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Abstract— Investigations in this paper focus on establishing 
the uniqueness properties of the Quasi-Moment-Method (QMM) 
solution to the problem of calibrating nominal radiowave 
propagation pathloss prediction models. Nominal (basic) 
prediction models utilized for the investigations, were first 
subjected to QMM calibrations with measurements from three 
different propagation scenarios. Then, the nominal models were 
recast in forms suitable for Singular Value Decomposition (SVD) 
calibration before being calibrated with both the SVD and QMM 
algorithms. The prediction performances of the calibrated 
models as evaluated in terms of Root Mean Square Prediction 
Error (RMSE), Mean Prediction Error (MPE), and Grey 
Relational Grade-Mean Absolute Percentage Error (GRG-
MAPE) very clearly indicate that the uniqueness of  QMM-
calibrations of basic pathloss models is more readily observable, 
when the basic models are recast in forms specific to SVD 
calibration. In the representative case of calibration with indoor-
to-outdoor measurements, RMSE values were recorded for 
QMM-calibrated nominal models as 5.2639dB for the ECC33 
model, and 5.3218dB for the other nominal models. 
Corresponding metrics for the alternative (rearranged) nominal 
models emerged as 5.2663dB for the ECC33 model and 5.2591dB 
for the other models. A similar general trend featured in the 
GRG-MAPE metrics, which for both SVD and QMM 
calibrations of all the alternative models, was recorded as 0.9131, 
but differed slightly (between 0.9138 and 0.9196) for the QMM 
calibration of the nominal models. The slight differences between 
these metrics (due to computational round-off approximations) 
confirm that when the  components of basic models are linearly 
independent, the QMM solution is unique. Planning for wireless 
communications network deployment may consequently select 
any basic model of choice for QMM-calibration, and hence, 
identify relative contributions to pathloss by the model’s 
component parts. 

 
Index Terms—Gray-Relational Grade, Pathloss model  

calibration, Quasi-Moment-Method, Singular Value 
Decomposition, Uniqueness. 

 
I. INTRODUCTION 

 PARTICULARLY useful description of 
propagation pathloss model calibration is 
that given in [1] as the process of using 

measurement information to fine-tune 
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nominal models towards improving the models’ 
 prediction performances. A number of pathloss 
model calibration routines have been reported in the 
literature, the more popular of them being the Least 
Square Error (LSE) and the Minimum Mean Square 
Error (MMSE) approaches described in [2] and [3], 
respectively. However, some of these approaches, 
which though derive from existing nominal models, 
may not, as remarked in [4], be regarded as 
calibration, since in the typical case, they develop 
models that are structurally different from the ‘base’ 
model. For example, the ‘partition-based’ analysis 
in [2] is an MMSE approach, which derived from 
the ‘pathloss exponent’ model, with n = 2. 
Weighted attenuation parameters are then added to 
the log-distance term in a formulation whose 
unknowns are the additional attenuation functions. 
A calibration algorithm, which minimizes the error 
between measurement data and corresponding 
predicted pathloss is then utilized for the 
determination of the unknown quantities. The LSE 
approach typified by the analysis in [3] on the other 
hand, has  the reduction of a basic model (Egli and 
Hata in [3]) to a linear (‘slope and intercept’) 
equivalent, as its starting point. This equivalent 
model is then subjected to classical linear 
regression. A slight variation of this approach was 
utilized in [4], in which the ‘intercept term’ of the 
derived model was spilt into two: one representing 
the ‘free space’ and ‘frequency dependent’ factors 
of the basic Hata model; and the other, all other 
distance-independent constants of the basic model. 
Although the process adopted in [5] involved 
calibration, it does not address the development of 
pathloss prediction models. Rather, its objective 
concerns the estimation of a ‘calibration constant’, 
through which ‘measured pathloss’ can be 

A 
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determined as the difference between this constant 
and received power. 

