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UWB Radar Applied to Lane Occupation and
Vehicle Classification

Marcelo Bender Perotoni, Claudio José Bordin Jr., Fernando de A. Castilho, and Gustavo Y. M. Vieira.

Abstract—This article describes the use of a commercial UWB
radar for vehicle classification and lane occupation detection
using real-world data acquired in an urban environment. We
compare two radar image processing schemes: one based on
deep learning using raw data produced by the radar, and a
second method employing machine learning algorithms, such
as KNeighbors and Naive Bayes, using features extracted from
raw data. We verify experimentally that both schemes lead to
reasonably accurate estimates without the need of large training
sets.

Index Terms—UWRB; 5-11 GHz Radar; Vehicle classification;
Machine Learning; Deep Learning.

I. INTRODUCTION

He concept of ultra-wide band (UWB) was first proposed

in the Los Alamos National Laboratory, in 1990, and
is defined as a signal whose bandwidth is at least 25% of
its central frequency [1]. It has been proposed as a way to
offer micro-location, complementing global positioning sys-
tem (GPS) services, which allows outdoor location and have
become a default in electronic appliances. The Micro-location
is also achieved using other alternatives, such as Bluetooth
low-energy (BLE) or WiFi, but in contrast to these two
techniques, which depend on received signal strength indicator
(RSSI) to determine positions, UWB is based on temporal
measurements performed on short pulses in the time domain
[2]. The short pulse implies a large bandwidth, so usually
UWB requires bandwidths above 500 MHz. Particularly in
intelligent transport systems (ITS), UWB offers advantages
because of the nature of its location is less sensitive to
spoofing [3]. Security is crucial in ITS applications due to
the high risk involved in vehicles at high speeds. UWB radar,
in turn, involves a different approach in comparison to its
counterparts based on classical narrowband signals, since the
emphasis is on the time-domain shape of the echo return [4],
which is more difficult to be hacked and interfered with. UWB
radars are reported in several applications, for instance, in [5]
target classification is performed by directly correlating, in the
time domain, the measured echo with that of different types of
targets (e.g., metal and wood plates, cars, etc.). With the goal
of counting people, an impulse radio (IR) UWB was tested
with two Novelda radars and Raspberry Pi 2 modules, using
high-gain antennas (10° azimuth angle) [6]. A commercial
Salsa Ancho UWB radar was used to solve a robot-tracking
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simultaneous localization and mapping (SLAM) problem, by
applying a bio-mimetic approach, similar to the one used by
bats with sound waves [7]. A Salsa Cayenne UWB radar was
employed as a sensor to characterize metal defects based on
the return echo by means of the principal component anal-
ysis (PCA) in [8]. Tracking multiple targets with multistatic
UWRB radars using triangulation was presented in [9], with a
frequency range of 7 GHz, in an area of 100 m?. The push
towards UWB in vehicles was reported back in 2007 [10],
where a 90-nm complementary metal-oxide—semiconductor
(CMOS) technology was used as basis for a 22-29 GHz
UWRB chip, conceived for the specific use in short-range anti-
collision vehicular radars.

In this work, the development of an optimal vehicle classi-
fier using classical detection theory [11] would be prohibitively
complex due to the multitude of possible targets. With this in
mind, we resort to machine learning techniques [12]. In [13] a
Novelda X2 radar chip signal was used for robot visualization,
intended to smart manufacturing applications using a convo-
Iutional neural network (CNN). A CNN method, also using
UWRB signals, was shown to outperform traditional threshold
localization methods and CNN-only techniques by simulation-
only results using a three-receivers and one-transmitter sce-
nario [14]. In [15], CNNs and other machine learning methods
were employed for indoor object classification from UWB
radar images. Advantages of UWB for general radar target
recognition were covered in [1], with either classical (e.g.,
based on impulse and natural responses of the target) or
machine learning based methods [16].

