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User-Level Handover Decision Making Based on
Machine Learning Approaches
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Abstract—This Letter covers a broad comparison of methods
for classification and regression applications for a user-level
handover decision making in scenarios with adverse propagation
conditions involving buildings, coverage holes, and shadowing
effects. The simulation campaigns are based on network
simulator ns-3. The comparison encompasses classical machine
learning approaches, such as KNN, SVM, and neural networks,
but also state-of-the-art fuzzy logic systems and latter boosting
machines. The results indicate that SVM and MLP are the most
suitable for the classification of the best handover target, although
fuzzy system SOFL can perform similarly with lower processing
time. Additionally, for the download time estimation, LightGBM
provides the smallest error with short processing time, even in
hard propagation scenarios.

Index Terms—Machine learning, Fuzzy, Handover, ns-3.

I. INTRODUCTION

Two key concepts adopted by next-generation networks are
cell densification and operation at high frequencies. Although
larger bandwidth is available, enabling higher data rates, the
propagation on higher frequencies limits the cell coverage area.

A fundamental cellular procedure directly affected by this
scenario is the handover (HO), which is the transfer of
a communication session (e.g., a call, a video stream, a
file download) from one cell to another without loss or
interruption of service. Since the User Equipment (UE) must
switch between physical channels during such procedure,
it requires very rapid decisions from the cellular network
in order to guarantee the Quality of Experience (QoE).
The number of handovers is expected to increase notably,
specially considering propagation-intensive scenarios (e.g.
high-frequency urban cells, outdoor-to-indoor coverage) whose
severe propagation situations cause areas with meaningful
signal degradation, creating non-deterministic coverage holes.

Three characteristics are required from evolved handover
procedures in order to provide solid work in upcoming
mobile communication systems: seamless (no interruption);
spectral-efficiency aware (controlled signaling load); and
smart (decision-making leveraged by machine learning and
the vast amount of information available in the network).

The current HO schemes in 3GPP networks (4G and 5G) are
set upon some characteristic events, as depicted in Table I [1].
UEs are supposed to provide frequent measurement reports

João Lima is with CPQD (e-mail: jsales@cpqd.com.br). Alvaro Medeiros
and Eduardo Aguiar are with Federal University of Juiz de Fora, Brazil
(e-mails: {alvaro, eduardo.aguiar}@engenharia.ufjf.br). Alvaro Medeiros is
also with Munster Technological University, Cork, Ireland. Vicente Sousa and
Tarciana Guerra are with Federal University of Rio Grande do Norte, Brazil
(e-mails: {tarciana.guerra.051, vicente.sousa}@ufrn.edu.br). This study was
financed in part by FUNTTEL/Finep and the Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001. The
proof of concept simulations provided by this Letter was supported by High
Performance Computing Center (NPAD/UFRN).

Digital Object Identifier: 10.14209/jcis.2022.11

TABLE I
CHARACTERISTIC EVENTS FOR 3GPP HANDOVER [1].

Event Description

A1 Primary cell (PC) signal power becomes better than a threshold
A2 PC signal power becomes worse than a threshold

A3 Secondary cell (SC) signal power becomes better than PC
by an offset

A4 SC signal power becomes better than a threshold

to the base station, known as enhanced Node-B (eNB) in 4G
standard, containing received signal metrics, such as Reference
Signal Received Power (RSRP) and Reference Signal Received
Quality (RSRQ). Accordingly, the HO procedures occur
with simple power level comparisons based on events of
those measurements, being denominated as deterministic HOs.
Despite its simple implementation, this configuration may
lead to numerous inefficient, unnecessary or ping-pong HOs,
flooding network channels with counterproductive signaling
load, and degrading spectral efficiency.

Machine learning (ML) applications to develop smarter
handovers are numerous. The authors in [2] implement
a Bayesian regression method for HO improvements in
high-speed trains in South Korea, whereas authors in [3]
applies K-Nearest Neighbours (KNN) for possible real-time
HO decisions in vehicular networks. In [4], ML approaches
are used to reduce latency and classify the best cell available
for HO. In [5] and [6] fuzzy logic and reinforcement
learning is used to for optimize traditional HO parameters,
such as time-to-trigger and HO margin. The work from [7]
compares different computational intelligence models for HO
parameter tuning while solution in [8] employs LightGBM to
predict mobile network traffic. A lane-changing algorithm for
autonomous vehicles is developed in [9] based on Extreme
Gradient Boosting. The authors of [10] promote a rich survey
on HO management and 4G and 5G tendencies, while [11]
offers a vast survey on autonomous HO management in
the heterogeneous network context. In [12], the development
of neural networks in HO mechanism were implemented at
different levels, and an extensive database was produced.
These works have demonstrated the capacity of different
configurations of neural networks-handover integration to
outperform classical 3GPP HO methods.