Approaches, which calibrate nominal prediction 
models in the sense of calibration as defined by [1] 
include the Cuckoo-search optimization algorithm 
presented in [6].  In this case, four parameters of a 
‘UFPA' model, developed for a 5.8GHz network 
were calibrated to specialize the model for use in a 
2.6GHz network. Another is the Singular Value 
Decomposition (SVD) algorithm, introduced by [7] 
in 2017. Essentially, the method minimizes mean 
square error in a calibration process similar to the 
SVD regression described in [8], and involving the 
singular value decomposition of a ‘design matrix’, 
whose entries are the parameters of the nominal 
model to be subjected to calibration. Unlike the 
algorithms of [6] and [7], the Quasi-Moment-
Method (QMM) recently introduced by [9], has 
been shown to be able to calibrate all existing 
nominal models for the prediction of pathloss in 
both indoor and outdoor environments. One 
important property ascribed to the QMM by [9] is 
that when the ‘basis’ functions are linearly 
independent, the QMM solution is unique. 
However, there has been no investigation in the 
literature, on the veracity of this claim.  

It is consequently the main objective of this paper 
to demonstrate that the QMM solution to the 
pathloss model calibration problem is indeed 
unique, if the basis functions are linearly 
independent. Four nominal models, for which linear 
independence has been established in [9] are 
selected as candidates for the investigations. In 
addition to QMM calibration, alternative versions of 
the candidate models were also subjected to SVD 
calibration, first, as a means of showing that SVD, 
under certain conditions, represents a special case of 
QMM: and second towards highlighting the fact 
that such differences as may exist in the RMSE and 
GRG-MAPE metrics for models, owe entirely to 
computational round-off approximations. 

The paper, in section II, briefly presents the 
theoretical backgrounds for the QMM and SVD 
algorithms, and in section III, discusses the 
outcomes of the calibrations of the candidate 
nominal models, with measurements available from 
the literature. Discussions in that section also 
highlight the uniqueness properties of the QMM 

solution. Important conclusions arising from the 
findings of the paper are presented in section IV, 
which is the concluding section.   

 
II. THEORETICAL BACKGROUND 

A. The Quasi-Moment-Method 
Let the generic nominal pathloss prediction model 

be described by  

                                          (1) 
in which  may, in general, be functions of 
separation of transmitter and receiver (d), frequency 
(f), transmitter antenna height (hte), receiver antenna 
height (hre), constants, or some combinations of 

them. The QMM algorithm determines a set  
of ‘N’ coefficients, such that at every measurement 
point dk, 

  (2) 
provided that Pmea(dk) represents measured pathloss 
at dk, and  Pq(dk) is the corresponding pathloss 
predicted by the QMM-calibrated model. The 
solution to the problem is defined by the condition 
[9], [10], that the Euclidean semi-norm of the 
difference between measurement and corresponding 
prediction assumes its minimum possible value; that 
is  

                                                (3) 
is a minimum. In order to determine the unknown 
coefficients in Eq. (2), the Galerkin approach [11] is 
adopted, such that after defining ‘testing’ functions 
as identical to the ‘basis’ functions , and 
when the inner product of each  is then taken with 
both sides of the equation, the following matrix 
equation results: 

                                                                                            

                                                                                                      
                                                                            (4) 
or, in a more compact form,  

                                                    (4a) 
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            (4b) 

The desired unknown coefficients (entries to the 
vector (A)) are obtained from (4a) through the 
simple matrix processes of inversion and 
multiplication   as  
                                                   (5) 

It is the similarity of the algorithm to the method 
of moments utilized for the solution of 
electromagnetic field problems [11] that led to the 
name, QMM.  