This article innovates by using real-world data produced by
a commercial UWB radar in an ITS application that comprises
identification of the occupied lane and vehicle type with
three different classes (motorcycles, cars, and trucks). We
also innovate by comparing the performance of CNNs and
machine learning algorithms [12], such as KNeighbors and
Naive Bayes, using a simple feature extraction scheme for
the classification tasks. Differently from [16], the techniques
proposed in this article do not demand multiple successive
radar measurements to operate and, once trained, are more
suitable for real-time applications.

The remainder of the text is organized as follows: The
hardware is presented in terms of building blocks (Section II),
as well as the data acquisition methodology. Then, the scenario
in which data was collected (Section III) and the proposed
classification approaches (Section IV) are described. Next,
the results (Section V) are discussed and some conclusions
are drawn (Section VI) in regard to the particularities of
the observed experiment. Finally, an appendix discusses the
conversion of the raw exported data to actual length units.
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Fig. 1. Block diagram of the RX and TX branches of the UWB IC.

II. HARDWARE

The deployed UWB radar is a commercial unit named Salsa
Onza, based on the Xe Thru X4 System on a Chip (SoC).
This specific unit is not sold anymore, but a similar version
(named SLMX4), operating in a lower frequency range (1.4
GHz to 7.29 GHz) costs USD 425. A board containing the
X4 chip can be found under USD 100, leaving the developer
with the need to interface the digital pins that receive the
reflected pulses. Salsa Onza follows a concept called Strobed
Sampling, where the electromagnetic echo is sampled after a
determined time offset. The integrated circuit (IC) transmits
a maximum output power of -14 dBm, compliant to both
Federal Communications Commission (FCC) and European
Telecommunications Standards Institute (ETSI) standards, and
can achieve a nominal spatial resolution of 6.4 mm, using
a sampling rate of 23.3 GS/s. The IC block diagram of
the radio frequency (RF) front end is depicted in Fig. 1,
where the differential input and output ports (100 §2) connect
to external antennas/amplifiers/filters and, the received pulse,
after converted to the digital domain by 1536 samplers, is
further down-converted and decimated. The digital-to-analog
converter (DAC) in the middle of the block diagram controls
direct current (DC) offsets in the received pulse. Along the
transmitter side, pulses in time domain are generated at
the pulse-repetition frequency (PRF) of 60.75 MHz. Time
coherence is assured by using the same reference for both
transmitter and receiver branches, symbolized by a crystal
symbol in the diagram. Communication with external circuits
is made by means of an serial peripheral interface (SPI) with
4 or 6 wires.

A BeagleBone [17] board connects to the radar IC board,
which in turn communicates to a host computer by means
of USB or an Ethernet RJ45 connector. The frequency range
of this particular unit ranges from 5 to 11 GHz, and it has
two planar linear tapered slot antennas, whose gains can be
estimated around 9 dB on the average in the frequency range.
The complete radar is shown in Fig. 2.

The radar board has a native application programming
interface (API), with Matlab and Python wrappers. However,

Fig. 2. UWB Radar used in the test along a ruler for size reference.

we used instead its browser application named SalsaScope,
which captures the reflected pulse and enables setting some
of the radar internal registers from an ordinary web browser.
The application shows in real time the reflected signal (vertical
axis proportional to voltage and horizontal to time or space).
The reflected signal is exported as a CSV file, with the format
shown in Fig. 3. Basically, data is organized into a matrix
M, with columns (bins) representing the space scale (known
in radar jargon as fast time) and rows (frames) representing
the time scale (known as slow time). The number of bins
(1536) is defined by the number of board internal samplers
and corresponds to a maximum range of approximately 9
meters. The number of frames, in turn, is proportional to the
acquisition time. Fig. 3 also shows the visualization of a real
target, in movement. Notice that there is a constant clutter
[18] on the left part of the figure. At the plot center, target
reflections are visible, moving leftwards.

Besides commercial UWB radars, the literature reports other
options where UWB pulses are generated at the circuit level.
A popular technique employs non-linear devices such as step-
recovery diode (SRD) [19], [20], [21], with help of transmis-
sion lines and P-type intrinsic N-type (PIN) switching diodes.
In case a foundry is available for microelectronic processing,
CMOS circuits have been used for the fast pulse generation,
employing pulse compression implemented with digital logic
blocks [22], or analog circuits operating in baseband [23].

