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A Comparative Analysis of Glaucoma
Feature Extraction and Classification Techniques

in Fundus Images
Debora F. de Assis, Paulo César Cortez

Abstract—Glaucoma is an asymptomatic chronic eye disease
that, if not treated in the early stages, can lead to blindness.
Therefore, detection in the early stages is essential to preserve
the patient’s quality of life. Thus, it is crucial to have a non-
invasive method capable of detecting this disease through images
in the fundus examination. In the literature, datasets are available
with fundus images; however, only a few have glaucoma images
and labels. Learning from an imbalanced dataset challenges
machine learning, which limits supervised learning algorithms.
We compared approaches to extract and classify three public
datasets with 2390 images: ACRIMA, REFUGE, and RIM-ONE
DL. First, we evaluated extracted features non-structural from
HOG, LBP, Zernike, and Gabor filters and features obtained
from transfer learning. Then, we classified them with Multilayer
Perceptron (MLP), Support Vector Machine (SVM), and Extreme
Gradient Boosting (XGB). Finally, each classifier was evaluated
individually and in a voting classifier (VOT). We extracted and
classified features from transfer learning models in the same
process. Also, they were classified using traditional machine
learning. Due to class imbalance, we undersampled the majority
class normal by applying the following methods: random choice,
near miss, and cluster centroid. We also evaluated our model us-
ing a cross-dataset approach. Therefore, we efficiently identified
glaucoma in different fundus images using network VGG19 and
a voting classifier. In addition, balancing classes reduced false
negatives and improved model quality. Our approach achieved
an average F1-score equals to 94.69%, accuracy rate of 94.77%,
precision of 96.10%, recall of 93.45%, and specificity of 96.08%.

Index Terms—Glaucoma, Classification, Transfer Learning,
Cluster Centroid, RIM-ONE DL.

I. INTRODUCTION

GLAUCOMA is a chronic eye disorder caused by a partic-
ular pattern of progressive optic nerve damage, usually

related to increased intraocular pressure. This disease can
cause irreversible damage to the optic disc that progressively
atrophies the visual field, causing blindness in more advanced
cases [1]. Glaucoma can be considered a disease group that
presents optic neuropathy, caused both by alterations (optical
disc aspect) and by functional deficit (visual field alteration)
[2].

According to [3], glaucoma can be treated but it has no cure.
This disease tends to be asymptomatic in the early stages, with
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notable symptoms in the advanced stages. The patient vision is
maintained when appropriately treated, usually with eye drops
that reduce or stabilize intraocular pressure.

Periodic evaluations with an ophthalmologist are the best
way to detect this disease. Fundoscopy is commonly recom-
mended to obtain information about the fundus image due to
its economy and straightforwardness. In a fundoscopy exam,
the specialist visualizes the eye structures, with particular
attention to the optic nerve, the retinal vessels, and the retina
itself. These regions are essential in identifying glaucoma,
as they evaluate the pupillary reflex response and visual
acuity. However, this exam is not confirmatory because human
vision incorporates subjective factors, limiting the analysis of
a specialist [4].

Different devices that capture fundus images can lead to
heterogeneity in the acquisition, with blurred images captured
or different angles. Therefore, developing methods to diagnose
glaucoma that encompasses image recognition and adapts to
image qualities from varied cameras is essential for patient
treatment.

Several works have used computer vision techniques be-
cause they effectively identify many diseases. If applied prop-
erly, these techniques can transmit relevant information and
support a doctor in providing an accurate diagnosis.

Manifold techniques have been developed and applied in
the literature to aid in diagnosing glaucoma. However, some
nuances related to different datasets, classifiers, and imbalance
classes make the detection less generalized. In this work,
we applied undersampling techniques to balance normal and
pathological samples to enhance model generalization and
reduce false negatives. For glaucoma, false negatives are more
harmful to the model than false positives, as it is more
important to diagnose the patient with glaucoma so the doctor
can perform the necessary tests. In addition, assuming that the
test is a false negative, the patient will be diagnosed as healthy
and will not be referred to a specialist, which can aggravate
the stage of the disease and delay the treatment.

In addition, we used three datasets to consider image
variety, including the enhanced current RIM-ONE-DL dataset
combined with three previous versions by removing duplicate
images.

Features non-structural extraction methods, such as texture
and entropy information, are widely applied to describe an
image. However, Convolutional Neural Networks (CNN) have
stood out for their ease and diversity of application. In this
work, we compared these two feature extraction methods,
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evaluated traditional Machine Learning (ML) models and
transfer learning networks to proceed with the classification.

Our main contribution was a pipeline combining VGG19
and a voting classifier for glaucoma detection, using a dataset
balanced with cluster centroid. In addition, we investigated
and compared different methods to feature extraction and
image classification for glaucoma detection. We provided an
extensive analysis of traditional Machine Learning and Deep
Learning (DL). We explored balanced classes to improve per-
formance. In addition, we evaluated the following techniques
to generalize:

• An analysis of class balancing for model stability, using
a random, near miss, and cluster centroid undersampling;

• Non-parametric statistical tests for comparison between
models with imbalanced and balanced classes;

• Model generalization with 10-fold cross-validation;
• Cross-dataset analysis to check model generalization with

images not seen in the training stage.
We organized the content of this work into five sections. In

Section 2, we discussed results related to the literature. Section
3 described the datasets, feature extraction, transfer learning,
evaluated methods, and the Mann-Whitney test. In Section
4, we produced the analysis and discussed the experimental
design results. Finally, we indicated the conclusions and future
work in Section 5.