 

B. Singular Value Decomposition Calibration  
SVD pathloss model calibration introduced by [7] 

may be generalized through a specification of the 
nominal model to be calibrated according to  

                                     (6) 
which is similar to Pm of (1), with the exception that 
the leading ‘basis’ function is now, by definition, 
[7], [8], set equal to unity. A ‘design matrix’ is then 
prescribed from the component parts of (6) 
according to  

                        (7) 

and the unknown calibration coefficients are then 
given by [7] 

                            (8) 

with  denoting matrix transposition. It is of 
interest to observe that (8) has a structure similar to 
those given as (9) in the MMSE approach described 
in [2], and as (13) by the LSE algorithm of [4]. The 
matrices and vectors in [2] and [4] are quite 
different from those in [7], so that the algorithms 
they represent may not be regarded as equivalents 
of the SVD-calibration algorithm. On the other 
hand, it is easy to establish that of (8) is 

the same as  in (5), and that  of (8) is 
identical to  of (5). Hence, we may conclude 
that the SVD model calibration algorithm represents 
a special case of the more generally applicable 
QMM. 

The computational results presented in this paper 
derive from the QMM and SVD calibrations of 
some nominal models and their associated 
alternatives, using field measurement data available, 
through the use of the commercial graph digitizer 
‘GETDATA’, from [5] and [6]; and raw data 
provided by [12].  

 

C. Nominal Models: QMM Calibration. 
The nominal models subjected to QMM 

calibration using measurements from [6] include the 
ECC33 model defined by  

         

and the Stanford University Interim (SUI) model for 
which  

         

Calibration with data from [6] also involved the 
UFPA model defined here by  

       

as well as the nominal Ericsson and Lee models 
defined, respectively, by 
         

   

and  

   

   The nominal models defined by (9), (10), (12), 
and (13) were also QMM-calibrated, with 
measurement data from [12]. For calibration with 
26GHz indoor measurements in [5], the nominal 
models of (9) and (10), as well as the WINNER-II 
and ITU-R (LOS) models were considered. These 
latter models are defined by  
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and  
  
It should be noted that for the nominal SUI model in 
this case, the first two terms of (10) modify to  

, respectively. 

D. Alternative Models: QMM and SVD Calibration 
Calibration with the SVD algorithm requires [7], 

[8] that the nominal models be expressed in the 
form of (6). Accordingly, alternatives to the models 
of (9) to (15) were specified as  

 
with 

whilst 

and 

 
Also, 

with 
 

 
and  

The terms generically represented by 
in each of (16) to (22) 

were introduced in order to remove the ‘ill-
condition’ character assigned by MATLAB to the 
matrix in the course of implementing the 

SVD calibration algorithm.   
 

III. COMPUTATIONAL RESULTS AND 
DISCUSSIONS 

For the nominal models described by (9) to (15) (as 
may apply) the calibration coefficients obtained are 
presented below, as follows. 
 

A. Calibration Coefficients: Nominal Models  
1) Calibration With Data from Route 2 of [6]  

       Outcomes of the QMM-calibration of the basic 
models are defined by the calibration coefficients 
given below as   

 

for the ECC33 model. Corresponding results for the 
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for the ECC33 model; and for the SUI, Ericsson, 
and Lee models, as   

 

 

and 

 

respectively. 

3) Calibration With Data from Fig.3a of [5]  
         In this case, the calibration coefficients were 
obtained as   
 

 

for the ECC33 model, and for the SUI, ITU-R, and 
WINNERII models, as  

 

 
 

and 

 

respectively. 

B. Calibration Coefficients: Alternative Models 
The alternative models of (16) to (22) were 

subjected to both QMM and SVD calibration with 
the same sets of measurement data. Calibration 
coefficients obtained in each case are presented 
below. In each case, the rows labelled “Q” identify 
the coefficients associated with QMM calibration, 
and those labelled “S”, SVD calibration.   

 
  1) Calibration With Data from Route 2 of [6]  
        For this case, model calibration coefficients for 
the ECC33 models were computed as   

Corresponding results were obtained for the SUI 
models as   

 

and for the UFPA models,  as 
  

 

Calibration coefficients for the Ericsson and Lee 
models were obtained in this case, as   

   

and     

respectively.  
 