III. DATA ACQUISITION METHODOLOGY

The radar was orthogonally positioned across a three-lane
(named L1 to L3) urban avenue, each lane 2.9 meters wide,
as shown in Fig. 4, and the return signal generated by each
vehicle was recorded in CSV files. We performed a first visual
analysis of the acquired signals and discarded measurements
containing stray echoes from secondary vehicles.

Another issue affecting the proposed methods is the pres-
ence of vehicles outlying dimensions, such as large VW
Vans that should be classified as a car and large Harley-type
motorcycles. Their return signals occupy ranges close to larger
vehicles, hampering the classification. Fig. 5 displays the echo
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Fig. 3. Top: radar exported dataset format, forming a matrix M. Bottom:
example of a real vehicle echo signal.

(i.e., the row of M with the maximum amplitude) due to a
VW Van. Note that the return signal is much larger than that
of cars on the same lane. Large SUV (sport utility vehicles)
are also prone to generate misclassifications. To combat this
issue, we discarded all measurements that did not correspond
to vehicles that could not unequivocally be classified as cars,
motorcycles, or trucks.

After those initial screening procedures, we kept a total
of 112 vehicles echoes, with true classification as shown in
Table I. There is a larger proportion of cars in contrast to
heavier vehicles since measurements were made in an urban
area due to security and safety concerns.

TABLE 1
NUMBER OF MEASUREMENTS PER CLASS
Lane Motorcycles Cars Trucks
L1 3 29 1
L2 5 29 4
L3 9 29 3

For illustrative purposes, we show in Fig. 6 the waveforms
corresponding to the row of matrix M with the maximum am-
plitudes for three distinct moving targets (trucks). The vertical
axis contain a variable (V') proportional to the voltage, whose
absolute value is not defined by the instrument datasheet. Its
horizontal axis represents the distance from the radar, and
spans the 1536 registers responsible for the fast-time variable.

Fig. 4. [Illustration of the data acquisition setup. Lanes L1 to L3 are
progressively far from the radar.
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Fig. 5. Comparison of the frames for two VW Vans, a truck and a car.

An initial part encircled by a blue circle in the plot contains
clutter due to the antenna and structural reflections (also shown
in the matrix plot shown in Fig. 3). We observed that the first
250 of the 1536 samples were always contaminated by clutter,
so these samples were discarded. It can also be seen that, as
the targets move away from the radar, their return amplitude
decreases and the relative position of the fast-time registers
moves towards larger indexes.

IV. CLASSIFICATION APPROACHES

Given the signals acquired as described in Section III,
we aim to estimate the type of the passing vehicle, defined
as one of the following: car, motorcycle or truck, and the
number of the lane occupied by the vehicle, from 1 to 3. The
optimal, Bayesian solution to this estimation problem requires
knowledge about the radar pulse shape, the noise statistics,
and the signatures of the targets, which are unavailable and
cannot be adequately estimated from the measurements due
to their limited number. With this in mind, we propose two
distinct, machine learning based supervised approaches to the
solution of this problem as described in the sequel.

A. Classification via Deep Learning

In a first approach, we trained a CNN to jointly estimate
the occupied lane and the type of the vehicles. The network
receives as input 133 x 1286 raw matrices produced by the
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Fig. 6. Example of frames for three different targets. L1-L3 represent the
lanes progressively farther from the radar.

radar and outputs a 9-entry vector with the probabilities of
each class in the set {’lane 1°, ’lane 2’, ’lane 3’} x {’car’,
’motorcycle’, “truck’ }, were x denotes a Cartesian product.

The network structure that led to the most accurate re-
sults is summarized in Table II and depicted in Figure 7.
This structure was determined empirically: we started from
a simpler structure, with fewer filters and fewer convolutional
layers. The number of filters and layers was then gradually
increased and the dimensions of the layers were adjusted using
the pooling layers to keep the number of trainable parameters
small. We also verified that average pooling layers led to better
performance compared to the more usual max pooling layers.

