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Homophonic Coding and Random Number
Generation
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Abstract—Efficient generation of a discrete probability dis-
tribution is of current interest in areas like cryptography and
random number generation. This paper revisits some known
homophonic coding techniques and discusses their application
in random number generation. Both standard and constrained
homophonic coding techniques are considered. Three algorithms
are given for generating a discrete probability distribution using
one or more biased coins. This approach contributes an alter-
native solution to the classical problem of generating a discrete
probability distribution using biased coins.

Index Terms—Constrained homophonic coding, cryptography,
discrete probability distribution, entropy, random number gen-
eration, recursive tree algorithms.

I. INTRODUCTION

THe homophonic coding technique when applied to a
sequence of symbols (u1, u2, . . .), at the output of an in-

formation source, produces at the homophonic encoder output
a sequence of symbols called homophones in a larger alphabet,
i.e., more than one homophone can be one-to-one associated to
a given source symbol. Each homophone is usually represented
one-to-one by a block xi, called homophonic codeword,
containing Wi D-ary symbols, where D is a positive integer
greater than or equal to 2.

Homophonic coding is employed with the objective of
decomposing each source symbol probability in such a way
that the resulting sequence of homophones (or labels) appear
to be randomly generated, i.e., a sequence of independent and
identically distributed (i.i.d.) random variables. For simplicity
and practical interest this paper focus on binary systems
although the procedures described are applicable to D-ary
coding alphabets. In a perfect standard binary homophonic
coding scheme the symbols in each homophonic codeword are
i.i.d. binary random variables while in a binary-constrained ho-
mophonic coding scheme they are independent and identically
distributed but not equally likely binary random variables.

The generation of a string of random variables drawn from a
discrete probability distribution using flips of a biased coin is
considered an old problem of great importance in the areas
of cryptography and random number generation. Random
numbers find many applications in practice, in particular they
are used to perform tests and simulation of communication
systems as well as many other computational applications [1].
Von Neumann [2] introduced a simple algorithm to generate
a string of i.i.d. bits from flips of a coin with unknown bias.
Since then several researchers have considered and studied
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the generation of uniform random variables under a variety of
different assumptions [3]- [13].

This paper revisits some known homophonic coding tech-
niques and discusses their application in random number
generation. Two binary-constrained algorithms are discussed
for the representation of discrete probability distributions by
tossing a single biased coin. For a given discrete probability
distribution {p1, p2, . . . , pK} each entry pi, 1 ≤ i ≤ K, is rep-
resented by a sum (finite or infinite) of fractions, where each
fraction is labeled by a sequence of i.i.d. random variables.
Each fraction is a rational number bi/ni where bi is a number
between 1 and D, and ni is a power of D. A third algorithm,
the Λ-algorithm, is presented to generate a sequence of random
variables drawn from a discrete probability distribution by
tossing two or more distinct biased coins.

The optimality question for the algorithms considered here
remains open [11], [14]. However, it is shown by some simple
examples that with the Λ-algorithm it is possible to obtain
equivalent and in some cases even better results than those in
[15]. It is important to notice that the biased coins employed
in the Λ-algorithm are arbitrary, i.e., they do not depend on
probability distribution {p1, p2, . . . , pK} as is the case with
the algorithm in [15]. This approach contributes an alternative
solution to the classical problem of generating a sequence of
i.i.d. random variables using two or more coins where some
of the coins are biased.

We call the reader’s attention to the fact that, when the
probability distribution of the source of random numbers is
known, it was shown that it is impossible to construct a
recursive tree algorithm to achieve a specific target probability
distribution.

In Section II we describe the Maximum entropy per step
algorithm [16], or MAX-ENT algorithm for short, in the con-
text of generation of a discrete probability distribution using
a biased coin. In Section III we describe the minimum entropy
per step algorithm [17], also in the context of random number
generation, which is later modified and employed in Section IV
for the generation of a discrete probability distribution using
two or more biased coins. In this section, the application of our
proposed algorithm will be illustrated through some examples,
in which a uniform probability distribution is generated using
two coins, one fair coin and a biased coin. Summing up, in
Section V we will present some conclusions as well as some
suggestions for future research.

A. Related Works

Feldman et al. [18] proved, among several results, that the
outcomes of an n-sided fair die, that is, the outcome of a
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random variable which takes n equiprobable values, can be
simulated in bounded time by using flips of just one type of
coin of appropriate rational bias if and only if n is a power of
2 ( [18], Theorem 2). It also followed from [18] that a general
n-sided fair die can always be simulated by using two coins of
the appropriate bias and at most d2 log ne+1 coin flips, where
dxe denotes the smallest integer number greater or equal to x.
Gargano and Vaccaro [15] published an improvement on this
bound, and considered several algorithmic questions, related to
the classical problem of simulating the outcomes of a uniform
random variable by using a small number of biased coins, and
an algorithm was given to generate an n-sided fair die using
only a fair coin and a biased coin.

