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Direct-Conversion Spectrum Sensor Impaired by
Symmetric α-Stable and α-Sub-Gaussian Noises

Luiz Gustavo Barros Guedes and Dayan Adionel Guimarães

Abstract—Spectrum sensing in underwater cognitive acoustic
networks or in underwater acoustic sensor networks can be
impaired by impulsive noise generated by snapping shrimps. In
mathematical analysis or simulations, the amplitude variations of
this noise are commonly modeled by the symmetric alpha-stable
(SαS) distribution. As an alternative, the alpha-sub-Gaussian
(αSG) distribution can model both temporal correlation and
amplitude variations. This article assesses the performance of
underwater spectrum sensing with a direct-conversion receiver
(DCR) under impulsive noise modeled by the SαS and αSG
distributions. Several recent test statistics are compared, demon-
strating that they have different degrees of robustness against
impulsive noise and that the DCR is significantly less sensitive to
this noise, compared to the conventional receiver model that does
not take into account the influences of hardware characteristics
into the performance of spectrum sensing.

Index Terms—Spectrum sensing, direct-conversion receiver,
impulsive noise, underwater communications, snapping shrimp,
SαS, αSG.

I. INTRODUCTION

NOWADAYS, the fixed bandwidth allocation policy gov-
erns the use of the radiofrequency (RF) spectrum, allo-

cating a certain RF band only to the user who contracts it, also
known as the primary user (PU). Owed to this policy, spectrum
scarcity and underutilization are experienced. The scarcity
refers to the lack of new free bands. Moreover, once the PU is
not using it, that band becomes momentarily unoccupied and
the frequency spectrum becomes underutilized.

Massive connection among different devices is foreseen
for future communication networks [1], requiring a better
use of spectrum bands for the proper accommodation of the
expected large number of transmitters and receivers. There
is also an increase in demand for new telecommunications
services, which in the context of a fixed bandwidth allocation
policy, exacerbates the problem of spectrum scarcity and
underutilization.

A possible alternative to this problem is the adoption of
a dynamic spectrum allocation policy, implemented through
secondary networks of cognitive radios performing spectrum
sensing [2], [3]. In this way, an opportunistic use of the
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spectrum is sought, so that an unlicensed user, also known
as a secondary user (SU), seeks for occasions of shared
transmission with the PU, in an overlapping manner or not, on
licensed bands that are, for example, temporarily out of use.

In underwater communication systems [4], the problem of
spectrum scarcity is also present, which is intensified by the
fact that services are allocated in a more restricted operating
frequency range, between tens of Hertz and hundreds of
kilohertz. In this context, the present work has as motivation
the dynamic spectrum access (DSA) in underwater cognitive
acoustic networks (UCANs) [5]–[7] or in underwater acoustic
sensor networks (UASNs) [8]. DSA addresses the efficient
occupation of spectrum bands both in the spatial (different
locations) and temporal (different moments) domains, with the
former associated to the positions of the spectrum sensors and
the latter associated to the spectrum sensing events over time.

Not only multipath propagation, but also the various forms
of interference and noise can affect the performance of spec-
trum sensing. Concerning the noise, its ubiquitous form in
communication systems is the additive white Gaussian noise
(AWGN). Furthermore, in certain environments, sporadic sig-
nals having short duration and high amplitude characterize a
phenomenon called impulsive noise [9], [10].

Although the aforementioned impairments affect the per-
formance of underwater communications and underwater
spectrum sensing, the impulsive noise caused by snapping
shrimps [4] deserves especial attention in the context of
UCANs based on acoustic signals, since it is capable of
producing severe performance degradation. On the other hand,
the correct assessment of its impact must be addressed, since
different receiver models can exhibit different degrees of
robustness against the snapping shrimp noise.

The snapping shrimp noise is generated by a crustacean
which, when quickly closing the larger of its two pincer-
shaped claws, produces, in its front part, a high-velocity jet
of water responsible for inducing a sudden pressure reduction
in that region, resulting in the formation and consequent rup-
ture of cavitation bubbles. This phenomenon generates high-
intensity acoustic noise, sufficient to cause severe disturbances
in underwater acoustic communications.

The level of performance degradation imposed by the snap-
ping shrimp noise is related to the way the spectrum sensor is
constructed. In the spectrum sensing literature, a conventional
receiver model is the one that does not consider any signal
processing stage determined by actual reception circuits. Thus,
it is of great practical appeal to assess the performance in
receivers with more realistic architectures for processing the
received signal. In this work, a direct-conversion receiver
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(DCR) architecture is adopted due to its attractiveness for
circuit integration in practice [11]–[13].

Commonly, in mathematical analysis and simulations, the
snapping shrimp noise is modeled through temporally uncor-
related samples, following the symmetric alpha-stable (SαS)
distribution [9], [14]. However, it is suspected that the SαS
distribution is not the most suitable choice, which has been
also verified, for instance, in [15]–[17]. This is owed to
the fact that the snapping shrimp noise samples exhibit a
temporal correlation that is not present in SαS samples. As
an alternative, the alpha-sub-Gaussian (αSG) distribution [15],
[16] can be used, modeling the amplitude variations as well as
the temporal correlation existing in the impulsive phenomena.

Hence, it is of scientific interest to address the performance
of detectors for spectrum sensing when impaired by impulsive
noise. Moreover, it is of paramount importance to match the
impulsive noise model to the corresponding noise source,
aiming at obtaining trustable results and analyses. Finally, it
is relevant to model the receiver adopted for spectrum sensing
according to the signal processing tasks carried out in actual
receivers. The present work tackles all these aspects.

A. Related research

Referring to the distributions for impulsive noise modeling,
[18] proposes a theoretical analysis of the performance of
the energy detector in channels with fading and impulsive
noise, the latter characterized by a Bernoulli-Gaussian model.
According to the authors, this model has significant practical
appeal in multicarrier transmission systems based on orthog-
onal frequency division multiplexing.

The work developed in [19] proposes a spectrum sensing
scheme with a hyperbolic tangent-based energy detector (HT-
ED) in order to improve the performance under non-Gaussian
noise, such as impulsive noise. Two distributions are used in
modeling this type of noise: Laplace and SαS.