As a plenty of methodologies are developed for smart HO,
this work aims to bring a broad comparison of methods in
user-level scenarios of mobility in 3GPP networks, based in
data set from [12]. In this Letter, the classification addresses
the determination of the best HO target, whereas the regression
estimates the time and percentage of download that a mobile
user performs while moving and requesting a HO. Coverage
holes and shadowing effects are modeled into simulation
scenarios to emulate an urban environment. The coverage
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hole is a complete lack of coverage in a particular region,
representing a connection interruption, e.g., due to a mmWave
severe propagation condition. Thus, this Letter extends the
solution and results of [12] with the following contributions:
• Enhancing the comparison of ML classification

approaches, including most recent fuzzy logic systems;
• Estimating download duration and percentage of

completion, providing new inputs for HO decision,
using classical and state-of-the-art approaches, such as
latter boosting machines (not increasing data acquisition
complexity to feed learning algorithms);

• Evaluating of fuzzy-based HO methods on urban
scenarios with the presence of buildings, shadowing
effects, and coverage holes (evaluation also includes
network-related Key Performance Indicators (KPIs) and
algorithms’ processing time).

II. SYSTEM MODELLING AND EVALUATED SCENARIOS

The environment setup relies on [13] using version 3.22 of
Network Simulator ns-3, as presented in Fig. 1. It counts with 3
eNBs, 3 UEs, and an obstacle near eNB 2.

The UE 1 starts simultaneously to download a file and move
straight with a random angle from −60° to 30°, with a constant
speed of 60 km/h. Quickly, it escapes from the coverage area of
eNB 1 and enters the coverage area of eNBs 2 and 3, requesting
handover. For each scenario, about 1200 runs are analyzed. The
levels of RSRP and RSRQ are captured every 200 ms, feeding
the input database to evaluate ML algorithms. The download
process uses the well-known TCP protocol with the file size
of 15 MB. Finally, the simulation is carried for 100 s.

In this Letter, two scenarios are explored. The first one is
based on the Okumura-Hata propagation model, pondering
only path loss as large scale attenuation, chosen for being
a widely used deterministic model for characterizing urban
and suburban areas. This scenario may represent a situation
with averaged RSRQ and RSRP, in which instantaneous values
are filtered (e.g., moving average filter), flattening shadowing
and small-scale fading effects. The second scenario sums
the random shadowing effect to the Okumura-Hata model,
indicating measurements that are more resembling to the
fluctuations of RSRP and RSRQ. For both scenarios, the
coverage hole is modeled by the presence of a building
whose dimensions are extensive enough to emulate a region
of connection interruption, with a very high path loss [13].

More details about scenario modeling, including simulation
parameters and the SINR Radio Environment Maps (REMs)
of eNB 2 for both scenarios can be found in [12].

III. THE PROPOSED EVALUATION

The authors of [12] develop studies to explore the
possibilities of how the machine learning models can
be integrated with the handover decision making process
coordinated by the eNBs, but they did not include most recent
gradient boosting machines nor fuzzy systems. Moreover, in
this work a statistical analysis is also developed to corroborate
the initial results presented. Nonetheless, this work also
implements new metric predictions, which are regression
machine learning tasks. The prediction of a download time and
percentage of completion can be of high value for network
architects in order to design optimal handover algorithms.

Fig. 1. The simulation environment.

A handover triggering can be considered unnecessary if a
solid estimation indicates that the ongoing download will be
completed. On the other hand, a handover shall be anticipated
if the estimation indicates that it will not be completed.

Thus, similar to [12], this Letter searches for the best eNB in
terms of download completion and duration (the classification
problem), including state-of-the-art fuzzy systems. The authors
of [14] and [15] have indicated that fuzzy strategies are
capable of providing equivalent (or even better) performances
while consuming less computational resources compared to
traditional Artificial Intelligence tools. They had never been
applied to the HO problem targeted by this Letter. We also
propose regression techniques to estimate the percentage of
completed download and the download duration.