In [16] the algorithm later called MAX-ENT algorithm
was introduced to perform homophonic coding in which the
symbols in each homophonic codeword are independent and
identically distributed binary random variables obeying an
arbitrary probability distribution Π2 = {p, 1 − p}, where
p ≥ 1/2. The MAX-ENT algorithm provides a solution to
the problem posed by Knuth and Yao [11, page 427] on the
generation of probability distributions using a biased coin and
advanced one step further the solution originally proposed
by Julia Abrahams [3]. In [17] the minimum entropy per
step algorithm was introduced to perform homophonic coding,
having as its main motivation the fact that in many situations
it was more efficient than the MAX-ENT algorithm.

In [19] the authors provided the first known algorithm
that generates unbiased random bits from an arbitrary finite
Markov chain, which operates in expected linear time and
achieves the information-theoretic upper bound on efficiency.
In [20] the authors considered the problem of generating
random bits from a loaded die as a natural generalization
of generating random bits from a biased coin, and in this
manner enabling the application of existing algorithms to
general sources. Furthermore, the authors also investigated
new approaches for efficiently generating a prescribed number
of random bits from an arbitrary biased coin. In [21] the
problem of extracting a prescribed number of random bits was
addressed by reading the smallest possible number of symbols
from a source whose statistical behaviour is not fully specified.
The related interval algorithm proposed by Han and Hoshi [9]
has asymptotically optimal performance, however it assumes
that the distribution of the input stochastic process is known.
It was noticed that, in practice, sources of randomness have
inherent correlations and are affected by measurement’s noise.
In other words, it is difficult to obtain an accurate estimate of
the probability distribution. The authors main contribution is
the design of extractors that have a variable input-length and
a fixed output length, which are efficient in the consumption
of symbols from the source, and are capable of generating
random bits from general stochastic processes and approach
the information theoretic upper bound on efficiency. In [22],
the authors’ main contribution is an algorithm that generates
random bit streams from biased coins, uses bounded space and
runs in expected linear time. The algorithm approaches the
information theoretic upper bound on efficiency as the size of
the allotted space increases. Finally, in [23] the author reports
a computation of the exact output rate of a recently discovered

generalization of Peres algorithm [24] for generating random
bits from loaded dice. Instead of resorting to a brute-force
computation for all possible inputs, which becomes quickly
impractical as the input size increases, the author computes the
total output length on equiprobable sets of inputs by dynamic
programming using a recursive formula.

II. THE MAXIMUM-ENTROPY PER STEP ALGORITHM

In [11, page 427] a question was posed relating the gen-
eration of discrete probability distributions from a biased
coin: “What if the source of independent random bits is
biased towards 1 with probability p ?” This question was
answered in part by Julia Abrahams [3], for the case where the
biased binary random variable has the special form (ti, tj), for
integers i and j, and where t is a positive root of the equation
ti + tj = 1.

We consider in the sequel discrete probability distributions
Q = {q1, q2, . . . , qK}. We assume with no loss of essential
generality that all K probabilities qi, 1 ≤ i ≤ K, have
non-zero values and that K ≥ 2. The set of labels Vi =
{v(i, 1), v(i, 2), . . . , v(i, j), . . .}, either finite or countably in-
finite, associated with qi, 1 ≤ i ≤ K, is characterized by the
fact that for each entry v(i, j) we have PVi|Q(v(i, j)|ql) 6= 0
if and only if l = i. For binary variable-length coding of each
v(i, j) a sequence X(1, j), X(2, j), . . . , X(Wj , j) is defined
whose entries are binary random variables, taking value in the
alphabet {0, 1}, and where Wj , the length of the sequence
representing v(i, j), is in general also a random variable.
It is required that x(1, j), x(2, j), . . . , x(Wj , j) be a prefix-
free encoding of v(i, j), i.e., such sequences are all distinct
and none is the prefix of another. Hereafter all entropies are
assumed to be in bits and all logarithms are understood to be
in base 2. In order to simplify the notation, we will represent
X(1, j), X(2, j), . . . , X(Wj , j) by X1X2 . . . XW whenever
no ambiguities result.

Definition 1: We define a biased coin tossing coding scheme
to be perfect if the symbols of any sequence X1X2 . . . XW

are i.i.d. discrete random variables.
Definition 2: We define a biased coin tossing coding scheme

to be optimum if it is both perfect and minimizes the aver-
age sequence length E(W ) over perfect biased coin tossing
schemes, for a given discrete probability distribution.