II. RELATED WORKS

Due to the improvement of computer vision techniques,
several studies have been developed to detect glaucoma from
fundus images. Table I presents a methods summary used in
related works and in our best model. Some authors described
the fundus image with features non-structural extractors or
structural features calculated from the optic disc and cup
segmentation. Recently, studies employed deep learning with
pre-trained network architectures to extract and classify images
in a single process. In addition to these techniques, there are
also combinations of different methods to improve the model
and increase accuracy.

In the related works, authors that chose to extract features
non-structural to describe images used statistical information,
texture, and entropy, among others. For example, in work
developed by Talaat et al. [5], the authors applied features
extraction using statistical and texture information. After that,
they reduced the amount of data to balance the classes, and
performed the classification using SVM.

Parashar et al. [6] and Khan et al. [7] also applied non-
structural extractors to describe the images and classified them
using traditional ML methods. Parashar et al. [6] proposed a
2-D compact variational mode decomposition (2-DC-VMD).
First, they decomposed images into several variational modes
(VMs) and extracted the features such as Kapur Entropy (KE),
Renyi Entropy (RE), Yager Entropy (YE), Shannon entropy
(SE), and energy (En). Then, they used the least squares SVM
multiclass classifier (MC-LS-SVM) to detect glaucoma stages
(healthy, early, and advanced). On the other hand, [7] applied
discrete wavelets transform (DWT) based on the bivariate
shrinkage method. They involved a non-Gaussian bivariate

probability distribution function to model the statistics of
wavelet coefficient images.

Another medical image classification approach is extracting
CNNs features and merging them with other information,
such as texture or geometric features. Thakur et al. [8] com-
bined structural features such as the Gray Level Cooccurrence
Matrix (GLCM), Gray Level Run Length Matrix (GLRM),
Higher Order Spectra (HOS), the First Order Statistical (FoS),
Higher-Order Cumulative (HOC) and Discrete Wavelet Trans-
form (DWT). Furthermore, features non-structural were also
merged, such as Cup-to-Disc Ratio (CDR) and Disc Damage
Likelihood Scale (DDLS).

Claro et al. [9] combined features non-structural (LBP,
GLCM, HOG, Tamura, GLRLM, morphology) and seven
CNN architectures. The classification was performed with
Randon Forest (RF). Another study that combined non-
structural information with features from CNNs was Benze-
bouchi et al. [10], in which the authors proposed a multimodal
representation based on extracting features from different
CNNs with features non-structural from GLCM, Hu Moments,
and Central Moments.

Raghavendra et al. [11] proposed a convolutional network to
extract features and classified them with Linear Discriminant
Analysis (LDA). Some authors used CNNS architectures to
extract features and classify images in a single process, as
[12] did. In this case, the network starts randomization of the
weights and performs the extraction step from the beginning
with the dataset used. This method differs from the pre-trained
models, which can be used to classify new images using
weights learned. It is optional to train the network with random
initial weights, thus reducing the computational cost of training
the model. The authors [13], [14], [15], [16], [17] and [18]
used pre-trained models to identify glaucoma.

Norouzifard et al. [13] used the VGG19 and ResNetIncep-
tionV2 networks to classify glaucoma. Gómez-Valverde et al.
[14] explored the application of different CNN architectures
to demonstrate the network’s performance. Similarly, Batista
et al. [15], who proposed an improvement in the RIM-ONE
dataset, separated the dataset randomly and by the hospital.
They performed the extraction and classification with different
transfer learning methods in the two proposed separation
forms. Juneja et al. [16] proposed a CNN for glaucoma
classification based on GC-NET.

Elangovan et al. [17] used a CNN architecture to ex-
tract image information and compared classification traditional
methods with the network using Softmax. Another work
that also compared different classification methods was from
Singh et al. [19], in which they proposed a multimodality-
based approach for the detection of glaucoma. They classified
the features with six traditional ML methods and two deep
learning approaches. Finally, Ubaidah et al. [18] extracted
and classified the images with the MobileNet network to
multiclass dataset. However, they used data augmentation in
all the dataset, including validation and testing, which leads
to optimistic results.

Although many studies presented performances with high
accuracy rates in detecting glaucoma, some authors need to
improve their evaluation of the results. The difference in the
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dataset and results evaluation makes it difficult to compare the
methods. Some studies use repetition, k-fold, or separation of
training and test without validation with external data. Thus,
using only accuracy rates as a comparison does not imply a
fair comparison.

To our best knowledge, the most used method to validate
the results is k-fold cross-validation, as [5] used 10-fold for
the training and validation step. Other works that used 10-fold
to validate are [6], [9], [10], [14] and [18]. [8], applied 5-fold
to validate the classification of features structural and non-
structural. [19] used 5-fold for validation. Another form of
validation was with fifty repetitions in [11], twenty repetitions
in [12], and five repetitions in [17]. [15] did not use repetition
due to the random and specific separation by the hospital.
In [13], repetition was not used. In [7] and [16], validation
techniques were not presented.

The authors that did not use any validation method could
obtain optimistic results. For example, [8] presented classifica-
tion with a separation of 70% for training and 30% for testing
and obtained higher results than with a 5-fold cross-validation.

The studies may use different model validation techniques
as repetition or cross-validation. Results with these techniques
are more generalized than those with only one run, as the
repetition methods are generalized and less biased. However,
involving only one run can generate optimistic model results.
Therefore, as the majority, we used 10-fold cross-validation to
generalize the model.