The network was implemented in Python using the Ten-
sorflow 2 framework [24]. The convolutional layers were
initialized with zero biases and random weights, drawn from
a Xavier uniform initializer [25]. The last layer is a flat, dense
layer and was initialized with zeros weights and biases.

We employed the Adam adaptation algorithm with the
default learning rate (10~%) and the sparse categorical cross-
entropy loss function. Training employed 100 epochs but could
be interrupted earlier if the accuracy, evaluated using the own
training set, did not improve for more than 20 successive
epochs; in this case, the weights that led to the highest
accuracy were restored.

B. Classification via Machine Learning

As a second approach, we evaluated the performance of
traditional machine learning methods in the solution of the
same classification problems. To deploy those methods, each
radar brute image M is mapped onto features as follows. First,
we select the row of the matrix M with largest energy, i.e.,
in Matlab-like notation m = M?[:,1], where

P=argmax  [M?;; (1)
J

where []; ; denotes the element with the given indexes, and
the squaring operation is applied elementwise.

TABLE II

DEEP LEARNING STRUCTURE FOR TARGET CLASSIFICATION
Layer Size Input Shape Parameters
Input - 133 x 1286 -
2-D Convolution (8 x) 4 x 8 133 x 1286 264
ReLu - 8 x 133 x 1286 -
Average Pooling 4x8 8 x 133 x 1286 -
2-D Convolution (16 x) 4x8 8 x 33 x 160 4112
ReLu - 16 x 33 x 160 -
Average Pooling 4 x 8 16 x 33 x 160 -
2-D Convolution (32x) 4 x4 16 x 8 x 20 8224
ReLu - 32 x 8 x 20 -
Average Pooling 4 x4 32 x 8 x 20 -
Flatten - 32X 2x5H -
Dropout (p=0.5) - 320 -
Dense 320 2889
SoftMax (Output) - 9 -

The vector m can be interpreted as an (unnormalized)
power density of the target echo. To summarize the informa-
tion provided by this density, we used as features its first two
moments, calculated as

mgy = Z[m}, , mp = Zi:z o ()
We verified experimentally that the use of additional features,
such as higher order moments, the whole vector m or sub-
sampled versions of it, did not increase performance.

Prior to being used in training and testing, the features
are normalized using the Scikit-learn’s function MaxAbsS-
caler [26], which maps each feature independently into the
interval [—1,1]. Alternative scaling methods led to similar
performances.

We deployed the following machine learning algorithms for
classification [12], [27]: KNeighbors (using 1 to 10 nearest
neighbors), Linear Discriminant Analysis, Gaussian Naive
Bayes, Gradient Boosting Classifier, Random Forest, Decision
Tree, Multilayer Perceptron, and (Linear) Support Vector
Machine. All algorithms were implemented using Scikit-learn
routines [26], with default configurations.

V. RESULTS

To evaluate the performance of the classification methods,
we computed their respective accuracy in terms of the clas-
sification of the vehicle type and its lane occupation. Due to
the limited number of measurements, we evaluated the perfor-
mance of the proposed methods using as testing set a single
distinct measurement for each run; for that run, the training
set was composed by the remaining 111 measurements.

For the deep-learning based method, the Tensorflow random
seed, which defines the parameters initialization, was reset
(to 42) before each run. For the Random Forest, Decision
Tree, and Multilayer Perceptron machine learning methods,
the variable random_state was reset to the same value.

The mean results for lane detection and vehicle classifica-
tion are displayed in Table III and IV, respectively. As one may
observe, despite the relatively low amount of training images,
the proposed methodology achieved a maximum accuracy of
98% for lane occupation, using a KNeighbors classifier, and
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Fig. 7. Structure of the convolutional neural network deployed for image classification. Note that the arrays’ widths are not to scale.