A. Biased Coin Tossing

In standard unbiased D-ary coin tossing schemes, D ≥ 2,
the designer benefits from the fact that a given probability
qi ∈ Q, 0 < qi < 1, has an essentially unique base D
decomposition. This follows because qi either has a unique
decomposition as an infinite sum of negative powers of D,
or it has both a decomposition as a finite sum of distinct
negative powers of D and a decomposition as an infinite sum
of distinct negative powers of D in which the smallest term
in the finite decomposition is expanded as an infinite sum of
successive negative powers of D. For example, for D = 3,
qi = 4/9 can be decomposed as either qi = 1/3 + 1/9 or as
qi = 1/3 + (1/27)

∑∞
i=0(2/3)i.
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Biased coin tossing schemes unfortunately do not inherit
the essentially unique probability decomposition property de-
scribed earlier. This means that in order to split each prob-
ability in a discrete probability distribution into labels we
need to work with the set of probabilities for all symbols
i, 1 ≤ i ≤ K, instead of working with only one symbol
probability at a time as for the D-ary case. We handle this
situation with the biased coin coding algorithm introduced in
[16] in the context of homophonic coding and described next
in terms of random number generation.

B. Biased Coin Tossing Algorithm

Let Π2 = {p, 1−p}, p ≥ 1/2, be the biased coin probability
distribution. For a given discrete probability distribution the
biased coin MAX-ENT algorithm simultaneously finds the
decomposition of each probability as a sum (finite or infinite)
of terms pλ(1 − p)l−λ, and the corresponding prefix-free
sequence, where λ is the number of heads (1’s) and l − λ is
the number of tails (0’s) of a sequence of length l. The labels
v(i, j) are selected as terminal nodes in T , the binary rooted
tree with nodes labeled by probabilities, such that from any
non-terminal node two branches emanate with probabilities p
and 1− p = p, respectively. Let α(i, j) denote the probability
of v(i, j).

Definition 3: We define the component running sum γm(i, j)
for qi, 1 ≤ i ≤ K, at the mth iteration of the MAX-ENT
algorithm as

γm(i, j) = qi −
j∑

k=1

α(i, k),

with γm(i, j) = qi for j = 0, where j denotes the number of
labels allocated to qi up to the mth iteration.

Definition 4: We define the running sum set Γm at the mth

iteration of the MAX-ENT algorithm as

Γm = {γm(i, j)|γm(i, j) > 0, 1 ≤ i ≤ K},

with Γ0 = {q1, q2, . . . , qK}.
Let γmax = max γm(i, j) ∈ Γm, 1 ≤ i ≤ K. We expand

each unused (not yet labeled) terminal node in T , whose
probability exceeds γmax, by the least number of branches
sufficient to make the resulting extended terminal node prob-
ability less than or equal to γmax. We call the resulting tree
the processed binary rooted tree with probabilities and denote
it as Tp. At each iteration labels are assigned to terminal
nodes of the corresponding processed binary rooted tree with
probabilities, in a manner that the unused terminal node with
largest probability is assigned as a label to the symbol with
largest running sum γmax. The MAX-ENT algorithm consists
of the following steps.

1) Let m = 1. Let Γ1 be the set whose elements are the
probabilities qi, 1 ≤ i ≤ K, ordered in decreasing order,
and construct the corresponding processed binary rooted
tree with probabilities Tp.

2) Without loss of essential generality, assume that qr =
γmax ∈ Γ1. If there are two or more probabilities with the
same largest value, just pick any one of them at random to
start. Let (i, j) = (i, 1) and let γ1(i, 1) = qi, 1 ≤ i ≤ K.

TABLE I
RUNNING SUM SETS AND LABELS FOR EXAMPLE 2

Running sum sets Labels
Γ1 = {γ1(1), γ1(2)} = {80/81, 1/81}
Γ2 = {γ2(1), γ2(2)} = {26/81, 1/81} v(1, 1) = 0
Γ3 = {γ3(1), γ3(2)} = {8/81, 1/81} v(1, 2) = 10
Γ4 = {γ4(1), γ4(2)} = {2/81, 1/81} v(1, 3) = 110
Γ5 = {γ5(2)} = {1/81} v(1, 4) = 1110
Γ6 = φ v(2, 1) = 1111.

3) Find the unused path El of length l in Tp whose proba-
bility P (l) is largest among unused paths.

