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Using Fractional Super-Resolution to Improve

Lossy Compression of Point Cloud Geometry
Tomás M. Borges, Renan U. B. Ferreira, Diogo C. Garcia, Ricardo L. de Queiroz

Abstract—We present a method for post-processing point
clouds’ geometric information by applying a previously proposed
fractional super-resolution technique to clouds encoded and
decoded with MPEG’s G-PCC codec. In some sense, this is a
continuation of that previous work, which requires only a down-
scaled point cloud and a scaling factor, both of which are provided
by the G-PCC codec. For non-solid point clouds, an a priori
down-scaling is required for improved efficiency. The method is
compared to the G-PCC itself, as well as machine-learning-based
techniques. Results show a great improvement in quality over G-
PCC and comparable performance to the latter techniques, with
the advantage of not needing any kind of previous training.

Index Terms—Point cloud compression, point cloud processing,
G-PCC, super-resolution

I. INTRODUCTION

Point clouds (PC) are sparse 3D signals composed by

geometry and attributes information (which may include color,

reflectance, normal vectors, etc.), and have been in the spot-

light of researchers in recent years for its usability in appli-

cations such as augmented and virtual reality (AR/VR) [1],

telecommunications [2], autonomous vehicle [3] and world

heritage [4]. Because of the need for compression for either

storage or transmission, the Motion Picture Experts Group

(MPEG) has been directing efforts for the compression of

PCs in two fronts, i.e., geometry-based PC compression (G-

PCC) and video-based PC compression (V-PCC). The latter

uses video codecs for encoding its projection in a plane, while

the former uses the octree structure [5].

The geometric information of a PC may be expressed as

a list V of unordered ternary coordinates, such that the n-

th point is vn = (xn, yn, zn). To encode such information,

G-PCC proposes to represent V as an octree, the quality of

the encoded geometry can be tuned by pruning the octree

using a down-scale process. This is performed together with

a coordinate transformation at the encoder, such that, for the

n-th point of Vd

vdn
= round

(

vn − T

s

)

, (1)
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where, round(·) is the function that rounds the components

of a vector to the nearest integer,

T = (minxn,min yn,min zn), (2)

and s > 1 is the scale factor [6]. This scaling reduces the

number of points to be encoded due to rounding and to

duplicate point removal, making Vd a coarser geometry when

compared to V . The larger the scale factor s, the lower the

encoding rate, and consequently, the lower the number of

output points, and the coarser the geometry. At the decoder

side, the scaled geometry is expanded and shifted back to its

original position using the same values of s and T . Fig. 1

exemplifies the downs-scale for s = 2 and s = 4.

Fig. 1. Example of the down-scale used in G-PCC.

Since only expansion is performed at the decoder, i.e.,

vdecn = round(vdn
· s) + T, (3)

the down-scaled voxels become quickly sparse with the in-

creasing of s. The empty space between points is usually filled

by rendering bigger voxels, giving a blocky aspect to the PC.

Some techniques have been proposed in order to improve

coding efficiency of the geometry for these lossy cases,

such as the use of slicing interpolation [7] inside G-PCC

or even completely new approaches, such as using dyadic

decomposition [8]. Moreover, the use of a lookup table (LUT)

based on neighborhood inheritance has been used for context

generation on geometry coding of dynamic voxelized PCs [9]

as a replacement to the octree, providing extra control for

lossy-geometry compression.

Another approach to improve lossy-geometry compression

is to perform some form of interpolation with the down-

scaled voxels. Although there are many interpolation or super-

resolution (SR) methods for PC geometry [10], [11], [12], [13],

[14], [15], [16], [17], they are not well-suited for the octree

structure used in G-PCC. Recently, Borges et al. [18] proposed

the use of LUTs relating the downsampled neighbourhood of
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a given voxel with its children occupancy to super-resolve

voxelized PCs downsampled at arbitrary fractional scales. In

this paper, we propose, as a continuation of that work, to

apply this SR technique as a post-processing tool for PCs

encoded/decoded with G-PCC, and compare the results with

some learning-based techniques for PCC.

II. POST-PROCESSING METHOD

In a nutshell, the SR technique from Borges et al. [18] (“frac

SR”) works by first downsampling once more the input geom-

etry (Vd) using the same value of s, creating Vd2 . Relating the

neighborhood configurations from Vd2 with the occupancy of

child nodes from Vd, they create a LUT. Fig. 2 illustrates the

mapping of neighborhood and child occupancies, and the built

LUT. Assuming that self-similarities are somewhat maintained

at different scales, and taking into account the irregularities of

fractional downsampling, one can query the built LUT with

the neighborhoods from Vd to find its children occupancy, thus

super-resolving Vd into Vsr.

z

xy

Fig. 2. On the left, a neighbourhood (ϕ) from Vd2 and a its related child
occupancy (σ) from Vd. On the right, the built LUT, σ̄(m) is the bitwise
mean of all child occupancies sharing the same neighborhood configuration.