It has been found that the SαS distribution is widely used
in impulsive noise modeling in the most recent articles that
analyze the performance of spectrum sensing in cognitive radio
networks. References [20]–[25] are cited as examples. In [17],
the adequacy of the SαS distribution is analyzed in contrast to
the αSG distribution with non-zero temporal correlation, in the
context of underwater spectrum sensing subjected to snapping
shrimp noise.

As for the receiver model, in [12] a direct-conversion
receiver model is proposed considering realistic aspects in its
implementation. The motivation for that work was the lack
of research that points out the possible influences imposed by
the reception circuit in the performance of systems intended
for spectrum sensing, specifically in the case of centralized
cooperative spectrum sensing with data fusion.

The model proposed in [12] has been improved in [13], aim-
ing to better adapt it to direct-conversion receiver structures,
commonly present in real software-defined radios (SDRs). In
addition, it has been sought to improve the characteristics of
the sensing channel model, making it more flexible through
a channel with a random Rice factor [26, p. 212], as well as
time-varying levels of noise and received signal powers.

The performance of spectrum sensing when impaired by
impulsive noise is also evaluated in [27]. Two receivers
are compared: a conventional one, which does not consider
practical implementation aspects, and a DCR model that takes
these aspects into account.

In [28] the performance analysis of test statistics based on
eigenvalues is carried out under two approaches. The first
considers the effects caused by impulsive noise and the second
evaluates the performance of the system using both the direct-
conversion receiver proposed in [12] and the conventional one.
In the most recent articles which assess the performance of
spectrum sensing in cognitive radio networks under impulsive
noise, there is no mention to the use of a receiver model that
considers realistic aspects in its implementation [22], [24].

Regarding studies on spectrum sensing in UCANs, a
receiver-initiated spectrum management system and a dynamic
control medium access control (MAC) channel are proposed
in [29] to mitigate congestion in the common control channel.
In [30], a new multi-layer algorithm for cooperative spectrum
sensing, based on compressive sensing, is designed to estimate
the spectrum in order to reduce the sampling rate and the
header of acoustic signals. The main objective of [8] is to
improve the accuracy of spectrum sensing by improving the
use of the underwater frequency spectrum through a model
based on energy detection with two thresholds and hard deci-
sion fusion, preventing attacks from malicious users. In [31],
a protocol for cooperative underwater spectrum sharing for a
centralized UCAN is proposed, consisting of two parts. The
first one checks the random occurrence of interference period-
ically, by dividing the time domain into frames consisting of
sensing and non-sensing subframes. The second part designs
two heuristic resource allocation algorithms.

B. Contributions and organization of the article

In this article, the performance of spectrum sensing with the
conventional receiver model is compared with the performance
attained by the DCR-based model. These receivers are sup-
posed to belong to a UCAN, thus being impaired by snapping
shrimp impulsive noise. The influence of the impulsive noise
statistics is also addressed by means of comparing its effect
under the SαS and the αSG distributions. More specifically,
the following investigations have been carried out:

• Study of the suitability of the SαS and αSG distributions
for modeling the snapping shrimp noise through statistical
analysis. Comparisons are made through the covariance
matrices and the autocorrelation functions of the noise
from SαS and αSG random number generators, as well as
from an audio file of real snapping shrimp noise, obtained
by data acquisition via hydrophone;

• Performance analysis of centralized cooperative spectrum
sensing (CSS) with data fusion subjected to SαS and αSG
noises. Conventional and DCR-based receiver models are
used to compare the performances of the energy detector
(ED), the absolute value cumulating (AVC) detector, the
Gerschgorin radii and centers ratio (GRCR) detector, the
Gini index detector (GID), the Pietra-Ricci index detector
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(PRIDe) and the locally most powerful invariant test
(LMPIT) detector.

This work merges and extends the research reported in [17]
and [27]. The merged part refers to the assessment of the
conventional and the DCR-based receiver models under SαS
and αSG noise. The extended part refers to the addition of
a large number of new results in which the spectrum sensing
performance is measured as a function of the main system
parameters, instead of using receiver operating characteristic
(ROC) curves, for all detectors considered in [27] and [17],
and for an additional detector, the AVC, claimed to be suitable
for the impulsive noise scenario.

The remainder of the article is organized as follows:
Section II addresses the distributions SαS and αSG, while
Section III presents a statistical analysis of computer-generated
noise samples following the SαS and αSG distributions and of
real recorded audio of the snapping shrimp noise. Section IV
is devoted to the models for the signals and systems adopted
in the spectrum sensing scenario. Simulation results regarding
the spectrum sensing performance are presented in Section V.
Section VI concludes the work.

II. SαS AND αSG NOISE MODELS

The SαS noise (SαSN) is formed by independent and
identically distributed samples from a particularization of the
α-stable distribution. This distribution has no general closed
form for its probability density function (PDF), but can be
described by the characteristic function [32]

Φ(ω) = exp {jδω − γ|ω|α[1 + jβsign(ω)κ(ω, α)]}, (1)

wherein κ(ω, α) = tan(πα/2) for α ̸= 1, or κ(ω, α) =
(2/π)log|ω| for α = 1, and sign(·) corresponds to the sign
function. The characteristic exponent α ∈ (0, 2] determines
the degree of impulsivity, which is inversely proportional to
its value. If α = 2, the PDF α-stable becomes Gaussian.
The scale parameter or scale factor γ ∈ (0,∞) controls
the noise level, which is associated with the dispersion of
the PDF, with a similar effect to the variance of a Gaussian
distribution. The location parameter δ ∈ R behaves similarly
to the mean for symmetric distributions and to the median for
skewed distributions. Finally, the symmetry parameter around
δ is β ∈ [−1, 1] [14].

Herein β = 0, yielding a symmetric PDF around δ,
which is denoted as SαS distribution. Additionally considering
δ = 0, (1) especializes to the characteristic function of the
SαS distribution. Such considerations culminates in the SαSN
model, which can be viewed as an additive white Gaussian
noise (AWGN) added to sporadic short-duration and high-
amplitude peaks [14].