The methods applied for the HO decision (classification
problem) are Autonomous Learning Multimodel System
(ALMMo) [15] (which has no tuning parameters, since
it extracts all the features and adjustments from data);
Self-Organizing Fuzzy Logic Classifier (SOFL) [16] (using
Mahalanobis distance and Granularity Level of 2.9); Type-2
Fuzzy Logic Classifier (T2FLS) [17], [18] (being the learning
parameter U = 0.01, tolerance n = 10−8, V1 = 0.9 and
V2 = 0.999); Support Vector Machine Classifier (SVM) [7],
[19] (with linear kernel and penalty parameter of 10 and 100
for Scenarios 1 and 2, respectively); and Multilayer Perceptron
Classifier (MLP) [20], [21] (with 6 neurons in hidden layers
and solver lbfgs).

Regarding the regression problem (estimation of the
completed download percentage and the download duration),
six methods are compared: Multilayer Perceptron Regressor
(MLP) [20], [21] (with 22 and 4 neurons in hidden layers, tanh
and logistic activation functions and lbfgs solver for Scenarios
1 and 2, respectively); KNN [3], [20] with 4 and 6 neighbors
considered for each Scenario; Random Forest (RF) [7], [22]
with 94 and 106 trees in the forest, in each case; Gradient
Boosting Machine (GBM) [23], with 84 and 120 trees in their
ensemble; Extreme Gradient Boosting (XGBoost) [9], with 174
and 120 estimators each; and Light Gradient Boosting Machine
(LightGBM) [8], which used 148 and 139 estimators in the
ensemble for each Scenario.

There are some considerations on how the ML models
could be implemented in a real network. First, it would be
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TABLE II
INITIAL RESULTS FOR SCENARIO 1.

Method Accuracy (%) Std. Dev. Time (s)
MLP 99.72 0.10 5.25
SVM 99.74 0.08 0.54
SOFL 99.11 0.22 12.51
T2FLS 98.94 0.68 5845.78
ALMMo 99.61 0.11 257.47

TABLE III
INITIAL RESULTS FOR SCENARIO 2.

Method Accuracy (%) Std. Dev. Time (s)

MLP 86.22 0.96 15.94
SVM 86.34 0.33 21.26
SOFL 85.32 0.71 14.60
T2FLS 72.40 0.98 7672.62
ALMMo 68.06 1.16 357.74

necessary a setup step, in which the network would act without
the models’ action because it is necessary to collect/store
data and to train models. In our analysis, the RSRP and
RSRQ measurements occur in this initial phase, along with
the information about download completions and their required
times. They are models’ inputs so that they can be trained. This
also clarifies how important is the processing time, since the
models must be updated as fast as possible, with no harm to the
network. After this initial phase, the models would be available
to act on the HO decision making at the eNBs. Furthermore, if
network alters e.g., an introduction of a new eNB, it would be
necessary to retrain the models to account such changes [12].

IV. RESULTS AND DISCUSSION

The selected methods were tested with Python 3.7
and Matlab scripts on an i7-6700HQ processor computer
(2.6 GHz). To provide statistical robustness, the k-Fold
technique [20] was implemented, with : = 5. Additionally, the
test was carried 33 times for each method employed. In order
to facilitate the reproducibility of the proposal discussed in
this Letter, all the codes for training, testing, and the resulting
parameters of all algorithms, besides our simulation campaign
numerical data are available in [24].

A. Handover Decision (Classification Problem)

For the classification of the best eNB for HO, three metrics
were used for comparison: the average prediction accuracy (the
percentage of correct predictions by the classifier), its standard
deviation and processing time. The initial results are presented
in Tables II and III, for Scenarios 1 and 2, respectively.

We verify the statistical validity of the data obtained from
the proposed solution by using the two-sample C-test [25],
whose C parameter is given by

C =
�̄1 − �̄2√
B�1

2

;
+ B�2

2

ℎ

, (1)

where �̄1 and �̄2 are the means, B�1 and B�2 the standard
deviation and ℎ and ; are the size of samples �1 and �2,
respectively. In addition to the evaluation of C, it is also
important to infer the hypothesis �0 : �̄1 = �̄2 and �1 =

�̄1 ≠ �̄2, where the null hypothesis �0 indicates that both �1
and �2 methods have obtained the same accuracy, while �1

TABLE IV
) -TEST RESULTS FOR SCENARIO 1.

�1 �2 ?-value Low. b. Upp. b. �

SVM ALM 3.56E-07 0.0009 0.0018 1
SVM MLP 0.425 -2.70E-4 6.34E-4 0
SVM SOFL 4.66E-19 0.0055 0.0071 1
SVM T2FL 1.17E-07 0.0056 0.0105 1
MLP ALM 2.13E-05 0.0007 0.0017 1
MLP SOFL 5.12E-19 0.0053 0.007 1
MLP T2FL 1.83E-07 0.0054 0.0103 1
SOFL ALM 9.99E-16 -0.0058 -0.0041 1
SOFL T2FL 0.1803 -0.0008 0.0042 0
ALM T2FL 3.39E-06 0.0042 0.0091 1

TABLE V
) -TEST RESULTS FOR SCENARIO 2.