2)  Calibration With Measurement Data for  
     Route A of [12]  
      With the use of measurements available from 
[12], the model calibration coefficients for the 
alternative ECC33 model were obtained as 

whilst those for the SUI model emerged as 

Corresponding respective results for the Ericsson 
and Lee models are 

and 

3) Calibration With Measurement Data from  
 Fig. 3a of [5] 
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For the four nominal models calibrated with 
measurement data available from [5], the model 
calibration coefficients were obtained as 

 

   

in the case of the nominal ECC33 model, and  
 

 
for the nominal SUI model. Calibration coefficients 
were obtained as   
       

for the nominal WINNERII model, and as  

for the nominal ITU-R model. 

C. Evaluation of Pathloss Predictions 
Pathloss predicted by the calibrated nominal 

models (and their alternatives) defined by (9) to 
(28) are evaluated in this section, first through 
graphical comparisons with the measurements from 
which they derive; and then, using the performance 
metrics of MPE, RMSE, and GRG-MAPE.  

The pathloss profiles displayed Fig. 1 compare 
predictions by the calibrated ECC33, UFPA, SUI, 
Ericsson, and Lee models with measurement data 
available from Fig. 2 (‘measurement route 2’) of 
[6].  Two things are immediately observable from 
the curves; first, the profiles of pathloss predicted 
by the QMM-calibrated nominal models, in all 
cases, differ significantly from those of the 
corresponding QMM-calibrated alternative models. 
And second, profiles of the SVD- and QMM-
calibrated alternative models are virtually identical, 
also in all cases. 

 

Fig. 1. Comparison of pathloss predicted by calibrated models 
with corresponding measurements from [6]. 

This latter observation is underscored by the 
prediction profiles of Fig. 2, which essentially 
compare pathloss predicted by the SVD- and 
QMM-calibrated alternative models as defined by 
the sets of (16) to (22), and (26a) to (26e). 
 

 

Fig. 2. Profiles of pathloss predicted by alternative models 
SVD- and QMM-calibrated using measurements from [6]. 

MPE and RMSE metrics recorded by the calibrated 
models are displayed in Table I.  
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TABLE I 

PERFORMANCE METRICS FOR PROFILES OF FIG. 1 

Model 
MPE(dB) RMSE(dB) 

QNOM QALT SVD QNOM QALT SVD 
ECC 
 

-0.0021 0.0189 -
0.0594 

3.9836 3.8909 3.8909 

Ericsson 0.0034 -0.0013 0.0153 4.3942 3.8904 3.8904 

SUI 0.1832 0.0028 0.0026 4.3980 3.8906 3.8904 

Lee -0.0060 0.0006 0.0014 4.3942 3.8905 3.8904 

UFPA -0.0069 -0.0059 0.0012 4.3942 3.8909 3.8909 

 
MPE metrics for all the calibrated models are 
generally impressive, ranging between 0.006dB for 
the QMM-calibrated alternative model and 
0.1832dB for the QMM-calibrated nominal 
Ericsson model. On the other hand, RMSE metrics 
are virtually the same at about 3.89dB for all the 
alternative models calibrated with the QMM and 
SVD algorithms. RMSE metrics for the nominal 
models calibrated with the QMM algorithm are 
generally slightly higher (about 0.09dB for ECC33 
and about 0.5dB for the other four models) than 
those for the corresponding alternative models. 
These differences may be attributed to the 
computational round-off approximations involved 
in the implementation of the algorithms.  

Profiles of the pathloss predicted by the nominal 
and alternative models calibrated with measurement 
data provided by [12] are displayed in Figs. 3 and 4. 
 

 

Fig. 3. Comparison of pathloss predicted by calibrated models 
with corresponding measurements from [12]. 

 

Fig. 4. Profiles of pathloss predicted by alternative models 
SVD- and QMM-calibrated using measurements from [12]. 

The profiles of Fig. 3, with the exception of Fig. 3a, 
share the features described concerning Fig. 1, for 
calibrated nominal and corresponding alternative 
models. This exception is that the SVD and QMM 
calibrations of the alternative ECC33 model by 
measurement data from [12-route A], do not yield 
identical prediction outcomes; especially in regions 
relatively close to the transmitter. The exception 
clearly manifests in Fig. 4, whose features are 
otherwise, the same as those described for the 
profiles of Fig. 2. 