Tests on new images are necessary to evaluate the models
generalization. However, most related works used only the test
set of the dataset applied in the training stage. In the literature,
few studies evaluated the performance of models with a dataset
not included in the training stage. To our best knowledge, only
[13] used external validation with the HRF dataset. The results
showed lower rates than the studies that separated the data set
for training and testing.

Although those works applied different datasets and com-
binations of them, there must be no replicas of images in the
training and test data, which can generate optimistic results
since the algorithm has already learned the features of that
specific image. [6], [9], and [14] used dataset merge from
previous versions of RIM-ONE, which had image duplication.
Therefore, it can return favorable results since identical images
could be present in the training and testing data. With dataset
improvement in [15], we used the RIM-ONE DL dataset,
which contains unduplicated images from the three previous
versions of the RIM-ONE dataset.

Most public datasets with glaucoma image labels are imbal-
anced, compromising model training. In our review, only [5]
applied undersampling. They used 40 images for each class
and 10-fold cross-validation to obtain results, that is, fewer
test images.

To our best knowledge, most studies comparing evaluated
models only used descriptive information. Few authors applied
statistical tests. For example, [6] and [7] used tests to compare
their models. [7] applied tests to define the best features.

Thus, some related works presented limitations in general-
ization, such as the lack of tests using the external dataset,
insufficient validation with few test images, or not using rep-

etition to generalize the results. In addition, it was necessary
to improve the model without significantly reducing the data
set, especially in works that evaluated less than ten images
in the test. Other points to be enhanced are datasets with
replicated images, such as studies that used the combination
of versions 1, 2, or 3 of RIM-ONE and works that used
data augmentation in the training, validation, and test stages.
Furthermore, the inferential analysis must be accomplished
for comparative works to prove the significant difference in
models.

To overcome these limitations, we explored an efficient
methodology to identify glaucoma in fundus images using
existing techniques. Therefore, we performed an extensive
analysis comparing features non-structural extractions, five
transfer learning algorithms, four classifiers, and six evaluation
metrics, including a confusion matrix and statistical tests to
compare models.

III. MATERIALS AND METHODS

We presented an experimental design model in the workflow
illustrated in Fig. 2. We compared three models: extracted
features non-structural from images and machine learning tra-
ditional models classification; features extracted from transfer
learning networks and classification with traditional machine
learning; and transfer learning networks to extracted features
and classification from images. Moreover, we applied class
balancing and compared the results. In addition, we evaluated
the best model based on statistical tests. Each method applied
was described in the following sections.

We used fundus images from three public datasets:
ACRIMA, REFUGE, and RIM-ONE DL. Since the REFUGE
dataset images were obtained from the entire retina, we
cropped the optic disc region based on the publicly available
area in the dataset. The total images are 2390: 1702 normal
and 688 glaucoma classes. Fig. 1 (a) illustrates the original
image, and 1 (b) shows the cropped image.

Fig. 1: REFUGE example image

(a) Original (b) Cropped

We performed a comparison of different extraction methods
and classifications to identify glaucoma. The first method is a
traditional/baseline model, in which descriptors obtain feature
vectors. Next, we resized the images to 256 × 256 pixels
and converted them to gray scale. After that, we extracted
the features of the images from Local Binary Patterns (LBP),
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TABLE I: A summary of related works

Work Dataset Pre-process Features Classify Validate Class
Balanced

Statistical
Test Results

Our
method

ACRIMA,
REFUGE,

RIM-ONE DL

Resize
(224 × 224) VGG19 Voting 10-fold

Random,
NearMiss,
Centroid
Cluster

Mann-
-Whitney

F1: 94.69%,
Acc: 94.77%,
Prec: 96.10%,
Rec: 93.45%,
Spe: 96.08%

[5] REFUGE

Cropped, Resize
(224 × 224),
RGB, HSV,
CIELAB,

Median filter

Statistics
informations,
GLCM, RLM

SVM 10-fold Random None
Acc: 92.50%,
Rec: 95.00%,
Spe: 90.00%

[6] RIM-ONE v1,
RIM-ONE v2

Resize
(240 × 240),
Green color,

CLAHE

2-DC-VMD, KE,
RE, SE, YE, FD,

Energy
MC-LS-SVM 10-fold None

F test,
Kruskall-
-Wallis

Acc: 96.23%,
Rec: 98.00%,
Spec: 94.50%,
AUC: 96.25%

[7] RIM-ONE v2 2D-WTD
RGB plane

Contrast,
Homogeneity,

Energy, Entropy,
RMS, Variance

LV-SVM None None T test,
Wilcoxon

Acc: 91.22%,
Rec: 85.51%,
Spec: 98.50%

[8] DRISHTI-GS,
RIM-ONE v3

Cropped,
Resize

(512 × 512)

DWT, GLRM,
GLCM, HOS,

FoS, DDLS, CDR

k-NN, SVM,
NN, RF, NB 5-fold None None

Acc: 93.20%,
Prec: 92.00%,
Rec:91.00%,
Spe: 92.00%

[9]

DRISHTI-GS,
RIM-ONE

(v1, v2 e v3),
JSIEC, HRF,

ACRIMA

Cropped disc
LBP, GLCM,

HOG, Tamura,
GLRLM, CNN

RF e CNN 10-fold None None

Acc: 92.78%,
Prec: 92.80%,
AUC: 96.60%,
Kappa: 81.85%

[10] RIM-ONE V2 Otsu, Resize
(100 × 100)