TABLE III
ACCURACY OF VARIOUS ALGORITHMS IN THE DETECTION OF THE LANE
OCCUPIED BY A VEHICLE

[ Algorithm [[ Accuracy |

[ Deep-Learning [ 0.955 |
KNeighbors (n_neighbors=3) 0.982
Linear Discriminant Analysis 0.982
Linear SVM 0.973
Support Vector Machine (SVM) 0.973
Multilayer Perceptron 0.964
Gaussian Naive Bayes 0.964
Gradient Boosting Classifier 0.964
Decision Tree 0.946
Random Forest 0.946

TABLE IV
ACCURACY OF VARIOUS ALGORITHMS IN THE CLASSIFICATION OF THE
TYPE OF VEHICLE

[ Algorithm [[ Accuracy |

[ Deep-Learning [ 0.866 |
Gaussian Naive Bayes 0.875
Gradient Boosting Classifier 0.875
Random Forest 0.866
KNeighbors (n_neighbors=1) 0.830
Linear Discriminant Analysis 0.830
Multilayer Perceptron 0.830
Decision Tree 0.812
Support Vector Machine (SVM) 0.786
Linear SVM 0.777

87% for vehicle type classification, using the Gaussian Naive
Bayes classifier. Both the KNeighbors and the Naive Bayes
algorithms can be interpreted as methods for approximating
the optimal, maximum a posteriori classifier; see [27] for a
detailed discussion.

TABLE V
TOTAL PROCESSING TIME (FOR THE 112 RUNS) OF THE DEPLOYED
ALGORITHMS
[ Algorithm [[ Processing Time (s) |
[ Deep-Learning i 1658 ]
Multilayer Perceptron 110
Gradient Boosting Classifier 58.8
Random Forest 3.45
Support Vector Machine (SVM) 0.45
Linear SVM 0.25
Gaussian Naive Bayes 0.24
Linear Discriminant Analysis 0.19
KNeighbors 0.18
Decision Tree 0.14

The processing times required by the deployed algorithms
is shown in Table V. The simulations were run on a Windows
10 computer with a i7 4770S CPU using Python 3.9.12 and
Intel-optimized versions of Tensorflow (version 2.8.0) and
Scikit-Learn (version 0.24.2). As one may observe, the CNN
deep learning method has by far the largest computational
requirement; however, most of it (99%) is demanded by the
training step.

The resulting confusion tables for the best performing
estimators are shown in Tables VI and VII, respectively. As
one may observe, there were only 2 lane detection errors; for
vehicle classification, in turn, there was a bias towards clas-
sifying vehicles as cars. We tried to circumvent this problem
using techniques for dealing with unbalanced training sets (i.e.,
training sets in which classes have distinct frequencies), such
as oversampling the least frequent classes [28], but the results
did not change significantly.
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TABLE VI
RESULTING CONFUSION TABLE FOR OCCUPIED LANE DETECTION USING
THE THE KNEIGHBORS CLASSIFIER.

True
1 2 3 Total
e 1 33 0 0 33
Estimated > 0 37 I 38
3 0 1 40 41
Total 33 38 41 112

TABLE VII
RESULTING CONFUSION TABLE FOR VEHICLE TYPE CLASSIFICATION
USING THE THE GAUSSIAN NAIVE BAYES CLASSIFIER.

True
car | moto | truck | Total
. car 83 2 2 87
Estimated = oo 13 0 17
truck 6 0 2 8
Total 93 15 4 112

VI. CONCLUSION

In this article, we tackled the problem of vehicle clas-
sification and lane occupation detection from UWB radar
images. Given the looseness of the classification problem at
hand, the lack of detailed information on the radar signals
and noise statistics, and the paucity of radar measurements
due to practical constraints, we resorted to machine learning
classification methods. We developed two distinct classifica-
tion approaches: one based on deep learning, employing a
5-layer convolutional neural network, and second one using
off-the-shelf machine learning algorithms available in the
Scikit-learn software package in tandem with a simple feature
extraction method. Experimental results show that, using a
set of 112 training images, the proposed methods achieved
accuracies of 95% and 87% for lane occupation and vehicle
type classification, respectively.
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