TABLE II 
PERFORMANCE METRICS FOR  PROFILES OF FIG. 3 

Model 
MPE(dB) RMSE(dB) 

QNOM QALT SVD QNOM QALT SVD 
ECC 
 

-
0.0031 

0.0130 -0.0055 5.5791 5.3024 5.2970 

SUI 0.0747 -0.0037 0.0038 6.0389 5.4413 5.4413 

Ericsson 0.0047 -0.0070 -0.0052 6.0383 5.4413 5.4413 

Lee 0.0045 -0.0056 -0.0001 6.0383 5.4413 5.4413 

 
MPE and RMSE metrics for the calibrated models 
as displayed in Table II also follow the trend earlier 
described for the metrics of Table I.  In this case, 
the MPE metrics, like those recorded for the 
profiles of Fig. 1 are also excellent, ranging 
between -0.0001dB for SVD calibrated alternative 
Lee model and 0.0747dB, for the QMM-calibrated 
nominal SUI model. The RMSE metrics of Table II 
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reveal that despite the differences in the profiles of 
Fig. 4, the difference in RMSE between the SVD- 
and QMM-calibrated alternative ECC33 model is 
0.0234dB.  It is also readily observed from Table II 
that RMSE is exactly the same for the Ericsson, 
SUI, and Lee models, although RMSE recorded for 
the calibrated nominal models is slightly higher 
(0.2767dB) than those for the calibrated alternative 
models.  For both calibrated nominal and alternative 
models, RMSE metrics recorded for the ECC33 
cases are slightly smaller (about 0.46dB for the 
nominal models and 0.12dB for the alternative 
models) than the common metric for the other three.  

 

Fig. 5. Comparison of pathloss predicted by calibrated models 
with corresponding measurements from [5]. 

A third example considered in this paper concerns 
the calibration of basic and alternative models, 
using measurements for indoor millimeter wave 
scenario associated with Fig. 3a of [5]. The 
candidate models in this case are the ECC33, SUI, 
WINNER II, and ITU-R models, for which 
prediction performance evaluation through 
comparisons with measurement is provided by the 
curves of Fig. 5. The profiles follow the same 
general pattern as those of Figs. 1 and 3, in that 
where the SVD- and QMM-calibrated alternative 
models provide virtually identical predictions, those 
for the QMM-calibrated nominal models are 
slightly different, in all cases. 
 

 

Fig. 6. Profiles of pathloss predicted by alternative models 
SVD- and QMM-calibrated using measurements from [5]. 

The profiles of Fig. 6, like those of Fig. 2, reveal 
that QMM and SVD calibration of the alternative 
models lead to identical predictions by all the 
calibrated models.  
 

TABLE III 
PERFORMANCE METRICS FOR THE PROFILES OF FIG. 5 

Model 
MPE(dB) RMSE(dB) 

QNOM QALT SVD QNOM QALT SVD 
ECC 
 

0.0766 0.0020 -0.0082 5.2639 5.2663 5.2591 

SUI -
0.1414 

-0.0053 -0.0043 5.3128 5.2591 5.2591 

WIN II -
0.0021 

-0.0008 -0.0027 5.3110 5.2591 5.2591 

ITU 0.0490 -0.0013 -0.0017 5.3282 5.2591 5.2591 

 
According to the metrics of Table III, MPE metrics 
recorded for the calibrated models ranged between 
0.0008dB for the QMM-calibrated alternative 
WINNER model to 0.1414dB for the QMM-
calibrated nominal SUI model. Again, with the 
exception of the QMM-calibrated alternative 
ECC33 model, all the calibrated alternative models 
(including the SVD calibrated alternative ECC33 
model) recorded RMSE values of 5.2951dB, which 
differed from that of the QMM-calibrated ECC33 
model by only 0.0072dB. The biggest difference of 
0.0691dB in RMSE between a QMM-calibrated 
nominal model and its corresponding alternative 
model was in this case, recorded by ITU case.  