When used to mimic the snapping shrimp noise, the SαSN
is unable to model the temporal correlation existing in this
type of noise, even if it has adherence to its amplitude
variations. The αSG distribution is a possible solution in terms
of also modeling the temporal correlation. The characteristic
function [15] of the αSG distribution is given by

Φw(ω) = exp
[
−
( 1

2ω
TMω

)α
2
]
, (2)

where w represents the time series following the αSG distribu-
tion, ω = [ω1 ω2 · · · ωn]

T is the n-dimensional independent
variable and M denotes the covariance matrix of w. The
operator T indicates transposition.

The α-sub-Gaussian noise with memory of order ξ, which
is hereafter denoted by the achronim αSGN(ξ), comes from
the (ξ + 1)-dimensional αSG distribution, corresponding to
a subclass of the SαS distribution with δ = β = 0,
which can be represented by the time series wt,ξ = wξ =
[wt−ξ wt−ξ+1 · · · wt]

T [15], [16]. This series corresponds
to a window composed of ξ + 1 samples starting from the
discrete-time instant t. Such noise is stationary and follows
the SαS distribution for the amplitude of each sample, with
any adjacent ξ + 1 samples following the αSG distribution,
which ensures that exists a temporal correlation among them,
which is determined by M.

The αSGN(ξ), as described herein, is parameterized by α
and by a symmetric Toeplitz covariance matrix, M, indepen-
dent of time. The scale factor γ is implicit in M.

III. STATISTICAL ANALYSIS OF SαSN AND αSGN

This section reports an analysis of the autocorrelation func-
tion and the covariance matrix of time series formed by audio
samples of a real snapping shrimp noise and by computer-
generated αSGN(ξ) and SαSN samples.

The normalized discrete autocovariance function [33, p. 31]
of the time series x = [x1 x2 · · · xn]

T of real random
variables is computed by Matlab via

C(k) =
1

σ2
xn

n−k∑
t=1

(xt − µx)(xt+k − µx), (3)

where σ2
x and µx are, respectively, the variance and the

estimated mean of the components of x, and k = 0, 1, 2, ...,K
is a discrete time lag with K << n. If µx = 0, C(k) is called
normalized discrete autocorrelation function.

The covariance matrix M of x, in its Toeplitz [33, p. 26]
form, is computed from (3), leading to

M̂ =


C(0) C(1) C(2) · · · C(K)
C(1) C(0) C(1) · · · C(K − 1)
C(2) C(1) C(0) · · · C(K − 2)

...
...

...
. . .

...
C(K) C(K − 1) C(K − 2) · · · C(0)

 . (4)

In [34] are given several routines related to generation and
parameter estimation of αSGN(ξ) samples. Two of them are
used herein. The first, named asgnfit, returns the estimates
of the normalized covariance matrix M̂n of the input vector,
as well as its parameters α and γ. This routine receives the
audio file and the desired memory order ξ as input parameters.
From M̂n, one can calculate [16] the covariance matrix of the
audio samples, M̂, which has been found to be

M̂ = γ2M̂n. (5)

It is noteworthy that, according to [34], the estimation of
the covariance matrix performed via the asgnfit routine is
limited to the dimensions (ξ + 1)×(ξ + 1) = 10×10.
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The impulsivity and scale parameters estimated for the noise
generated by the audio file were α = 1.53 and γ = 0.0074,
with the corresponding normalized covariance matrix M̂audio

n

given by

M̂audio
n =



1 0.639 0.035 −0.167 −0.065 −0.055 −0.140 −0.168 −0.177 −0.200
0.639 1 0.639 0.035 −0.167 −0.065 −0.055 −0.140 −0.168 −0.177
0.035 0.639 1 0.639 0.035 −0.167 −0.065 −0.055 −0.140 −0.168
−0.167 0.035 0.639 1 0.639 0.035 −0.167 −0.065 −0.055 −0.140
−0.065 −0.167 0.035 0.639 1 0.639 0.035 −0.167 −0.065 −0.055
−0.055 −0.065 −0.167 0.035 0.639 1 0.639 0.035 −0.167 −0.065
−0.140 −0.055 −0.065 −0.167 0.035 0.639 1 0.639 0.035 −0.167
−0.168 −0.140 −0.055 −0.065 −0.167 0.035 0.639 1 0.639 0.035
−0.177 −0.168 −0.140 −0.055 −0.065 −0.167 0.035 0.639 1 0.639
−0.200 −0.177 −0.168 −0.140 −0.055 −0.065 −0.167 0.035 0.639 1


.

The matrix M̂audio
n is identical to the one estimated from (3)

and (4), which allows to state that the procedure adopted by
the routine given in [34] also makes use of (3) and (4).

The other routine from [34] that is explored herein, named
asgn, generates n samples αSGN(ξ) based on the inputs rep-
resenting the desired α and covariance matrix. Using α = 1.53
and the previously-presented matrix M̂audio

n as inputs, the noise
αSGN(9) has been generated. With this noise as input to the
routine asgnfit, the covariance matrix M̂

αSGN(9)
n has been

subsequently estimated. The resulting matrix has been found
to be

M̂
αSGN(9)
n =



1 0.648 0.046 −0.179 −0.092 −0.063 −0.127 −0.158 −0.184 −0.218
0.648 1 0.648 0.046 −0.179 −0.092 −0.063 −0.127 −0.158 −0.184
0.046 0.648 1 0.648 0.046 −0.179 −0.092 −0.063 −0.127 −0.158
−0.179 0.046 0.648 1 0.648 0.046 −0.179 −0.092 −0.063 −0.127
−0.092 −0.179 0.046 0.648 1 0.648 0.046 −0.179 −0.092 −0.063
−0.063 −0.092 −0.179 0.046 0.648 1 0.648 0.046 −0.179 −0.092
−0.127 −0.063 −0.092 −0.179 0.046 0.648 1 0.648 0.046 −0.179
−0.158 −0.127 −0.063 −0.092 −0.179 0.046 0.648 1 0.648 0.046
−0.184 −0.158 −0.127 −0.063 −0.092 −0.179 0.046 0.648 1 0.648
−0.218 −0.184 −0.158 −0.127 −0.063 −0.092 −0.179 0.046 0.648 1


,

which is approximately equal to M̂audio
n , thus validating the

correct generation of αSGN(ξ) samples.
To complete the statistical analysis regarding the covari-

ance matrices, SαSN noise samples have been generated via
the Matlab’s random command, using as input the audio-
estimated parameters α = 1.53 and γ = 0.0074, β = δ = 0,
and the number of samples equal to the length of the audio
vector. Using the routine asgnfit of [34], the estimated
covariance matrix M̂SαSN

n has been

M̂SαSN
n =



1 0 −0.001 0 0 0 0 0 0 0
0 1 0 −0.001 0 0 0 0 0 0

−0.001 0 1 0 −0.001 0 0 0 0 0
0 −0.001 0 1 0 −0.001 0 0 0 0
0 0 −0.001 0 1 0 −0.001 0 0 0
0 0 0 −0.001 0 1 0 −0.001 0 0
0 0 0 0 −0.001 0 1 0 −0.001 0
0 0 0 0 0 −0.001 0 1 0 −0.001
0 0 0 0 0 0 −0.001 0 1 0
0 0 0 0 0 0 0 −0.001 0 1


.