4) Associate to qr the label (terminal node) v(r, j) and the
binary sequence of length lr,j = l, whose digits constitute
the labeling of El in Tp. This implies α(m, j) = P (l).
Let j ← j+1. For the updated j value compute the com-
ponent running sum γm(r, j) and let Γ

′

m = Γm−{γmax}.
If γm(r, j) = 0 then let Γm+1 = Γ

′

m. The decomposition
of qr is now complete and contains j labels, and if
Γm+1 = φ then END. Otherwise, i.e., if γm(r, j) > 0
then let Γm+1 = Γ

′

m ∪ {γm(r, j)}.
5) Let γm+1(i, j) = γmax ∈ Γm+1. Let i = r.
6) Go to step 3.
Example 1: Let us simulate the probability distribution

Q = (5/9, 4/9) from the biased coin with probability distri-
bution Π2 = (2/3, 1/3). Applying the MAX-ENT algorithm
described earlier we obtain

5/9 = 4/9 +

∞∑
i=0

8/34+2i (1)

4/9 = 1/3 + 2/27 +

∞∑
i=0

8/35+2i. (2)

It follows that 5/9 is represented by the se-
quences {00, 0100, 010110, . . . , 0101111 . . . 110, . . .},
and that 4/9 is represented by the sequences
{1, 011, 01010, 0101110, . . . , 0101111 . . . 1110, . . .}. The
leaf entropy is H(V ) = 0.991 and the average sequence
length is E(W ) = 2.185. We notice that the binary coding
expansion rate is E(W )−H(Q) = 1.194 bits.

Example 2: Let Q be the K = 2 discrete probability
distribution (80/81, 1/81). We consider simulating Q from the
biased coin probability distribution (2/3, 1/3). Applying the
MAX-ENT algorithm described earlier we obtain the sequence
of running sum sets shown in Table I.

III. THE MINIMUM ENTROPY PER STEP ALGORITHM

We now describe the minimum entropy per step (MIN-ENT)
algorithm. Many of the terms used here have already been
introduced in Section II. At the mth iteration, m > 1, a label
is assigned to a terminal node of the corresponding tree Tp, in
a manner that the unused terminal node with largest probability
Pm is assigned as a label to the probability qr with minimum
nonnegative value for the difference between its component
running sum γm(r, j) and Pm, i.e., such that mini{γm(i, j)−
Pm|(γm(i, j)−Pm ≥ 0)} = γm(r, j)−Pm ≥ 0, 1 ≤ i ≤ K.
The MIN-ENT algorithm consists of the following steps.
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1) Let m = 1. Let γ1(i, 1) = qi, 1 ≤ i ≤ K. Let Γ1 =
{q1, q2, . . . , qK}.

2) Determine γmax and produce the tree Tp for the mth

iteration by expanding each terminal node in the tree
from the mth iteration, m > 1, whose probability exceeds
γmax, by the least number of branches sufficient to make
the resulting extended terminal node probability less than
or equal to γmax.

3) Find the unused path El of length l in Tp whose proba-
bility is largest among not yet labeled paths, and denote
this largest probability by Pm.

4) If mini{γm(i, j)−Pm|(γm(i, j)−Pm ≥ 0)} = γm(r, j)−
Pm ≥ 0, then we associate to qr the label (terminal node)
v(r, j) and the binary sequence of length l, whose digits
constitute the labeling of El in Tp. This implies α(r, j) =
Pm. Compute the component running sum γ

′

m(r, j) after
this decomposition and let Γ

′

m = Γm − {γm(r, j)}. If
γ

′

m(r, j) = 0 then let Γm+1 = Γ
′

m. The decomposition
of qr has been obtained and contains j labels, and if
Γm+1 = φ then END. Otherwise, i.e., if γ

′

m(r, j) > 0,
then let Γm+1 = Γ

′

m ∪ {γ
′

m(r, j)}.
5) Let m← m+ 1.
6) Go to step 2.
Example 3: Let Q = {53/81, 16/81, 4/27}. We consider

generating Q, an operation equivalent to the perfect binary-
constrained homophonic coding of a 3-ary source with symbol
probability distribution Q, when Π2 = {2/3, 1/3} is the
biased coin probability distribution. Applying the MAX-ENT
algorithm we obtain

q1 = 53/81 = 4/9 + 4/27 + 4/81 + 2/243

+

∞∑
i=0

8/37+2i

q2 = 16/81 = 4/27 + 4/81

q3 = 4/27 = 1/9 + 2/81 +

∞∑
i=0

8/36+2i,

which lead to an average sequence length E(W ) = 214/81
and to a binary coding expansion rate E(W ) − H(Q) =
2.642 − 1.27 = 1.372 bits. On the other hand, by using the
MIN-ENT algorithm we obtain

q1 = 53/81 = 4/9 + 1/9 + 2/27 + 2/81

q2 = 16/81 = 4/27 + 4/81

q3 = 4/27,

which lead to an average sequence length E(W ) = 68/27 and
to a binary coding expansion rate E(W ) − H(Q) = 2.52 −
1.27 = 1.25 bits, i.e., a coding expansion rate representing
91% of the coding expansion rate obtained with the MAX-
ENT algorithm.