CNN, GLCM,
Hu moments,

Central Moments

BWWV CNN
SVM 10-fold None None

Acc: 99.78%,
Rec: 99.50%,

Esp: 100%

[11] Kasturba
Medical

Resize
(64 × 64) CNN LDA 50

repts None None
Acc: 98.13%,
Rec: 98.00%,
Esp: 98.30%

[12] DRISHTI-GS,
ORIGA,

HRF

HE, CLAHE,
Resize

(256 × 300)
CNN CNN 20

Repts None None

F1: 95.70%,
Acc: 93.50%,
Rec: 97.70%,
Spe: 92.60%,
Prec: 93.80%,
AUC: 95.10%

[13] UCLA, HRF Resize
(299 × 299)

VGG19,
ResNetInceptionV2

VGG19,
ResNetInceptionV2 None None None

Acc: 95.00%,
Rec: 90.10%,

Spec: 100.00%

[14]

ESPERANZA,
RIM-ONE v1,
RIM-ONE v2,
RIM-ONE v3,
DRISHTI-GS

Data augment,
Resize

(256 × 256 and
224 × 224)

VGG19,
GoogLeNet,

ResNet50, DENet

VGG19,
GoogLeNet,

ResNet50, DENet
10-fold None None

Prec: 88.05%,
Rec: 87.01%,
Spec: 89.01%,

AUC: 0.94

[15] RIM-ONE DL Resize
(224 × 224)

VGG16, DenseNet,
MobileNet, VGG19,
Xception, ResNet50,

MobileNetV2,
InceptionResNetV2,

InceptionV3,
NasNetMobile

VGG16,DenseNet,
MobileNet, VGG19,
Xception, ResNet50,

MobileNetV2,
InceptionResNetV2,

InceptionV3,
NasNetMobile

None None None
Acc: 93.15%,
Rec: 100.00%,
AUC: 98.67%

[16] RIM-ONE V1,
DRISHTI-GS

Cropped,
Denoising,

Data augment

GC-NET, VGG16,
InceptionV3,

Xception,
ResNet50,

DenseNet121

GC-NET, VGG16,
InceptionV3,

Xception,
ResNet50,

DenseNet121

None None None
Acc: 97.51%,
Rec: 98.78%,
Spe: 96.20%

[17] DRISHTI-GS

Resize
(224 × 224),

Data augmentat,
Contrast

DenseNet201 SVM k-NN, NB,
Softmax

5
reps None None

Acc: 96.48%,
Prec: 95.82%,
Rec:98.88%,
Spe:92.10%,
F1: 97.28%

[19]
REFUGE,
ORIGA,

ACRIMA

RGB, Tozero,
Gray scaler

CDR, GLCM,
GLRM, SRE, GLU,

RPC, DCGAN,
VGGCapsNet

RF, k-NN, NB,
SVM, XGboost,

DeepNet, DCGAN,
VGG-CapsNet

5-fold None None

Acc: 95.56%,
Prec: 95.00%,
Rec: 93.00%,
Spe: 97.00%,

kappa: 94.00%

[18] RIM-ONE v1
Resize

(224 × 224),
Data augmentat

MobileNet MobileNet 10-folds None None
Acc: 99.00%,
Rec:99.00%,
F1: 99.00%



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 51

Fig. 2: Experiments Workflow

Histogram Oriented Gradient (HOG) and Zernike moments.
Statistical information was obtained after applying the Gabor
filter. As a result, we extracted 135 features from the images:
a vector of 32 features obtained from the HOG descriptor, 66
from the LBP, 25 from the Zernike moments, and 12 statistical
information from the image filtered with Gabor.

We chose these extractors after exhaustive tests with several
descriptors applied in the literature, as in studies from [9]
and [10]. In addition, we adjusted their parameters for proper
performance in identifying glaucoma in fundus images.

In the second method, we applied CNNs as feature ex-
tractors. We used the transfer learning architectures: VGG16,
VGG19, ResNet50, MobileNet, and Xception. As pre-
processing, we resized the images to the standard size of each
network. We resized the VGG16, VGG19, MobileNet, and
Resnet50 networks to 224 × 224, and Xception networks to
299 × 299. We removed the last fully connected layers and
sent the resulting vector to traditional ML classifiers.

The features of each model were classified using the Mul-
tilayer Perceptron (MLP), Support Vector Machine (SVM),
and Extreme Gradient Boosting (XGB). To obtain a better
predictive performance, instead of using only the classifiers
individually, we applied a voting classifier that consists of a
classification committee using SVM, MLP, and XGB. This
model aggregated the findings of each classifier to predict the
output class based on the majority votes.

We chose these classifiers for presenting satisfactory results
in the studies from [5], [8] and [19]. Also, in comparison
with other classifiers by grid search techniques and exhaustive
comparison tests, the chosen classifiers got the best results.

In the third method, we used the VGG16, VGG19, In-
ceptionV3, ResNet50, MobileNet, and Xception architectures
to extract and classify the images. We removed the fully
connected layer and added dense layers to train the features.
We used the weights of the architectures trained with Im-
ageNet. We employed the sigmoid activation function, the
cross-entropy loss function, and Adam optimizer.

We applied 10-fold cross-validation, ensuring a generaliza-
tion and avoiding favorable results. The final results referred
to the average of each metric: accuracy, precision, recall,
specificity, and F1-score. Also, we evaluated the average
amount of true positives, true negatives, false positives, and

false negatives.
Public datasets fundus images vary in size, quality, and also

depends on the camera that obtains the image. In addition,
the number of images in the class is imbalanced, with many
images of the non-glaucoma classes and few glaucoma images.
To solve this problem and improve the model, we applied class
balancing, which reduced the number of observations to match
the smallest category. In addition, we used different techniques
for undersampling: random, near miss, and cluster centroid.