The virtually identical RMSE values recorded by 
all the calibrated models of the three examples 
considered in this paper very clearly support the 
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uniqueness property of the QMM pathloss model 
calibration algorithm as defined in [9], [15]. It has 
however been suggested, [6], [13], [14], that a better 
assessment of pathloss model prediction 
performance is offered by the Grey Relational 
Grade Mean Absolute Percentage Error, GRG-
MAPE. Because [13] and [14] presented the generic 
GRG-MAPE algorithm without specializing it to the 
case of pathloss prediction, it is helpful to provide 
details of the algorithm’s use for the results 
presented here. 

 

D. The Grey Relational Grade MAPE Algorithm 
Suppose that represents 

field measurement data with which the generic 
nominal (or alternative) model is calibrated to yield 
the pathloss prediction function denoted by 

. And let  represent the 

maximum and minimum values of with 
denoting the corresponding 

quantities for . The first step in the GRG-
MAPE algorithm is that of ‘normalization’, for 
which the quantities  
              

    
are defined. Next, the ‘deviation sequence’ is 
determined for each of the measurement and 
prediction data according to  
         
from which the Grey Relational Coefficient is 
obtained as  
       

Equation (31) expresses the relationship between 
measured and predicted pathloss, and the 
‘distinguishing’ or ‘identification coefficient’ 
symbolized by ‘ ’, is prescribed as [13], [14], 

; the commonly utilized value of was 
adopted for the computational results of this paper. 

The Grey Relational Grade here denoted by  is 
given by 

            

and towards, thereafter, determining the GRG-
MAPE, ‘normalized’ absolute prediction error is 
evaluated as   
         

 

And its mean is then given by  
        

 

so that MAPE is obtained [13], [14]  as  
    
Hence, GRG-MAPE is determined according to  
    
In this paper, the quantities represented by 
are assigned their typically utilized values of 0.1and 
0.9, respectively, [14].  

The GRG-MAPE metrics obtained for the nominal 
and alternative models calibrated with 
measurements from [6] are displayed in Table IV. 

TABLE IV 
GRG-MAPE METRICS FOR THE PROFILES OF FIG. 1 

Model QMMALT QMMNOM SVDALT 
ECC33 0.9416 0.9416 0.9421 

SUI 0.9420 0.9370 0.9420 
ERICSSON 0.9418 0.9369 0.9420 
LEE 0.9419 0.9370 0.9420 
UFPA 0.9420 0.9416 0.9420 

 
Metrics in the table reveal that GRG-MAPE is 
virtually the same for all the models. In the case of 
QMM-calibrated alternative models for example, 
the difference between the smallest and largest 
metrics is 0.0004, and the corresponding quantities 
for the SVD-calibrated alternative models and 
QMM-calibrated nominal models are 0.0001and 
0.0047, respectively. 

This general trend is also evident in Tables V and 
VI, which display GRG-MAPE metrics for the 
pathloss profiles of Figs. 3 and 5, respectively. 
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TABLE V 
GRG-MAPE METRICS FOR THE PROFILES OF FIG. 3 

Model QMMALT QMMNOM SVDALT 
ECC33 0.9351 0.9368 0.9357 

SUI 0.9339 0.9403 0.9339 
ERICSSON 0.9339 0.9403 0.9339 
LEE 0.9339 0.9403 0.9339 

 
It is readily observed from Table V that for each of 
columns 2 to 4, only the metric for the ECC33 
calibrated models differs from those for the other 
three models. These differences range from 0.0012 
(QMMALT), through 0.0035(QMMNOM), to 0.0018, 
in the case of the SVD calibration of the alternative 
models.  
 

TABLE VI 
GRG-MAPE METRICS FOR THE PROFILES OF FIG. 5 

Model QMMALT QMMNOM SVDALT 
ECC33 0.9120 0.9138 0.9131 

SUI 0.9131 0.9190 0.9131 
WINNERII 0.9131 0.9193 0.9131 
ITU-R 0.9131 0.9196 0.9131 

 
A slightly different pattern is displayed in Table 

VI. First, GRG-MAPE is exactly the same for all 
SVD-calibrated alternative models; and as obtained 
for the metrics in Table V, only the metric for the 
QMM-calibrated alternative ECC33 model is 
different in column 2: the difference in this case 
being 0.0011. Metrics in column 3 of the Table all 
slightly differ, with the largest difference (between 
the calibrated nominal ECC33 and ITU-R models) 
being 0.0058.   