Note that M̂SαSN
n is very close to an identity matrix, which

refers to a time series with zero correlation between adjacent
samples, as expected when generating SαSN samples via the
Matlab’s random command.

Fig. 1 presents the normalized autocorrelation functions,
obtained from (3), for the recorded snapping shrimp noise, for
the αSGN(9) noise and for the SαSN noise. Such functions
are plotted up to the time lag k = 20 for better visualization

of the most relevant region, which is located in the vicinity
of the discrete-time instant k = 0. In the three functions,
C(0) = 1, since they are normalized with respect to the time-
series average power σ2

x. As the value of k increases, the
autocorrelation decreases, showing that samples further apart
are less correlated, as expected. It is verified that there is
a close similarity between the values of C(k) for αSGN(9)
noise and for audio samples up to k = 10. This is an
expected outcome, as the dissimilarity is more evident for
k > 10 due to the fact that the asgn routine from [34], which
generates the αSGN(ξ), has maximum memory ξ = 9, thus
limiting the range of the input covariance matrix regarding
the representativeness of the entire correlation structure of the
reference audio noise. Also as expected, the autocorrelation
function of the SαSN samples is practically zero for k ̸= 0, a
consequence of the fact that adjacent samples generated by the
Matlab’s random command are time-uncorrelated. Moreover,
it is worth noting that the values of each of the autocorrelation
functions shown in Fig. 1 for k ≤ 9 are equal to the values in
the first row of each of the corresponding covariance matrices
M̂audio

n , M̂αSGN(9)
n and M̂SαSN

n .

(a) (b)

(c)

Fig. 1. Normalized discrete autocorrelation function of the snapping shrimp audio
samples (a), the αSGN(9) noise (b) and the SαSN noise (c), with a maximum time
lag of k = 20.

IV. SIGNALS AND SYSTEMS MODELS

This section describes the signal model for centralized CSS,
the conventional and the DCR-based receiver models, and the
test statistics whose performances are analyzed in Section V.

A. Conventional receiver model

In the centralized CSS with data fusion1, n samples from the
signal transmitted by the primary user (PU) are collected by

1Alternatively to the centralized CSS with data fusion, there is the central-
ized CSS with decision fusion, in which local decisions are made in each SU
and transmitted to the FC. At the FC, these local decisions are combined to
form the global decision on the occupation state of the sensed channel [3].
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each of the m cooperating SUs and transmitted to the fusion
center (FC) belonging to the secondary network. At the FC,
a test statistic is formed through the mn received samples,
and its value is compared with a decision threshold in order
to decide on the occupation state of the sensed band. In this
model, the matrix Y ∈ Cm×n containing the samples received
at FC is given by

Y = hxT +V +W, (6)

where the vector x ∈ Cn×1 that models the PU signal is
composed of n complex Gaussian samples with zero mean and
variance defined according to the average signal-to-noise ratio
(SNR) across the SUs. The adoption of samples with Gaussian
distribution matches the behavior of the envelope fluctuations
of many modulated and filtered signals. The channel vector h
∈ Cm×1 contains elements hi, i = 1, 2, ...,m, characterizing
the gains of the sensing channel between the PU and the i-th
SU. This vector is given by

h = Ga, (7)

where a ∈ Cm×1 is a vector formed by complex Gaussian
random variables ai with mean

√
κ/(2κ+ 2) and variance

1/(κ + 1), where κ models the Rice factor of the channel
between the PU and each SU. It is assumed that the elements
hi are constant during the sensing interval and independent and
identically distributed between consecutive sensing rounds. It
is also assumed that the bandwidth of the primary signal is
smaller than the coherence bandwidth of the sensing channel,
which corresponds to a flat fading channel.

The matrix G ∈ Rm×m in (7) is given by

G = diag

(√
p

pavg

)
, (8)

where p = [p1 p2 · · · pm]T is the vector with the re-
ceived signal powers at the SUs and pavg = 1

m

∑m
i=1 pi.

When considering different and time-varying received signal
power levels across the SUs, pi is uniformly distributed in
[(1 − ρS)pavg, (1 + ρS)pavg] in each sensing round, where
0 ≤ ρS < 1 is a configurable fraction of the received signal
power variations around the average.

The matrices V and W in (6) account for the noise
present in the system, with V ∈ Cm×n representing the
AWGN noise and W ∈ Cm×n representing the SαSN or
αSGN(ξ) impulsive noise samples. The elements in the i-th
row of V are independent and identically distributed Gaussian
random variables, with zero mean and time-varying variance
σ2
i following a uniform distribution around the mean σ2

avg, in
the range [(1 − ρN )σ2

avg, (1 + ρN )σ2
avg], with 0 ≤ ρN < 1

and σ2
avg = 1

m

∑m
i=1 σ

2
i .

The SNR, in dB, averaged across the SUs is given by

SNR = 10log10

(
pavg
σ2
avg

)
. (9)

B. Direct-conversion receiver model

The DCR-based CSS model proposed in [13] is grounded
on the structure of a typical direct-conversion receiver, whose

details were omitted here for brevity. This structure gave rise
to the model shown in Fig. 2, which is used as a basis for
computer simulations of CSS with data fusion. The model
takes into account the main signal processing tasks performed
at the SUs’ receivers and at the FC, namely: filtering, residual
DC-offset addition, automatic gain control, noise whitening,
analog-to-digital conversion (quantization), test statistic com-
putation and spectrum occupancy decision.