Commonly used in the literature to select observations,
random separation does not present a technique for choosing
images. Instead, the Near Miss technique uses the borderline
idea among the category to choose the most representative
samples. Finally, the Cluster centroid undersampling uses the
selection of samples based on each class centroid, seeking a
grouping among the samples selected [20].

To verify the difference in the model performance when
adding the balancing approach, we applied the Mann-Whitney
test to compare the results. In addition, we performed the
analysis with the cross-dataset to verify the model behavior
when evaluating a dataset not seen in the training stage.

Our analyses were performed on an Intel(R) Core
(TM) CPU i7-1165G7 2.80GHz, with 16GB of RAM and
a 64-bit operating system. For computational analysis,
we used Python and R as programming languages.
The programming code implementations are public on
https://github.com/DeboraFA/Glaucoma_binary_classification
_undersampling.

A. Datasets

ACRIMA dataset was created from a project (TIN2013-
46751-R) founded by the Ministerio de Economía y Com-
petitividad of Spain, which develops automatic algorithms for
assessing retinal diseases. The ACRIMA dataset comprises
705 fundus images, 396 images from the glaucomatous class,
and 309 from the non-glaucoma label. Most of the fundus
images in this dataset were taken from the previously dilated
eyes and centered on the optic disc [21].

According to [22], the Retinal Fundus Glaucoma Challenge
(REFUGE) was made public in 2018 in partnership with
the MICCAI Workshop on Ophthalmological Image Analysis
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(OMIA). This dataset provides segmented fundus images and
clinical glaucoma labels: 1080 images from the non-glaucoma
and 120 from the glaucoma classes.

The Open Retinal Image dataset for Optic Nerve Evaluation
Deep Learning (RIM-ONE DL) results from the combined of
the three previous versions of RIM-ONE (v1, v2 e v3). This
new version eliminated the duplicate images contained in v1
and v2. In addition, they excluded the images of the same
patient in v2 and v3, leaving only the left image of dataset
version v3. The images in the three versions of RIM-ONE
included healthy and glaucomatous eyes from Spanish hos-
pitals: Hospital Universitario de Canarias (HUC) in Tenerife,
Hospital Universitario Miguel Servet (HUMS) in Zaragoza,
and Hospital Clınico Universitario San Carlos (HCSC), in
Madrid. The final set consisted of 485 images, 313 healthy
and 172 glaucoma fundus images [15].

B. Features descriptors
Obtaining image features is an exhaustive and non-intuitive

process, requiring prior knowledge of images and descriptors.
Furthermore, verifying the correlation among these features is
essential, as adding some variables can cause multicollinearity
problems.

Therefore, selecting suitable extractors with relevant fea-
tures is crucial for distinguishing image classes. We defined
feature extractors: LBP, HOG, Zernike moments, and statisti-
cal information of the image after the Gabor filter.

1) Histogram of Oriented Gradients (HOG): is a global
feature descriptor that describes an image with a locally
Histogram Oriented Gradient. The HOG is calculated by
three step-sequence: gradient computation, orientation, and
histogram generation. These histograms represent occurrences
of specific gradient orientation in a local part of images
[23, 24].

We divided the image into cells of 128 × 128 pixels and
blocks of 1 × 1 pixels. To calculate HOG, we used eight
orientations per histogram for each cell. Subsequently, we
calculated result normalization using the square root method in
8 orientations, introducing an invariance to lighting, shading,
contrast, and edges. Finally, the HOG descriptors from all
blocks accumulated from a dense superimposed grid of blocks
covering a detection window, into a combined feature vector.
The total features descriptor is equal to 32.

2) Local Binary Pattern (LBP): described by Ojala in 1996,
is a particular case of the spectral texture model, defined by
Wang [25]. LBP assumes that texture information is divided
into textural units.

After applying LBP, the resulting features are equal to P+2,
where P is the number of gray levels in the image. So, to
this work, the value of P is equal to 64. Furthermore, the
added LBP input tabulates all patterns that are not uniform,
adding an extra rotation level and grayscale invariance. Thus,
we obtained the feature vector with a dimension of 66,
representing the input images textures.

3) Zernike Moments: map an image onto a set of complex
Zernike polynomials. As these polynomials are orthogonal to
each other, Zernike moments can represent the image proper-
ties without redundancy or overlapping information between

moments. Their magnitudes are independent of the object
rotation angle. The Zernike moments’ calculation of an image
consists of three steps: radial polynomials analysis, calculation
of base Zernike functions, and measuring Zernike moments by
projecting the image onto base functions [26].

We used a radius equal to 128, which referred to the input
image radius of dimension 256 × 256. Therefore, the quantity
of features for this descriptor was equal to 25.

4) Gabor Filter: was developed in 1964 by Dennis Gabor
and it is a linear filter used for texture analysis. This filter
analyzes image frequency content in specific region directions.
This filters are appropriate for texture representation and
discrimination [27].

First, we applied Gabor filters to the images. After that,
we calculated statistical information in filtered images: mean,
asymmetry, and kurtosis. Then, three pieces of information
are calculated for each resulting image, totaling 15 features
for this descriptor.

C. Transfer Learning

Convolutional Neural Networks (CNNs) were introduced
by Yann Lecun et al. in the 1990s. This designed network
receives input data matrices, a color image composed of three
2D matrices containing pixel intensities channels color. The
main convolutional network properties are local connections,
shared weights, pooling, and the use of multiple layers [28].

Transfer learning networks have a layered architecture
that uses a pre-trained network. They can be used, without
their final layer, as an image feature extractor. We applied
these architectures in our study: VGG16, VGG19, MobileNet,
ResNet50, and Xception.

