenario

	Conclusions
	References
	Biographies
	Sheila C. da S. J. Cruz
	Felipe A. P. de Figueiredo
	Messaoud Ahmed Ouameur