Since this technique can be employed for arbitrary scale

factors, it can be used to improve quality of PCs downsampled

using Eq. (1), provided that s is known. Thus, it can be used

to post-process decoded outputs from the G-PCC codec in

lossy-geometry configuration.

As reported by the authors, better results are found when

1 < s ≤ 2. For coding conditions where s > 2, “frac SR”

may be applied successively. Fig. 3 shows the general idea of

the proposed post-processing method.

G-PCC frac SR

Down-scaling Up-scaling

Fig. 3. The fractional SR is applied to the decoded PC using the same scale
factor as used in the downsampling of the G-PCC codec. For sparse clouds,
a down-scaling is applied before G-PCC encoding, and then an up-scaling is
applied after the SR process.

The SR method relies on the use of the adjacent neigh-

bourhood of a given voxel in order to predict its child nodes.

For some sparser PCs, the immediate neighbours may not be

available for some (or maybe all) voxels. In order to surpass

this problem, we down-scale the input PC by a factor s′ prior

to the encoding. Then, a subsequent up-scaling of the cloud

Vsr by the same factor is necessary, after the “frac SR” step.

When dealing with solid PCs, we may set s′ = 1, and the

diagram of Fig. 3 remains valid.

III. EXPERIMENTAL RESULTS

To test the post-processing method, we propose two distinct

experiments, according to the sparsity of the input PCs, for

solid (voxelized PCs with continuous surface) and non-solid

clouds, according to the categories used in MPEG [19]. In the

first one, we apply the fractional SR directly to the decoded

versions of solid PCs (s′ = 1 in Fig. 3). The scaling factor is

defined by MPEG G-PCC’s Common Test Conditions (CTC)

[20] according to the PC’s geometry for each rate point to be

tested. The greater the rate id (as in “R6”), the greater the bit

rate, the closer to 1 is the value of s.

In the second experiment, for testing non-solid PCs, we

apply a down-scaling prior to encoding. The scaling factor

s′ is defined as the highest power of 2 that makes Vd keep

approximately the same number of points as V , i.e., we

enforce a down-scaling only to densify the input geometry,

avoiding over-decimating its points. According to the CTC’s

lossy-geometry section, the largest possible value used for

this scaling would be 2048 (defined for PCs with 20 bits

in geometry precision). This means we only need 4 bits to

transmit s′ as side information. Since the bitrate is calculated

in bits per input points, i.e., the number of points in the original

PC (which vary from hundreds of thousands to millions), these

4 bits are negligible. In Tab. I, we summarize the information

of the tested PCs.

TABLE I
TESTED CLOUDS AND THEIR CORRESPONDENT DOWN-SCALING FACTOR.

Point cloud s′

dancer vox11 00000001 [21] 1
longdress vox10 1300 [22] 1
loot vox10 1200 [22] 1
queen 0200 1
redandblack vox10 1550 1
soldier vox10 0690 1
house without roof 00057 vox12 2
statue klimt vox12 4

For both experiments, we compare our results to those of

G-PCC as well as to the following machine learning (ML)

based end-to-end compression techniques: PCC-GEO-CNN-

v2 [23], PCGCv2 [24] and ADL-PCC [25]. Those methods

were recently the object of a study for AI-based solutions for

PCC performed by Zaghetto [26].

PCC-GEO-CNN-v2, by Quach et al. [23], is focused on

lossy compression of static PC geometry using deep convolu-

tion networks (CNN). It proposes improvements over a previ-

ous version [27], using a scale hyperprior model for entropy

coding, deeper transforms, a different balancing weight in the

focal loss, optimal thresholding for decoding and sequential

model training. PCGCv2, by Wang et al. [24], proposes a

geometry compression framework utilizing sparse convolution.
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Their framework includes both lossless and lossy geometry

compression, and it also can provide scalable coding capability

The method represents the PC using a sparse tensor and

employs spatially sparse CNNs for processing. Specifically, the

sparse CNNs are employed to exploit the spatial dependency

between voxels and predict the occupancy probability, which

are used for entropy coding or binary classification of voxel

occupancy symbols. Finally, ADL-PCC, by Guarda et al. [25],

proposes to use multiple deep learning coding models that

are selectively applied to encode individual blocks of the PC,

enabling efficient adaptation to different content characteris-

tics. Key components include block-based encoding, an au-

toencoder for generating latent representations, discretization

for entropy coding, and the use of a variational autoencoder to

estimate entropy model parameters. The method also employs

a deep-learning coding model selection based on reconstruc-

tion quality and rate evaluation, and reconstructs the full PC

through merging the encoded blocks.