1) VGG: The VGG model concept improves overall net-
work performance by increasing the layer depth. Its strategy
is transforming the convolution kernel layer into small mul-
tivolume laminated kernels, reducing the model parameters
number, and making the network more discriminative [29].

In the VGG16 architecture, the number 16 refers to the
16 layers with weights. The difference between VGG16 and
VGG19 architectures comes down to three additional layers
existing in VGG19, with an extra convolution layer in the
fourth, one in the fifth, and one in the sixth block.

2) MobileNet: The Mobilenet kernel layer presents one of
the essential network properties: the separable convolutions in
depth. The principal depth convolutions property is to split the
standard convolution into two nucleus, a depth convolution and
a point convolution 1 × 1. Deep-separable convolution uses
8-9 times less computational cost than standard convolution
[30].

3) ResNet50: Researchers at Microsoft Research developed
residual neural networks (ResNet). The central aspect of differ-
entiating from other CNN is the residual block concept. That
uses shortcuts between layers, adding the layer’s input initial
values to the ReLU output function y = F (x,Wi))+x, where
the function F (x,Wi) represents the residual map learned by
the block and x the initial image [31].

The layers in a traditional network are learning the actual
(H(x)) output while the residual network layers are learning
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the residual (R(x)). These shortcut connections skip over
layers and are arranged in residual blocks. These blocks have
three convolution layers with k filters 1 × 1, 3 × 3, and 1
×1, respectively, for each layer. Given an input x, the residual
mapping F (x) is denoted by F (x)+x. This mapping adds the
input of a residual block (x identity) to the output resulting
from that same block [32].

4) Xception: François Chollet proposed in 2017 the work
"Xception: Deep Learning with Depthwise Separable Convolu-
tions". This architecture is a linear stack of separable deep con-
volutional layers with residual connections. The architecture
is based on separable layers in depth. That network is a more
robust version of the Inception. The Xception architecture
has 36 convolutional layers forming the basis for extracting
features from the network. The 36 convolutional layers are
structured in 14 modules, all with residual linear connections
around them, except for the first and last modules [33].

D. Evaluating Metrics

To evaluate the model quality and compare the performance
of the classifiers, we used the metrics: F1-score, accuracy,
precision, recall, and specificity.

The False Positive (FP) means that the test result indicates
the presence of the disease when the individual is healthy.
On the other hand, the True Positive (TP) suggests that the
test correctly predicted those belonging to a condition. The
True Negative (TN) indicates that the test correctly predicted
healthy owners. Another indicator, the False Negative (FN)
test result, shows that the individual is healthy when he has
the disease.

The accuracy (A) was used to assess the proportion of
correct predictions, where N = TP + TN + FN + FP .
Precision (P) indicates the measure of patients that the model
correctly identifies as having a disease among all patients who
do have it. The performed calculation is below,

A =
TP + TN

N
, P =

TP

TP + FP

The recall (R) is the model capacity to correctly predict the
cases in which the individual has the disease. Specificity (S)
is the model ability to predict healthy individuals correctly.
Moreover, the F1-score (F1) is the weighted harmonic mean
of precision and recall, reaching its best value of 1.

R =
TP

TP + FN
, S =

TN

TN + FP
, F1 = 2

(
P ∗R
P +R

)

E. Mann-Whitney Test

The Mann-Whitney U Test null hypothesis (H0) indicates
that the two independent groups are homogeneous and have
the same distribution. The two variables corresponding to the
two groups, represented by two continuous cumulative dis-
tributions, are stochastically equal. The alternative hypothesis
(H1) establishes that the first group data distribution differs
from the second group data distribution [34].

According to [34], the Mann-Whitney U test initially cal-
culated a W statistic for each group. Then, distribution was
assigned to each one of the two sample values to build ranking:

Wx = nxny +
nx(nx + 1)

2
−Rx

Wy = nxny +
ny(ny + 1)

2
−Ry,

where nx and ny are the sizes of each sample, Rx and Ry are
the sum of the rows of the observations of samples x and y,
respectively. The W statistic is defined as the minimum of Ux

and Uy . The approximation of the z normal, when there are
large enough samples, is given by the expression z = W−µ

σ
where µ and σ are the means and standard deviation of W .

We chose a significance level equals to 0.05, which is the
value to reject the null hypothesis. We supposed the W statistic
p-value results in a p-value equals to or greater than 0.05.
In that case, there was no evidence of the null hypothesis
rejection, that is, there was no difference between the medians
of the distributions. On the other hand, if the value is less than
0.05, there is evidence that the classifiers medians are different.

IV. RESULTS

Table II contains the method 1 and 2 results for each
classifier and the method 3 results with the classification
adding the dense layer. We compared the accuracy, F1-score,
precision, recall, specificity, true positive, true negative, false
positive, and false negative. In addition, we presented the
average 10-fold for each metric ± standard deviation. The
separation dataset resulted in 2151 observations for training
and 239 tests to each fold.

The F1-score metric is the harmonic mean between pre-
cision and recall. This metric is suitable for evaluating the
overall quality index of the model in an imbalanced/ dispro-
portionate class. Therefore, we used this metric to evaluate the
model and verify the division of classes.

We used accuracy to measure overall model performance.
A high rate indicated an adequate average between classes.
While non-glaucoma/normal classes had high accuracy rates,
the glaucoma class had more false negatives. The results for
precision consider false positives more harmful than false
negatives, so the higher the precision of the model, the lower
the false positive rate.