Fig. 2. DCR-based model for CSS with data fusion [13].

The i-th row of the matrix Y, which is denoted by yT
i ,

for i = 1, ...,m, goes through a moving-average (MA) filter
whose impulse response has length L. This filter models all
filtering effects on the signals transmitted and received.

The samples in the output of each of the MA filters are
added to residual DC-offset samples, modeling the effect
of the residual direct-current (DC) delivered by typical DC-
offset compensation strategies. As the name suggests, the DC-
offset is a DC value added to the desired signal primarily
due to local-oscillator self-mixing and in-band interfering
signals [12]. The variance of the DC-offset samples, σ2

dc, is
determined according to the signal-to-DC-offset ratio (SDCR),
whose value, in dB, is given by

SDCR = 10log10

(
pavg
σ2
dc

)
. (10)

The automatic gain control (AGC) combines the ampli-
fication stages promoted by the receiver. In the i-th SU,
i = 1, 2, ...,m, the gain is defined as

gi =
fod

√
2n

6∥yi∥
, (11)

where ∥ · ∥ represents the Euclidean norm and fod is the
overdrive factor that models the different signal clipping levels
present in real analog-to-digital converters (ADCs).

The samples corrupted by DC-offset are then digitized be-
fore noise whitening [35], a step that aims to reduce the degree
of correlation induced by filtering effects at the transmitter, at
the channel and at the input of the receiver. Noise whitening
is sensitive to low resolution and needs to be done under high
resolution. After that, the already whitened samples undergo
a new quantization process with low resolution for data
transmission to the FC, thus occupying a smaller bandwidth in
the control channel used for such a transmission; an error-free
control channel is considered herein. In practice, it might be
convenient to perform noise whitening at the FC to alleviate



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO. 1, 2023. 39

the processing burden at the SUs. The present model applies
in both localizations of whitening.

Inside the ‘Whitening and Quantization’ block shown in
Fig. 2, the whitening filter [35] matrix B ∈ Rn×n that
multiplies the version of Y, which has been modified by the
AGC and quantization, is given by

B = UL−1, (12)

where U is an orthogonal arbitrary matrix obtained by singular
value decomposition of the covariance matrix Q ∈ Rn×n,
which is associated with the impulse response of the MA filter.
The elements of Q are

Qij = q|i−j|, (13)

for i, j = 1, 2, ..., n, with qk denoting the discrete auto-
correlation function of the MA filter impulse response, i.e.,
qk = 1 − k/L for k ≤ L, and qk = 0 otherwise, for
k = 0, 1, ..., (n− 1). The matrix L in (12) is the lower trian-
gular matrix obtained from the Cholesky decomposition of Q.
The desired power levels are ensured by setting the impulse
response of the MA filter to zl = 1/

√
L for l = 1, ..., L.

C. Test statistics

Spectrum sensing corresponds to a binary hypothesis test in
which the null hypothesis H0 is associated with the absence
of the primary signal in the sensed band and the alternative
hypothesis H1 is associated with the presence of the primary
signal. The test is performed by comparing a test statistic T
with a decision threshold λ. If T > λ, the hypothesis H0 is
rejected. Otherwise, H0 is accepted.

Hereafter, in terms of the DCR model shown in Fig. 2, the
elements of Y are those obtained after MA filtering, DC-offset
addition, AGC, whitening and quantization. If the conventional
model is adopted, Y contains the received samples free from
any hardware-related signal processing.

The ED test statistic, considering centralized CSS with data
fusion in the conventional model, is given by [3]

TED =

m∑
i=1

1
σ2
i

n∑
j=1

|yij |2, (14)

where σ2
i is the Gaussian noise variance at the i-th SU and

yij denotes the j-th sample collected by the i-th SU, which
composes the matrix Y defined in (6).

Considering the DCR, the ED test statistic becomes

TEDdcr
=

m∑
i=1

1
g2
iσ

2
i

n∑
j=1

|yij |2, (15)

where gi is the variable corresponding to the composition of
gains established by the AGC in the i-th SU [13], as defined
in (11).

The test statistic of the AVC detector [36], [37], which is
formed at the FC in the case of centralized CSS with data
fusion, in the conventional model is given by

TAVC =

m∑
i=1

1
σi

n∑
j=1

|yij |. (16)

Considering the DCR-based spectrum sensor model, the
AVC test statistic becomes

TAVCdcr
=

m∑
i=1

1
giσi

n∑
j=1

|yij |. (17)

The other test statistics considered hereafter are built from
the sample covariance matrix (SCM) of the received signal,
which is computed at the FC2 as

R̂ =
1
n
YY†, (18)

where † denotes complex conjugate and transpose.
The test statistic of the GRCR detector [38] is given by

TGRCR =

m∑
i=1

m∑
j=1,j ̸=i

|rij |

m∑
i=1

rii

, (19)

where rij is the element in the i-th row and j-th column of
the SCM matrix, R̂.

The test statistics of the GID [39] and PRIDe [40] detectors
are given respectively by

TGID =

m2∑
i=1

|ri|

m2∑
i=1

m2∑
j=1

|ri − rj |
(20)

and

TPRIDe =

m2∑
i=1

|ri|

m2∑
i=1

|ri − r̄|
, (21)

where ri is the i-th element of the vector r formed by stacking
the columns of R̂ and r̄ = (1/m2)

∑m2

i=1 ri.
For the LMPIT [41] detector, the test statistic is

TLMPIT =

m∑
i=1

m∑
j=1

|cij |2, (22)

where cij is the element in the i-th row and j-th column of the
matrix C = E−1/2R̂E−1/2, with E being a diagonal matrix
whose elements are equal to the main diagonal of the SCM.

According to [13], the GRCR, GID, PRIDe and LMPIT
detectors have low computational complexity. They are also
blind, in the sense that no information is needed about the PU
signal, nor the noise variance. The ED and the AVC are semi-
blind, since they require no information about the PU signal,
but make use of the noise level information (respectively
the noise variance and its standard deviation). The GRCR,
GID, PRIDe and LMPIT detectors are also considered robust

2In terms of the DCR model shown in Fig. 2, the SCM is computed inside
the block ‘Test Statistic’, if the detector is based on the SCM.
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detectors because they attains little or no change in their
performances with the temporal variation of the noise variance,
the received signal power or both [3].