Example 4: Let Q be the K = 2 discrete probability distri-
bution with q1 = 1−(1−p)n = 1−pn and q2 = (1−p)n = pn.
We consider the generation of Q when Π2 = {p, 1 − p} is
the biased coin probability distribution. Applying the MIN-
ENT algorithm we obtain the following probabilities for the
labels representing q1: α(1, 1) = p, α(1, 2) = pp, α(1, 3) =
p2p, . . . , α(1, j) = p(j−1)p, . . . , α(1, n) = p(n−1)p, and

for q2 we obtain a single label v(2, 1) whose probability is
α(2, 1) = pn. It follows that H(V |Q = q1) = −H(Q)/(1 −
pn) + h(p)/p, H(V |Q = q2) = 0 and thus

H(V |Q) =

q1H(V |Q = q1) + q2H(V |Q = q2)

= (1− pn)H(V |Q = q1)

= −H(Q) + (1− pn)
h(p)

p
, (3)

where h(p) = −p log p − (1 − p) log(1 − p) is the binary
entropy function [5]. However, since

H(V ) = H(Q) +H(V |Q) = (1− pn)h(p)/p,

it follows from (3) that

lim
n→∞

H(V |Q) =
h(p)

p
,

because limn→∞H(Q) = 0. We remark that both the MAX-
ENT algorithm and the MIN-ENT algorithm produce identical
results in this example because at each step of either algorithm
there is only one possibility for performing the probability
expansion, i.e., γm(1) − Pm > 0 and γm(2) − Pm < 0, for
1 ≤ m ≤ n. For m = n + 1 we have γn+1(1) = 0 and
γn+1(2)− Pn+1 = 0.

IV. USING TWO OR MORE BIASED COINS

In this section we introduce a generalization of the MIN-
ENT algorithm [17], by generating a discrete probability
distribution using two or more biased coins, obtaining results
similar to Gargano and Vaccaro’s [15], with the distinction of
not necessarily using a probability distribution of heads and
tails dependent on n. We introduce next some notation that
will be used in the sequel.

A. Basic Terminology

A tree T is used to indicate the choice of distinct coins
by the algorithm in order to produce the desired probability
distribution. A distinct labeled leaf in T is associated one
to one with each one of the possible outcomes. Given an
algorithm to generate an n-sided die and its associated tree
T , the worst case bounded time Lmax to produce an outcome
is given by

Lmax = max
x

lT (x), (4)

and the average time is given by

E[T ] =
∑
x

p(x)lT (x), (5)

where lT (x) denotes the depth level of x in T , i.e., the length
of the path from the root of T to the leaf x, and p(x) denotes
the probability of a leaf x being reached.

In what follows we assume that, for each tree considered,
two branches from each node emanate. Each node is labeled
using a coin distribution. If a node has no indication we
assume the coin used is an unbiased coin, and if the node
is indicated by (p, 1 − p) this means a biased coin is used



JOURNAL OF COMMUNICATIONS AND INFORMATION SYSTEMS, VOL. 30, NO. 1, MARCH 2015. 5

with head’s probability given by p and tail’s probability given
by 1−p. Each branch is labeled with a probability. Following
[15], for any positive integer n let p(n) be defined as

p(n) = max{i : 2i divides n}, (6)

and let r(n) = n − 2blognc/2p(n). It follows from (6) that
p(n) = 0 if n is odd. The biased coin, as suggested in [15],
has probability distribution (PH , PT ) for heads and tails given
by

(PH , PT ) =
(

2dlog r(m)e/m, 1− 2dlog r(m)e/m
)
, (7)

where m is the largest odd factor of n. In order to generate a
fair die with n faces, in the worst case [15, Theorem 1]

1 + blog nc+ dlog(n− 2blognc)e+ p(n) (8)

coin flips are required, and on average

1 + blog nc+ (2p(n)/n)(dlog r(n)e2dlog r(n)e (9)
−r(n)(blog r(n)c − p(n))),

coin flips are required.

B. Description of the Algorithm

The algorithm proposed here follows essentially the same
steps of the one introduced in [17] with the important differ-
ence that instead of using only one coin we use two or more
coins and at each step we decide which coin must be chosen
to be flipped, in order to minimize the entropy in that step.