The high specificity indicated that the model could avoid
false positives, which makes it more probable to classify
individuals as non-glaucomatous. Considering the recall rate,
the model correctly identified individuals with glaucoma.
Although this rate is considered adequate, false negatives are
higher than false positives, indicating that the model is more
susceptible to errors in glaucoma classification. In addition,
we also evaluated the average number of observations from
TP, TN, FP, and FN.

The traditional model rates remained close among the clas-
sifiers. In general, voting classifiers achieve the best results.
The traditional model showed higher specificity rates, while
recall rates were lower than specificity. It was also possible
to verify that the average of false negative errors was more
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TABLE II: Average 10-fold cross-validation results using an imbalanced dataset combination.

Classify F1-score (%) Accuracy (%) Precision (%) Recall (%) Specificity (%) TP TN FP FN

Traditional

SVM 84.24 ± 2.06 91.05 ± 1.19 85.43 ± 2.64 83.14 ± 2.46 94.24 ± 1.17 57 160 10 12
XBG 80.52 ± 1.81 89.12 ± 1.11 83.30 ± 3.31 78.05 ± 2.77 93.59 ± 1.59 54 159 11 15
MLP 83.85 ± 2.26 90.71 ± 1.43 84.24 ± 3.79 83.58 ± 2.41 93.59 ± 1.83 58 159 11 11
VOT 85.27 ± 1.52 91.67 ± 0.87 86.95 ± 2.25 83.72 ± 2.49 94.89 ± 1.06 58 162 9 11

VGG16

SVM 86.75 ± 2.28 92.51 ± 1.23 88.32 ± 2.35 85.32 ± 3.40 95.42 ± 1.04 59 162 8 10
XBG 82.52 ± 2.81 90.54 ± 1.49 88.17 ± 3.01 77.62 ± 3.45 95.77 ± 1.17 54 163 7 15
MLP 84.95 ± 2.13 91.42 ± 1.31 86.11 ± 3.92 84.01 ± 3.32 94.42 ± 1.90 58 161 9 11
VOT 86.39 ± 3.26 92.47 ± 1.54 89.48 ± 1.92 83.71 ± 5.62 96.00 ± 0.87 58 163 7 11

Dense 84.89 ± 3.38 91.38 ± 1.74 85.50 ± 3.96 84.71 ± 6.76 94.06 ± 2.09 58 160 10 11

VGG19

SVM 85.24 ± 2.16 91.72 ± 1.14 87.41 ± 2.36 83.28 ± 3.44 95.12 ± 1.09 57 162 8 12
XBG 81.49 ± 2.79 89.92 ± 1.60 86.71 ± 4.59 77.04 ± 3.27 95.12 ± 1.93 53 162 8 16
MLP 82.59 ± 3.03 90.21 ± 1.72 84.81 ± 4.05 80.67 ± 4.16 94.06 ± 2.05 56 160 10 13
VOT 86.32 ± 2.26 92.30 ± 1.27 88.40 ± 3.08 84.45 ± 3.25 95.48 ± 1.34 58 162 8 11

Dense 83.41 ± 2.25 90.63 ± 1.58 85.82 ± 6.18 81.54 ± 3.76 94.30 ± 2.93 56 160 10 13

MobileNet

SVM 86.38 ± 3.18 92.38 ± 1.71 88.94 ± 3.81 84.15 ± 4.63 95.71 ± 1.64 58 163 7 11
XBG 82.13 ± 2.45 90.25 ± 1.18 86.77 ± 2.17 78.04 ± 3.53 95.18 ± 0.86 54 162 8 15
MLP 85.91 ± 3.45 92.13 ± 1.85 88.44 ± 2.79 83.57 ± 4.41 95.59 ± 1.06 58 163 7 11
VOT 87.21 ± 2.29 92.93 ± 1.18 90.78 ± 2.19 84.01 ± 3.57 96.53 ± 0.93 58 164 6 11

Dense 86.01 ± 2.49 92.18 ± 1.46 88.97 ± 4.70 83.42 ± 3.33 95.71 ± 1.94 58 163 7 11

ResNet50

SVM 82.85 ± 2.16 90.67 ± 1.17 88.02 ± 2.90 78.33 ± 2.87 95.65 ± 1.21 54 163 7 15
XBG 81.68 ± 3.20 90.04 ± 1.53 86.54 ± 2.29 77.47 ± 5.03 95.12 ± 0.87 53 162 8 16
MLP 83.54 ± 2.29 90.71 ± 1.12 85.22 ± 2.79 82.12 ± 4.45 94.18 ± 1.38 57 160 10 12
VOT 85.01 ± 2.54 91.67 ± 1.30 88.08 ± 2.35 82.27 ± 4.28 95.48 ± 1.02 57 162 8 12

Dense 83.63 ± 2.51 90.79 ± 1.26 85.51 ± 5.17 82.29 ± 5.60 94.33 ± 2.11 57 160 10 12

Xception

SVM 82.28 ± 4.82 90.25 ± 2.30 85.79 ± 3.89 79.37 ± 7.22 94.65 ± 1.65 55 161 9 14
XBG 77.10 ± 2.91 87.49 ± 1.68 81.77 ± 4.66 73.11 ± 3.55 93.30 ± 2.04 50 159 11 19
MLP 81.91 ± 3.09 89.75 ± 1.63 83.20 ± 3.14 80.82 ± 4.77 93.36 ± 1.49 56 159 11 13
VOT 83.11 ± 2.51 90.75 ± 1.22 87.53 ± 3.14 79.35 ± 4.52 95.36 ± 1.38 55 162 8 14

Dense 83.99 ± 2.11 91.09 ± 1.17 87.11 ± 3.65 81.25 ± 3.58 95.07 ± 1.59 56 162 8 13

significant than the average of false positive errors. For this
pathology, the false negative is more harmful, in which the
patient is diagnosed as healthy and, in fact, has glaucoma,
which can delay treatment due to not being referred to a
specialist, aggravating the disease.