V. SPECTRUM SENSING PERFORMANCE RESULTS

This section presents computer simulation results of the
centralized CSS with data fusion. Conventional and DCR-
based receiver models are compared, in the absence and
presence of impulsive noise, for the detectors ED, AVC,
GRCR, GID, PRIDe and LMPIT.

Spectrum sensing performance is often measured by means
of the probability of detection, Pd, and the probability of
false alarm, Pfa [3]. Pd is the probability of deciding that
the primary signal is present in the sensed band, when it is
actually present, whereas Pfa is the probability of deciding
that such a signal is present, when it is, in fact, absent.

The results reported in this section give, for each of the
above-mentioned test statistics, the values of Pd obtained
according to the variation of the most relevant system parame-
ters, assuming Pfa = 0.1 [42]. Each point on a curve has been
generated from 10000 Monte Carlo events, which corresponds
to the generation of the same number of each test statistic
under the hypotheses H0 and H1. Following [13], a confidence
interval analysis has been carried out by means of the binomial
proportion confidence interval for single proportion, using the
Matlab function binofit, which adopts the Clopper-Pearson
method [43]. The maximum confidence interval, which is
associated to an estimate of Pd equal to 0.5, is 0.0197,
conferring adequate accuracy to the analyses of the results
presented herein. The Matlab code used to generate these
results can be retrieved from [44].

Taking the conventional receiver as the reference in the
absence of impulsive noise, the value of the average SNR or
the number of samples, n, has been adjusted, in some cases, so
that the best detector yields Pd ≈ 0.9 at the mid-value of the
system parameter being analyzed. By doing so, the variations
caused in Pd by the values below or above this mid-value
can be easily analyzed. When fixed, the system parameters
are: m = 6 SUs, n = 140 samples, SNR = −10 dB, SDCR
= 5 dB, Nq = 8 quantization levels (3 bits), overdrive factor
fod = 1.2, filter impulse response length L = n/10, fractions
of signal and noise variations ρS = 0.9 and ρN = 0.45,
respectively, and Rice factor κ = 3 dB [45].

The parameters related to the impulsive noise have been
estimated as described in Section III. The value of the charac-
teristic exponent has been kept fixed as α = 1.53, whereas the
scale factor has been adjusted to γ = 0.15, so that the influence
of impulsive noise in the spectrum sensing performance is
clearly perceived in the graphs.

Figs. 3 to 9 shows Pd as a function of the following
system configuration parameters: number of secondary users,
m; number of samples collected by each SU during each
sensing interval, n; average signal-to-noise ratio, SNR; over-
drive factor, fod; signal-to-DC-offset ratio, SDCR; MA filter
impulse response length, L, and number of quantization bits,
log2Nq, with Nq being the number of quantization levels. Figs.
3 to 5 each have three pairs of graphs assuming the absence

and presence of impulsive noise, whether SαSN or αSGN(9).
Each pair gives performance results of the detectors when the
conventional receiver model (on the left) or the DCR model
(on the right) is adopted. Figs. 6 to 9 show Pd as a function
of parameters present exclusively in the DCR model.

Before any further interpretations of the results are pre-
sented, it is important to highlight that a given detector does
not have its performance influenced in the same way as another
detector for the same system setting and the same variation
of a given parameter, since the received signal samples are
processed in different ways by the test statistics, thus resulting
in different behaviors among the detectors.

Fig. 3 gives Pd versus m. In the conventional receiver model
(left-hand side graphs), it can be seen, as expected, that Pd

increases with an increase in m, but in different proportions
for the different detectors. This is justified by the directly
proportional relationship between the spatial diversity gain and
the number of SUs in cooperation. The ED achieves useless
performance when submitted to both impulsive noise types.
The AVC do the same when impaired by αSGN(9). When
the DCR model is considered (right-hand side graphs), the
patterns of the curves are similar to that of the conventional
model (on the left), except for the AVC, whose performance
in the presence of SαSN is also useless. It is noteworthy that
impulsive noise introduces a performance loss in all detectors
when compared under the same receiver model in the absence
of impulsive noise.

Fig. 3a, which corresponds to the absence of impulsive
noise, is in accordance with the results reported in [13], thus
serving also as a validation of the simulations used herein. It
can be noticed the performance worsening for all detectors
from the conventional to the DCR model. Notice that the
worsening is more pronounced for the detectors AVC and ED.

From Figs. 3b and 3c, which consider impulsive noise, it
can be seen that the performances of the GID, PRIDe and
GRCR have suffered less reduction under the DCR model
than under the conventional receiver model for both impulsive
noise types, taking the absence of impulsive noise as reference,
whereas the opposite occurred with the LMPIT, and with the
AVC under SαSN. The ED has been maintained useless when
impaired by any of the impulsive noise types. There is also
a change in the performance rating of the detectors, from the
conventional to the DCR model. In both models, the AVC and
the ED unveiled significant sensitivity to impulsive noise, with
the former slightly outperforming the latter in the conventional
model, under SαSN. The GID and PRIDe, on the other hand,
deserve special attention as they yielded, in the most realistic
scenario in which the DCR model is used, greater robustness
against impulsive noise.

The effects on Pd when n is varied are shown in Fig. 4. As
expected, for the conventional (left) and DCR (right) models,
most detectors, even if in different proportions, showed an
improvement in performance with the increase of n. This is
justified due to the greater amount of samples collected by
each SU, in a given sensing interval, for a fixed sampling
rate, enhancing the accuracy in the decision by the occupation
state of the licensed band. Again, in the conventional model,
the exception is in the performance of the ED, under both im-
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(a) Absence of impulsive noise.

(b) Presence of SαSN.

(c) Presence of αSGN(9).

Fig. 3. Probability of detection, Pd, versus number of SUs, m, for SNR = −10.75
dB: conventional model (left), DCR model (right). This figure is better viewed in color.

pulsive noises, and of the AVC, under αSGN(9). Such curves
remained invariant with the variation of n. This behavior is
repeated in the DCR model for the performance of the ED
and AVC detectors submitted to both SαSN and αSGN(9).