Let m1 = {p1, 1 − p1}, m2 = {p2, 1 − p2}, . . . ,
mr = {pr, 1 − pr} denote the probability distribution of
coins 1, 2, . . . , r, respectively, and let Q = {q1, q2, . . . , qK}
denote the probability distribution to be generated, i.e, the
target probability distribution, where K is a positive integer,
K ≥ 2. For a given source, our algorithm, henceforth referred
to as the Λ-algorithm, finds the decomposition pλ1

1 pλ2
2 . . . pλr

r

(1−p1)l1−λ1(1−p2)l2−λ2 . . . (1−pr)lr−λr of each probability
in Q as a sum (finite or infinite) of terms, where λi denotes
the number of heads and li − λi denotes the number of tails,
0 ≤ i ≤ r, for the coin with probability distribution mi, and∑r
i=1 li = l for a sequence of length l.
Definition 5: For a given finite set of biased coins with

probability distribution m1 = {p1, 1−p1}, m2 = {p2, 1−p2},
. . . , mr = {pr, 1 − pr}, we define a hybrid binary tree as a
binary tree for which each node is associated with one of the
probability distributions mi, 1 ≤ i ≤ r.

The Λ-algorithm, when applied to the target probability
distribution, generates a hybrid tree T where each leaf in T
is associated with a probability in the target probability distri-
bution. The probability of a path of length l in T , containing
λ1+λ2+. . .+λr heads and (l1−λ1)+(l2−λ2)+. . .+(lr−λr)
tails, is pλ1

1 pλ2
2 . . . pλr

r (1 − p1)l1−λ1(1 − p2)l2−λ2 . . . (1 −
pr)

lr−λr . In particular, for computing the probability of a leaf
(terminal node), the path extending from the root node to that
terminal node is considered. For m = 1 grow trees T1, T2, . . . ,
Tr from the root, generated from the flip of the coins as-
sociated with the probability distributions m1,m2, . . . ,mr,
respectively. Expand by one branch each terminal node in

those trees whose probability exceeds γmax. Keep only those
trees for which at least one resulting extended terminal node
probability is less than or equal to γmax. The resulting s trees
are called processed binary rooted trees with probabilities,
Tp` , 1 ≤ ` ≤ s, s ≤ r.

At the mth iteration, m > 1, the minimum nonnegative
value is computed for the difference between the running sums
in the running sum set Γm and Pm, i.e., mini{γm(i, j) −
Pm|(γm(i, j) − Pm ≥ 0)} = γm(t, j) − Pm ≥ 0, where Pm
denotes the largest probability of a not yet labeled terminal
node, among all Tp` , 1 ≤ ` ≤ s. Such a terminal node is
assigned to qt. Notice that at each iteration for m > 1 there
is a Γm,p` associated to each one of the Tp` trees. The norm
of Γm,p` is given by

‖Γm,p`‖ =

√√√√ K∑
i=1

(γm,p`(i, j))
2. (10)

and its minimum value is used to establish a criterium to
choose the trees that will be kept for the following iteration.

Since the size of surviving trees grow exponentially with
m, a rule is desired to eliminate those surviving trees for
which their respective running sums at the mth step do not
satisfy some convergence criteria. Therefore, a value for Lmax

is chosen, being denoted by M .
The Λ-algorithm consists of the following steps.

1) Let m = 1. Let γ1(i, 1) = qi, 1 ≤ i ≤ K. Let Γ1 = {q1,
q2, . . . , qK}. Grow each tree T1, T2, . . . , Tr from the root
node by a depth of one according to their respective coin
probability distributions m1,m2, . . . ,mr, respectively.

2) Determine γmax and produce the trees Tp` , 1 ≤ ` ≤ s,
for the mth iteration by expanding, by a depth of one,
each terminal node in each Tp` tree from the (m− 1)th

iteration, m > 1, whose probability exceeds γmax, and
by keeping those expanded trees for which at least one
extended terminal node probability (leaf probability) is
less than or equal to γmax.

3) Calculate the norm for each tree Tp` using (10). Keep the
tree(s) with smallest ‖Γm,p`‖.

4) For each `, 1 ≤ ` ≤ s, find the not yet labeled
path El` of length l in Tp` whose probability Pm`

is
largest among unused paths. Denote by Pm the largest
probability among all Pm`

that do not exceed γmax, and
denote by El the respective path.