One possible application of the results of this 
paper derives from the fact that because the 
calibration solution is unique for all basic models 
that satisfy the requirements set forth in [9], QMM 
offers the possibility of physical interpretations that 
could be of important use to the network planning 
process. As an illustrative example, contributions to 
net pathloss due to the component parts of the 
nominal ECC33 model calibrated with 

measurements of route 2 of [6] are displayed in Fig. 
7.  

 

 
Fig. 7. Percentage contributions to net pathloss as predicted by 
components of nominal ECC33 QMM-calibrated using 
measurements from [6]. 
 

According to the profiles of Fig. 7, the ECC33 
nominal model QMM-calibrated with 
measurements of route 2 of [6] predicts that 
percentage contributions by the ‘free space 
attenuation factor ranges from about 37% 200m 
away from the transmitter, to about 53%, 600 m 
away. Corresponding contributions from the ‘basic 
median pathloss’ component are about 29% and 
47%, respectively, whilst contributions from the 
‘Rx height gain factor’ remained more or less 
constant, at about 23%.  These contributions are 
moderated by those due to the ‘Tx height gain 
factor’, which ranged between 9% and -25%. 

Thus, if for example, the factors of interest to 
network planning include relative contributions to 
net pathloss by base station (BS) antenna height, the 
calibration of the basic ECC33 model could offer 
useful information. Similar interpretations are 
readily available from any of the QMM/SVD 
calibrated models.   

 
IV. CONCLUSION 

This paper has systematically investigated the 
uniqueness properties of the Quasi-Moment-Method 
(QMM) approach to the calibration of basic 
(nominal) pathloss models. Measurements available 
for three different propagation scenarios (including 
a 2.6GHz LTE network for a city-forest 
environment, a GSM 1800 network in a university 
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campus set up, and a 26GHz network for indoor 
communications) were utilized for the calibration of 
nominal and alternative pathloss prediction models. 
The prediction performances of the calibrated 
models were evaluated with the use of the common 
performance metrics of Mean Prediction Error 
(MPE), and for the purposes of assessing the 
uniqueness of solution, Root Mean Square Error 
(RMSE) and Grey Relational Grade-Mean Absolute 
Percentage Error (GRG-MAPE). The MPE metrics 
were in all cases, as impressive as those reported 
elsewhere, [9], [15], and the RMSE and GRG-
MAPE metrics very clearly indicate that the QMM 
solution to the pathloss model calibration problem 
is indeed unique, when the conditions specified in 
[9] and [15] are satisfied. For example, the 
difference between the largest and smallest recorded 
RMSE values for the models calibrated with 
measurements from the 2.6GHz network (Table I) is 
0.5038dB, with 0.7415dB and 0.0331 as the 
corresponding values for the 1800MHz (Table II) 
and 26GHz (Table III), respectively. In the case of 
GRG-MAPE, these differences emerged as 0.0005 
for the 2.6GHz network (Table IV) and 0.0066 for 
the 1800MHz network (Table V), 0.0076 for the 
26GHz network, as can be seen from Table VI.  
These absolutely very small differences clearly owe 
to computational round-off approximations 
involved in the implementation of the algorithms.  

 Two other important conclusions arising 
from the results presented in the paper are first, that 
when the nominal models are adjusted to forms 
suitable for SVD calibration (shown here to be a 
special case of QMM calibration), the influence of 
computational round-off approximations on both 
RMSE and GRG-MAPE is considerably reduced.  
Second, by disaggregating net pathloss into 
contributions due to components of the calibrated 
model, it becomes possible to separately quantify 
the influence of the parameters of the operational 
environment on net pathloss. 
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