Fig. 4a shows the expected performance degradation from
the conventional to the DCR-based receiver model in the
absence of impulsive noise, which is in agreement with Fig.
3a and [13].

When impulsive noise is present, as depicted in Figs. 4b
and 4c, the GID, PRIDe and GRCR detectors attained a
less pronounced performance degradation under the DCR
model (right) than in the case of the conventional model,
taking the conventional model without impulsive noise as the
reference. The LMPIT, in this same aspect, suffered more

(a) Absence of impulsive noise.

(b) Presence of SαSN.

(c) Presence of αSGN(9).

Fig. 4. Probability of detection, Pd, versus number of samples, n, for SNR = −12.25
dB: conventional model (left), DCR model (right). This figure is better viewed in color.

severe degradation. Again, in the more realistic scenario in
which the DCR model is used, the GID and PRIDe detectors
stand out for being quite robust to impulsive noise. On the
other hand, the ED and the AVC unveiled, once again, poor
performance in the presence of impulsive noise, both in the
conventional and in the DCR models.

The results depicted in Fig. 5 show that Pd increases with
the SNR, as expected, unless the robustness of a detector
against impulsive noise is poor to the point of preventing or
diminishing the notability of this behavior.

From Fig. 5 it can be also seen that, when the conventional
model is considered (left-hand graphs), the AVC and the
ED are quite sensitive to impulsive noise, with the former
mildly outperforming the latter in presence of αSGN(9), and
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(a) Absence of impulsive noise.

(b) Presence of SαSN.

(c) Presence of αSGN(9).

Fig. 5. Probability of detection, Pd, versus average SNR for n = 150: conventional
model (left), DCR model (right). This figure is better viewed in color.

outperforming more noticeably when the SαSN is present.
When the DCR model is adopted (right), these detectors are
still sensitive to impulsive noise, but there is no significant
performance difference between them.

In Fig. 5a, as already reported in [13], and in Figs. 3a and 4a,
it can be verified the degradation imposed by the DCR model
with respect to the conventional. In Figs. 5b and 5c, when the
DCR model (right) is compared with the conventional model
(left), it is observed a lower sensitivity to impulsive noise for
the detectors GID, PRIDe and GRCR, as well as a greater
sensitivity of the LMPIT, in this same condition, in relation to
the absence of impulsive noise. The SαSN causes a significant
performance loss in the AVC under the DCR model with
respect to the conventional, without impulsive noise, whereas

this loss is less pronounced when the αSGN(9) is present.
Again, the GID and PRIDe detectors stood out from the others
in the most realistic situation corresponding to the use of DCR-
based model, whereas the AVC and the ED proved to have low
robustness against impulsive noise.

Fig. 6 shows a negligible performance variation of all
detectors as the overdrive factor, fod, is changed. They all
exhibit curves with a certain concavity. For smaller values of
fod, the signal excursion is smaller than the dynamic range of
the ADC, causing a performance reduction due to the fact that
such signal crosses a smaller number of quantization levels.
For large values of fod, there is the possibility of strong signal
clipping, thus reducing the performance.

(a) Absence of impulsive noise. (b) Presence of SαSN.

(c) Presence of αSGN(9).

Fig. 6. Probability of detection, Pd, versus overdrive factor, fod: DCR model. This
figure is better viewed in color.

For the DCR model, one can see, in Fig. 6a, an anomalous
behavior in the ED and AVC curves, in the absence of
impulsive noise. This is because quantization also affects the
noise variance information used to compute both test statistics,
which portrays another form of performance loss in addition
to those that are caused by lower and higher values of fod.

Figs. 6b and 6c show that there is a smaller performance loss
of the GID and PRIDe detectors, in comparison to absence of
impulsive noise, becoming more accentuated under SαSN than
under αSGN(9). On the other hand, the LMPIT and GRCR
detectors attained a slightly more accentuated loss under both
impulsive noise models. Once again, the ED and the AVC
proved to be significantly sensitive to impulsive noise in the
most realistic scenario that adopts the DCR model, while the
GID and the PRIDe showed evident robustness in this scenario.
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Fig. 7 gives Pd versus the SDCR. As expected, lower values
of SDCR return worse performances. In general, for most of
the detectors in analysis, the increase of Pd with the SDCR
occurs up to ≈ −5 dB. Beyond this value, Pd remains approx-
imately invariant, indicating that the corresponding residual
DC-offset is not capable of causing performance degradation.

(a) Absence of impulsive noise. (b) Presence of SαSN.

(c) Presence of αSGN(9).

Fig. 7. Probability of detection, Pd, versus average SDCR: DCR model. This figure is
better viewed in color.

It is also observed in Figs. 7b and 7c that, under im-
pulsive noise, there is less evident performance deterioration
of the GID and PRIDe detectors, with a higher sensitivity
of the LMPIT and the GRCR. The GID attains a superior
performance, followed respectively by the PRIDe, the LMPIT
and the GRCR. When impaired by SαSN and αSGN(9),
the ED and the AVC are considerably prone to impulsive
noise, attaining the worst performances when compared to the
scenario without impulsive noise.

Fig. 8 shows how Pd is influenced by the resolution (number
of bits, log2Nq) adopted to digitize the samples transmitted
from the SUs to the FC. As expected, the performances of
all detectors improve with the increase of this resolution. It
can be also seen in all graphs of Fig. 8 that the spectrum
sensing performance practically does not improve beyond a
3-bit resolution, meaning that eight quantization levels are
enough to represent the samples sent to the FC, a result that
is consistent with [12].

Fig. 8a, which considers the absence of impulsive noise,
shows the AVC and the ED with the poorest performances for
1-bit resolution, but overcoming the LMPIT and the GRCR
above 3 bits. The GID and the PRIDe perform better than the

(a) Absence of impulsive noise. (b) Presence of SαSN.

(c) Presence of αSGN(9).

Fig. 8. Probability of detection, Pd, versus number of quantization bits, log2Nq: DCR
model. This figure is better viewed in color.

others for any number of quantization bits.
From Figs. 8b and 8c, it can be seen that the patterns of the

curves of the GID, PRIDe, LMPIT and GRCR performances,
is repeated in the presence of SαSN and αSGN(9), except
for the less accentuated worsening caused by αSGN(9), in all
detectors, in comparison to the absence of impulsive noise.
The ED and the AVC unveiled a similar behavior, that is, they
returned the worst performances under SαSN and αSGN(9).