5) If mini{γm(i, j)−Pm|(γm(i, j)−Pm ≥ 0)} = γm(t, j)−
Pm ≥ 0, 1 ≤ i ≤ K, then associate to qt the terminal
node v(t, j). This implies α(t, j) = Pm. Compute the
running sum γ

′

m(t, j) after this decomposition and let
Γ

′

m = Γm−{γm(t, j)}. If γ
′

m(t, j) = 0 then let Γm+1 =
Γ

′

m. The decomposition of qt is now complete and
contains j terms, and if Γm+1 = φ then END. Otherwise,
i.e., if γ

′

m(t, j) > 0, then let Γm+1 = Γ
′

m ∪ {γ
′

m(t, j)}.
6) Let m← m+ 1.
7) If m = M stop, otherwise go to step 2.

C. Performance Comparison
In this Section we provide examples showing smaller values

for the average time E[T ] than those in [15]. Using the Λ-
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algorithm, there are cases where the maximal length Lmax is
not bounded but even in these cases a shorter E[T ] results.
The Λ-algorithm is a generalization for more than one biased
coin of the algorithm introduced in [17], obtaining equivalent
and in some cases even better results than those in [15]. In
order to compare the performance of the Λ-algorithm with
that of Gargano and Vaccaro [15], we are going to use the
same coins that would be used in [15] for the generation of
a uniform probability distribution using two coins, one fair
and the other with distribution given by (7). We call attention
once more to the fact that the biased coins employed in the Λ-
algorithm are arbitrary, i.e., they do not depend on n as is the
case for the algorithm in [15]. The biased coin, as suggested
in [15], has probability distribution for heads PH , and tails
PT , given by (7).

Example 5: Consider generating the probability distribution
of the faces of a fair die, i.e., n = 6, using the coins with prob-
ability distribution m1 = (1/2, 1/2) and m2 = (2/3, 1/3),
respectively.

Since two coins, i.e., r = 2, are employed it follows from
the Λ-algorithm, step 1, that two trees are generated, namely
tree T1 associated with coin m1, and tree T2 associated with
coin m2, as illustrated in Figure 1. We notice that all branch
probabilities in both T1 and T2 (Figure 1) are greater than
1/6, so by the Λ-algorithm, step 3, it is necessary to grow
each tree taking into account the use of coins m1 and m2.
The resulting expanded hybrid trees are illustrated in Figure 2
and in Figure 3, respectively. Notice that tree (a) in Figure 2
has all branch probabilities greater than 1/6, while the other
trees in that figure as well as those in Figure 3 present at least
one branch probability less than or equal to 1/6. Therefore,
by the Λ-algorithm, step 3, tree (a) in Figure 2 is eliminated
while trees (b), (c) and (d) are kept for the next step. For the
trees (b), (c) and (d) in Figure 2 and the trees (a), (b), (c) and
(d) in Figure 3, we have the following running sum sets

Γ1,1 = {0, 0, 1/6, 1/6, 1/6, 1/6}
Γ1,2 = {0, 1/6, 1/6, 1/6, 1/6, 1/6}
Γ1,3 = {0, 1/6, 1/6, 1/6, 1/6, 1/6}
Γ1,4 = {0, 0, 1/6, 1/6, 1/6, 1/6}
Γ1,5 = {1/18, 1/6, 1/6, 1/6, 1/6, 1/6}
Γ1,6 = {1/18, 1/6, 1/6, 1/6, 1/6, 1/6}
Γ1,7 = {0, 0, 1/6, 1/6, 1/6, 1/6},

and the norms associated to each one are as follows.

‖Γ1,1‖ =
√

4(1/6)2 = 0.33

‖Γ1,2‖ =
√

5(1/6)2 = 0.38

‖Γ1,3‖ =
√

5(1/6)2 = 0.38

‖Γ1,4‖ =
√

4(1/6)2 = 0.33

‖Γ1,5‖ =
√

(1/18)2 + 5(1/6)2 = 0.38

‖Γ1,6‖ =
√

(1/18)2 + 5(1/6)2 = 0.38

‖Γ1,7‖ =
√

4(1/6)2 = 0.33.

By step 3 of the Λ-algorithm, tree (b) illustrated in Figure
2, and trees (a) and (d) illustrated in Figure 3 are kept.

Tree A1 Tree A2

1/2

1/2

2/3

1/3

(2/3,1/3)

Fig. 1. Trees T1 and T2 generated by the first flip of coins with probability
distribution m1 and m2, respectively.

1/2

1/2

1/4

1/4
1/4

1/4

(a)

1/2

1/2

1/3

1/6
1/3

1/6

1/2

1/2

1/3

1/6
1/4

1/4

1/2

1/2

1/4

1/4
1/3

1/6

(b)

(c) (d)

(2/3,1/3)

(2/3,1/3)

(2/3,1/3)

(2/3,1/3)

Fig. 2. All possibilities of growth for tree A1 in two steps of the Λ-algorithm.