�1 �2 ?-value Low. b. Upp. b. �

SVM ALM 1.26E-44 0.1786 0.1871 1
SVM MLP 0.5019 -0.0024 0.0048 0
SVM SOFL 1.66E-9 0.0075 0.013 1
SVM T2FL 2.47E-44 0.1358 0.1431 1
MLP ALM 1.86E-60 0.1764 0.1869 1
MLP SOFL 5.76E-5 0.0049 0.0132 1
MLP T2FL 7.31E-57 0.1334 0.143 1
SOFL ALM 6.14E-55 0.1679 0.1773 1
SOFL T2FL 1.78E-54 0.125 0.1334 1
ALM T2FL 2.47E-24 -0.0487 -0.0381 1

is the alternative hypothesis which indicates that the accuracy
levels are distinct. Given a significance level UC , the ?-value,
which is calculated from C-test, represents the lowest possible
value to reject �0 [25]. Values lower than UC indicates the
rejection of �0 in (1 − UC ) × 100% of the cases (i.e., if
?-value < UC , the alternative hypothesis �1 is valid). Here,
we consider UC = 0.05.

In this stage, the C-test compares the performance of the
adopted strategies for obtaining the greatest accuracy on
classifying the best HO target for UE 1. Table IV and V
present the evaluations for Scenario 1 and 2, respectively. In
both Tables, the ?-value is presented, as well as the confidence
interval on the difference of the population means, and the
hypothesis inferred (0 for �0 and 1 for �1).

Based on Tables II and IV, the results indicate that all
methods perform optimally when there are no shadowing
effects to disturb predictions. However, SVM and MLP have
the best scores and reduced processing time. The ?-value of the
C-test is greater than UC only when comparing SVM to MLP
and SOFL to T2FL, which indicates the validity of the null
hypothesis (� = 0). Therefore, the C-test demonstrates there is
no statistical difference between these algorithms in these cases
and it confirms that the best models for this classification task
are SVM and MLP. Moreover, the fuzzy logic-based ALMMo
also demonstrates excellent accuracy, but it fails to deliver it
quickly. We credit the longer time required for T2FLS and
ALMMo mainly due to the training process. ALMMo extracts
features autonomously, without further parameters and form its
structure empirically from the observed data. The T2FLS on
the other hand requires larger pre-processing calculations that
could affect the training phase.

Furthermore, looking at the results for Scenario 2 on
Tables III and V, in which the shadowing effects are present,
some algorithms are still achieving reasonable precision,
especially SVM and MLP classifiers, although the accuracy
falls considerably (around 13%). Again, they outperform
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TABLE VI
REGRESSION RESULTS FOR SCENARIO 1.

Method "�� Std. Dev. Time (s)

MLP 0.27163 0.00800 21.85
KNN 0.12791 0.00490 1.24
RF 0.11987 0.00524 49.34
GBM 0.12452 0.00727 32.98
XGBoost 0.12343 0.00714 25.67
LightGBM 0.11553 0.00317 14.81

TABLE VII
REGRESSION RESULTS FOR SCENARIO 2.

Method "�� Std. Dev. Time (s)

MLP 6.32415 0.07108 8.98
KNN 6.00046 0.07525 1.68
RF 5.99726 0.05373 53.05
GBM 6.19593 0.07841 34.15
XGBoost 5.88485 0.10150 17.53
LightGBM 5.08845 0.04832 13.76

the others on the comparison, and they do not present
relevant differences to each other, confirmed by the C-test.
However, in this case, it is important to accentuate that fuzzy
rule-based SOFL classifier was capable of reaching competitive
accuracy while requiring the shortest processing time, which
is meaningful to the fuzzy logic context.

B. Download Time Estimation (Regression Problem)

For regression, each Scenario demanded a different
regression variable. For the first one, the prediction was made
for the download duration, since the majority of the downloads
are able to be completed within simulation time. However, for
the second one, the prediction was made for the percentage
of completed download, seeing that it is a more challenging
scenario and the majority of downloads could not be completed
at the end of 100 s of simulation. Therefore, the analyzed
metrics are the mean absolute error ("��) between the
actual download time and the predicted value, the standard
deviation, and processing time. The results are presented in
Tables VI and VII below, for Scenarios 1 and 2, respectively.