The effects of the impulse response length L of the MA filter
on Pd are shown in Fig. 9. There is a mild performance de-
crease with the increase of L for the GID, PRIDe, LMPIT and
GRCR detectors, and a little more accentuated performance
decrease for the ED and for the AVC at higher values of L, in
the absence of impulsive noise, as shown in Fig. 9a. The higher
the value of L, the higher becomes the temporal correlation
between adjacent signal samples, which makes the whitening
process to become unable to fully restore the decorrelation,
which in turn compromises the spectrum sensing performance.

As can be seen in Figs. 9b and 9c, the ED and the AVC again
achieve the worst performances when impaired by impulsive
noise. And once again, a less accentuated performance wors-
ening is being caused by the αSGN(9) for all detectors, when
compared to that caused by the SαSN, taking the absence
of impulsive noise as the reference. The GID and the PRIDe
deserve special attention once again, because they unveiled
significant robustness against impulsive noise in the most
realistic situation that considers the use of a DCR.

Finally, based on the statistical analyses of the impulsive
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(a) Absence of impulsive noise. (b) Presence of SαSN.

(c) Presence of αSGN(9).

Fig. 9. Probability of detection, Pd, versus impulse response length of the MA filter,
L: DCR model. This figure is better viewed in color.

noise models and on the spectrum sensing performance assess-
ment, it has been found that the αSG distribution better suits
to model the snapping shrimp impulsive noise than the SαS
distribution. However, the main disadvantage of the algorithm
described in [34] to generate αSGN(9) samples is its high
computational burden. This is illustrated in Fig. 10, which
shows the time spent to generate SαSN and αSGN(9) noise
samples. The SαSN samples have been generated using the
Matlab’s random function and the time measurements has
been made via the Matlab’s tic-toc function. For example,
for n = 5000 samples, the time spent by the αSGN(9)
generator is ≈ 100 times larger than in the case of the SαSN
generator. Fig. 10 has been constructed using a computer with
the Intel Core i5-4210U CPU @ 1.70 GHz, with 8 GB of
RAM, running Matlab version R2019a.

VI. CONCLUSIONS

This work has assessed the performance of centralized co-
operative spectrum sensing with data fusion, under symmetric
α-stable and α-sub-Gaussian impulsive noises, using a con-
ventional and a direct-conversion sensor receiver model. The
performances of the detectors ED, AVC, GRCR, GID, PRIDe
and LMPIT were compared under different receiver and noise
models, in the context of underwater acoustic communications.

The suitability of the SαS and αSG distributions has been
addressed to model the snapping shrimp impulsive noise, a
form of noise that can affect the performance of underwater
spectrum sensing. Results revealed that there is a correlation

Fig. 10. Time spent (in seconds) to generate SαSN and αSGN(9) samples.

among the samples of the real snapping shrimp noise, which
can be adequately modeled by the αSG distribution. The SαS
distribution, although adequately models the amplitude varia-
tions of the snapping shrimp noise, does not take into account
the temporal correlation between adjacent noise samples.

Although there is a great adherence between a real snapping
shrimp noise and αSGN samples, the time required to generate
SαSN samples is significantly smaller than in the case of
αSGN samples.

The DCR model, in the absence of impulsive noise, intro-
duces degradation in the performance of all detectors when
compared to the conventional model. The ED and the AVC
have showed a more accentuated degradation due to the
received signal processing steps considered in the DCR and
its influences in the computation of both test statistics. The
LMPIT and GRCR detectors have showed a similar behavior,
with the former slightly outperforming the latter according to
the variation of all parameters using the DCR model.

In the presence of impulsive noise, the results showed that
not modeling the temporal correlation causes the performance
to be underestimated for most of the detectors analyzed,
whether in the conventional or the DCR model.

As for the specific parameters of the DCR model, even in
the presence of impulsive noise, the signal-to-DC-offset ratio
and the number of quantization levels have produced quite
significant spectrum sensing performance variations, when
compared to the other parameters. For most of the detectors,
three quantization bits are sufficient to represent the digitized
samples to be transmitted from the SUs to the FC.

We highlight that the ED and the AVC unveiled low
robustness against impulsive noise for any variations of the
parameters that are part of the DCR model.

The detectors GID and PRIDe have been highlighted from
the other ones, as they have yielded, in the most realistic
scenario in which the DCR model is used, greater robustness
against impulsive noise. This is an indication that actual
implementations of these detectors can result in spectrum
sensors very robust against impulsive noise.

Given the large computational burden of the routine used to
generate αSGN samples, it is an interesting research oppor-
tunity to develop an alternative routine, aiming at a reduced
processing time.

The assessment of other detectors for spectrum sensing
adopting the models and procedures described herein also
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represents an opportunity for contributions.
The hardware implementation of a detector, especially the

GID and the PRIDe, can be used to validate the DCR-based
model and bring new insights and conclusions from an even
more practical standpoint.
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[13] D. A. Guimarães and E. J. T. Pereira, “Influence of a direct-conversion
receiver model on the performance of detectors for spectrum sensing,”
Journal of Communication and Information Systems, vol. 36, no. 1, p.
173–183, Nov. 2021, doi: 10.14209/jcis.2021.19.

[14] P. Georgiou, P. Tsakalides, and C. Kyriakakis, “Alpha-stable modeling
of noise and robust time-delay estimation in the presence of impulsive
noise,” IEEE Transactions on Multimedia, vol. 1, no. 3, pp. 291–301,
1999, doi: 10.1109/6046.784467.

[15] A. Mahmood and M. Chitre, “Modeling colored impulsive noise by
Markov chains and alpha-stable processes,” in OCEANS 2015 - Genova,
2015, pp. 1–7, doi: 10.1109/OCEANS-Genova.2015.7271550.

[16] ——, “Optimal and near-optimal detection in bursty impulsive noise,”
IEEE Journal of Oceanic Engineering, vol. 42, no. 3, pp. 639–653, 2017,
doi: 10.1109/JOE.2016.2603790.

[17] L. G. B. Guedes and D. A. Guimarães, “Análise das distribuições
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