In the next step only the surviving trees are considered
and the branches with probability greater than 1/6 must be
expanded, remembering always to consider all the possible
expansions using coins m1 and m2. Two of the trees that are
obtained by applying the Λ-algorithm to depth three from the
root node are shown in Figures 4 and 5.

The trees shown in Figures 4 and 5 provide distinct solutions
to the problem of generating a uniform probability distribution
for n = 6, and both are bounded trees. We notice that the tree
in Figure 4 is the same as that which results by using the

2/3

1/3

1/3

1/6
1/6

1/6

2/3

1/3

4/9

2/9
2/9

1/9

(2/3,1/3)

(2/3,1/3)

(a) (b)

2/3

1/3

1/3

1/6
1/6

1/6

2/3

1/3

4/9

2/9
2/9

1/9

(2/3,1/3)

(2/3,1/3)

(c) (d)

(2/3,1/3)

(2/3,1/3)

(2/3,1/3)

(2/3,1/3)

Fig. 3. All possibilities of growth for tree A2 in two steps of the Λ-algorithm.
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1/2

1/2

1/3

1/6

1/6

1/6

1/6

1/6

1/6

1/3

u3

u4

u5

u6

u2

u1

(2/3,1/3)

(2/3,1/3)

Fig. 4. Tree T1 obtained for n = 6 coincides with that for the algorithm in
[15].

1/3

1/3

1/3

1/6

1/6

1/6

1/6

1/6

1/6

2/3

u3

u4

u5

u6

u2

u1

(2/3,1/3)

Fig. 5. Tree A2 obtained for n = 6.

algorithm in [15]. Applying (4) and (5) to the tree in Figure
4 the values Lmax = 3 and E[T ] = 2.67 result for the worst
case time and for average time, respectively. Identical results
for Lmax and E[T ] are obtained for the tree in Figure 5.

Example 6: Consider generating a uniform probability dis-
tribution for a random variable with n = 7 possible outcomes,
using the coins with probability distribution m1 = (1/2, 1/2)
and m2 = (3/7, 4/7), respectively. One of the trees obtained
using the Λ-algorithm for n = 7 is illustrated in Figure 6, and
the tree obtained by the use of the algorithm introduced in
[15] is shown in Figure 7.

It should be noticed that the parameter Lmax for the tree in
Figure 7 is bounded. On the other hand using the Λ-algorithm,
Lmax in this example is unbounded (Figure 6) but the resulting
average time is E[T ] = 3.1902, and is a better result than
E[T ] = 3.29, obtained when the algorithm in [15] is used.

V. CONCLUSIONS

A new algorithm for the generation of a string of random
variables drawn from a discrete probability distribution us-
ing the flips of two or more coins, some of them biased,
was introduced. In particular, this approach contributes an
alternative solution to the classical problem of generating a
discrete uniform probability distribution using two or more
unbiased coins. It was shown by some simple examples with
the Λ-algorithm that it is possible to obtain equivalent and in
some cases even better results than those in [15]. In principle,
the choice of coins that must be employed to generate a

(4/7,3/7)

(4/7,3/7)

1/2

1/7

2/7

3/14

2/7

3/14

1/2

u3

u4

u5

u2

u1

(4/7,3/7)

(4/7,3/7)

6/49

1/7

6/49

1/7

9/98

1/7

9/98

u7

9/196

9/196

9/686

9/343

9/686

27/1372

9/2744

9/1372

u5

u6

u7

u6

u7

u6

9/1372

9/2744

(4/7,3/7)

9/196

Fig. 6. Tree obtained for n = 7 using the Λ-algorithm.

(4/7,3/7)

(4/7,3/7)

4/7

1/7

2/7

2/7

3/14

3/14

3/7

u3

u4

u5

u6

u2

u1

(4/7,3/7)

(4/7,3/7)

1/7

1/7

1/7

3/28

3/28

3/28 u7

3/28

1/14

1/14

1/28

1/28

1/28

1/28

u4

u5

u6

u7

Fig. 7. Tree obtained for n = 7 using the algorithm in [15].

discrete probability distribution using the Λ-algorithm does
not depend on n. However, some examples have shown that
the performance of the Λ-algorithm varies with the biased
coins that are chosen, i.e., the expected length of the labels
can vary. For this reason, it is important to investigate a
criterium for specifying coin probability distributions, aiming
at the optimization of the Λ-algorithm. Another point for
future research is the investigation of ways to limit Lmax in
those cases where the tree produced by the Λ-algorithm is
unbounded.
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