It is important to note we only bring the results for the

sequences used in the ML tests, for a direct comparison. Some

of the clouds in G-PCC’s CTC where used in the training of

some of these models, and thus could not be used for testing.

(a)

(b)

Fig. 4. Results under D1 PSNR metric for solid PCs: (a) dancer, (b) longdress.

Figs. 4 and 5 show the rate-distortion curves for some of the

obtained results, for solid and non-solid PCs, respectively. The

rate is measured in bits per input points (number of voxels in

(a)

(b)

Fig. 5. Results under D1 PSNR metric for non-solid PCs:(a) house

without roof, (b) staue klimt.

the input PC), while the distortion is measured with the point-

to-point PSNR (D1 PSNR) metric [28].

We note that our results bring great improvement over

G-PCC, mainly for higher rates. We also note that they

are comparable to those of ML-based techniques, except for

PCGCv2, which outperforms the others, particularly for solid

clouds. One should consider, however, that all presented ML

techniques require previous training of tuned models for each

intended bitrate, while the proposed method is simpler and

easily adaptable for any given rate.

We also notice a drop in the lower rates region of the curves.

At this region, the scale factor s is greater than 2, requiring to

use the fractional SR more than once. This is not ideal because

every time we apply it, we imply the neighbourhood for the

next application, which may propagate errors.

In Tab. II we bring the BD-rate comparison of all results

to that of G-PCC for solid and non-solid PCs, respectively.

For the solid PCs, we also show a column comparing our

results considering only the four higher rate points (“frac SR

(HR)”), i.e. the four rightmost points from the graphs in Fig. 4,

where the rate ranges are closer to most of those from the ML

techniques, bringing therefore a more adequate comparison.

One can observe that non-solid PCs (Fig. 5) are harder to
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(a) (b) (c)

Fig. 6. Longdress compressed with s = 2: (a) compressed with G-PCC and expdanded (s · Vd); (b) compressed with G-PCC rendered with bigger voxels
and (c) compressed with G-PCC+SR (Vsr).

Fig. 7. Longdress compressed with s = 2: (a) uncompressed (V orig); (b) compressed with G-PCC (Vd) and (c) compressed with G-PCC+SR (Vsr).

TABLE II
BD-RATE COMPARISON TO G-PCC FOR TESTED PCS, IN RATE %. WE

COMPARE THE PROPOSED METHOD TO

(A) PCC-GEO-CNN-V2, (B) PCGCV2 AND (C) ADL-PCC.

Point cloud A [23] B [24] C [25] frac SR frac SR (HR)

dancer -77.04 -87.81 -93.63 -59.79 -91.77
longdress -75.67 -77.06 -89.09 -62.39 -80.30
loot -75.86 -74.88 -90.38 -64.40 -81.17
queen -75.93 -79.46 -92.85 -70.23 -85.29
redandblack -74.11 -75.88 -88.62 -62.52 -73.89
soldier -76.99 -75.30 -89.39 -65.63 -80.66

house -41.14 26.91 -87.77 -30.84 -
statue klimt -41.16 207.18 -39.50 -37.80 -

compress and to super-resolve. Part of this is due to the

sparsity of the data, which makes it hard for the ML methods

to converge, and decreases self-similarities at different scales.

Also, those two non-solid PCs are notoriously noisy, which

also contributes to the drop in performance.

The proposed method’s complexity arises primarily from

neighborhood search, while ML methods typically demand

GPU resources. Complexity comparisons among them present

challenges as the order of magnitude of operations are quite

different and are executed in different architectures, yet we

expect the proposed method to be simpler and potentially

much faster execution when compared to ML approaches.

In Fig. 6, we compare the solutions to render the donwsam-

pled geometry from Eq. (1) using a viewpoint from longdress

for s = 2. In Fig. 6(a), we see the expanded downsampled

geometry (s · Vd), without increasing its voxels sizes. In Fig.

6(b), we have the same geometry of Fig. 6(a), but voxels

are now rendered with double their the original size to fill

in the gaps. Finally in Fig. 6(c), we show Vsr, where one can

easily see the refinement provided by the proposed solution.

A zoomed out version comparing the original PC with Vd and

Vsr is shown in Fig 7.

IV. CONCLUSIONS

We have presented a method for post-processing PCs which

were encoded and decoded using MPEG’s G-PCC codec by

applying a previously proposed fractional SR technique. We

compared this method with the originally decoded clouds as

well as with ML-based end-to-end coding techniques. The

results have shown that our method brings great improvement

in quality (D1 PSNR metric) over G-PCC, specially for higher

rate values (small scaling factor) in solid PCs. In all tested

cases, the method is compatible to those based on ML, except

for one, which outperforms all others. However, our method

does not need any sort of previous training, which is required

for the ML techniques.
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