We notice on Table VI that all methods presented a relatively
low "�� , being LightGBM the most accurate with "�� =

0.11553; and MLP being the least accurate with "�� =

0.27163. In Table VII, due to the presence of shadowing, the
values of mean absolute error are greater, as expected. Again,
the most precise was LightGBM and the least precise was MLP.

Regarding execution time, KNN obtained the best result,
possibly explained by the database not being so numerous
and the hyperparameter  being considerably small, reducing
the computational cost. The second lowest time was presented
by LightGBM, which has processing speed as an advantage.
Differently, Random Forest was the slowest, probably due to
the number of trees created during training.

The two-sample C-test [25] is applied once again, now
seeking statistical differences between regression methods �1
and �2. Hence, Tables VIII and IX are obtained for the first
and second Scenarios, respectively.

Analyzing Tables VIII and IX, the hypothesis that XGBoost
and GBM are equivalents is rejected in Scenario 1. The same
applies to RF and KNN in Scenario 2. Therefore, it is clear
that LightGBM is the one that best fits into the database

TABLE VIII
) -TEST RESULTS FOR REGRESSION IN SCENARIO 1.

�1 �2 ?-value Low. b. Upp. b. �

XGB Light 6.85E-7 0.0052 0.0106 1
XGB GBM 0.5785 -0.0047 0.0027 0
XGB MLP 8.11E-40 -0.1530 -0.1406 1
XGB RF 0.0493 -0.0014 0.0063 1
XGB KNN 0.0049 -0.0076 -0.0014 1
Light GBM 1.88E-7 -0.0118 -0.0061 1
Light MLP 2.16E-34 0.1605 0.1489 1
Light RF 9.43E-6 0.0068 -0.0029 1
Light KNN 5.89E-17 -0.0143 -0.0104 1
GBM MLP 2.16E-40 -0.1520 -0.1395 1
GBM RF 0.0128 0.0009 0.0073 1
GBM KNN 0.0347 -0.0067 -0.0002 1
MLP RF 1.30E-36 0.1439 0.1558 1
MLP KNN 8.43E-36 0.1364 0.1486 1
RF KNN 4.92E-8 0.0051 0.0100 1

TABLE IX
) -TEST RESULTS FOR REGRESSION IN SCENARIO 2.

�1 �2 ?-value Low. b. Upp. b. �

XGB Light 1.99E-37 0.7565 0.8363 1
XGB GBM 3.00E-20 -0.3563 -0.2658 1
XGB MLP 1.13E-27 -0.4830 -0.3956 1
XGB RF 1.19E-6 -0.1576 -0.0731 1
XGB KNN 2.71E-6 -0.1602 -0.0710 1
Light GBM 1.95E-53 -1.1401 -1.0748 1
Light MLP 3.94E-60 -1.2661 -1.2053 1
Light RF 3.51E-57 -0.9399 -0.8836 1
Light KNN 1.42E-50 -0.9437 -0.8803 1
GBM MLP 3.50E-9 -0.1656 -0.0908 1
GBM RF 3.95E-16 0.1602 0.2314 1
GBM KNN 5.43E-15 0.1571 0.2338 1
MLP RF 3.89E-28 0.2904 0.3576 1
MLP KNN 2.75E-26 0.2871 0.3602 1
RF KNN 0.9867 -0.0344 -0.0350 0

obtained from this simulation campaigns, also presenting a
diminished execution time, due to the fact that it has the
smallest value for "�� and the C-test confirms there is
no other model with equivalent performance. It is worth to
mention that KNN offers an acceptable performance while
requiring an extremely low execution time, which suggests its
use for similar applications with real-time regressions.

V. CONCLUSIONS

Since 3GPP HO management relies basically on power
level comparisons, several inefficiencies arise during such
procedures. In this context, we presented a user-level
simulation-based performance analysis of algorithms for
classification and regression applications in 3GPP networks.
The classification aims to predict the best HO target, whereas
the regression estimates the download time and its completed
percentage. Classical computational intelligence approaches,
such as KNN, MLP, SVM and also recent fuzzy logic systems
and latter gradient boosting machines were implemented.

The results indicate a valuable performance even in adverse
propagation conditions while requiring short processing
time. For classification, SVM and MLP have the best
performance, although the fuzzy system SOFL has similar
accuracy with lower processing time. Regarding the regression
applications, LightGBM is certainly the one that best adapts to
these work conditions and presents minor mean absolute error
and processing time. However, it is worth to mention that KNN
offers extremely low time values.
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