The VGG16 and VGG19 models presented similar results
and they were close to the results from the traditional model
considering the voting classifiers. However, the specificity
rates are higher than the recall rates. The dense layer classi-
fication does not outperform the classifiers average rates. For
VGG16 and VGG19, the accuracy and recall rates increased
compared to the traditional model, and the mean number of
false negatives remained lower than the false positives’. Thus,
the VGG16 and VGG19 models using the voting classifier
proved suitable for evaluating optic disc images and distin-
guishing glaucoma and non-glaucoma class.

The MobileNet model demonstrated satisfactory results. The
results using traditional ML classifiers were better than adding
a dense classification layer. Therefore, the MobileNet network
presented the best rates with voting classification, with high
rates above 85%.

The ResNet50 and Xceptions models’ results were satisfac-

tory. However, they are lower than other CNN architectures
and the traditional model. The voting classifier obtained the
best results for ResNet50, and the dense layer using the
sigmoid classifier was best for the Xception network.

The analyzed models presented satisfactory results using
different classifiers. The results presented average above 80%
for voting and dense classifier, and the variation in each fold
is low for the models. The standard deviation reinforces this
observation.

The SVM classifier did perform well in the evaluated
models, especially in VGG16. The XGB was a good classifier
for distinguishing glaucoma and non-glaucoma classes and
presented satisfactory results in all models, with average
accuracy rates above 87% and precision above 81%. The
MLP classifier performed excellently, with high accuracy rates
above 90% in all models.

The voting classifier proved to be an excellent alternative
to enhance the model, improving the classification rate in all
evaluated models. In addition, it presented better rates than the
individual classifier. Although the dense classification layers
showed reasonable rates, the voting classifier had better results.

The classification of the evaluated models had average recall
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Fig. 3: Compare imbalanced and balanced results using voting classifier.

(a) F1-score (b) Accuracy (c) Precision

(d) Recall (e) Specificity

rates lower than specificity, indicating that the algorithm has
difficulty identifying the image with glaucoma. In addition,
the models have many false negatives, in which the individual
is classified as non-glaucoma when he has the disease. So,
the model needed to learn adequate features to distinguish the
class.

The combined datasets have imbalanced classes. To solve
this problem and improve glaucoma classification, we used
balanced classes. We expect the false negative rates to reduce
and consequently increase the model rates, especially the
F1-score that evaluates the model quality. We reduced non-
glaucoma class to an equal amount of glaucoma observation.
We compared three methods for undersampling: Random,
Near Miss, and Cluster Centroid.

We organized three datasets to form a single dataset with-
out considering the training and test directory. We used all
glaucoma images and selected non-glaucoma images to the
balanced dataset, a total of 1376 images. The best average
rates were achieved using cluster centroid.

Fig. 3 presents imbalanced and balanced data results with
cluster centroid for the voting classifier. Graphs are in the
interval of 0 to 100. The model improved overall rates,
mainly by reducing false negatives. The rates were higher
with balanced data, mainly for recall and F1-score. On the
other hand, specificity was the metric that showed a reduction
in rates with balanced data. Descriptively, the class balancing
showed improvement for the evaluated models. More details
can be observed in GitHub.

Classification using traditional ML increased the average
rates of all models, mainly for the F1-score, precision, and
recall metrics. Accuracy increased in almost all models for
the voting classifier, especially with VGG19, which achieved
the highest rates. The voting classifier showed higher rates

than the sigmoid classification using a dense layer.
Descriptively, we obtained the best results with balanced

models. Nonetheless, we require inferential evidence to sub-
stantiate this assertion. Therefore, we performed the Mann-
Whitney test to compare the best imbalanced and balanced
models, verifying if they differed in data balancing and im-
balanced.

The models presented better results with the voting classi-
fier. Therefore, the comparison was performed with the voting
classifier for imbalanced and balanced models.

Considering the F1-score metric, all models showed a
significant difference between the imbalanced and balanced
results, they are the traditional model (W = 0, p-value < 0.01),
VGG16 (W = 0, p-value < 0.01), VGG19 (W = 98, p-value
< 0.01) MobileNet (W = 5, p-value < 0.01), ResNet50 (W =
0, p-value < 0.01), and Xception (W = 2, p-value < 0.01).

For accuracy metric, the traditional model (W = 30, p-value
= 0.13), VGG16 (W = 26, p-value = 0.07), MobileNet (W =
46, p-value = 0.76), and Xception (W = 65, p-value = 0.27) did
not present a significant difference between their imbalanced
and balanced accuracy results. On the other hand, the models
VGG19 (W = 87, p-value = 0.01) and ResNet50 (W = 21,
p-value = 0.03) showed a p-value less than 0.01 indicating
that there is evidence that balanced and imbalanced results
are different.

For precision metric, all models showed a significant differ-
ence between imbalanced and balanced, except Xception (W
= 26, p-value = 0.08). The models were: the traditional model
(W = 4, p-value < 0.01), VGG16 (W = 4.5, p-value < 0.01),
VGG19 (W = 92, p-value < 0.01), MobileNet (W = 12.5,
p-value < 0.01) and ResNet50 (W = 3, p-value < 0.01).

As for the recall metric, all models showed significant
differences for the imbalanced and balanced results: traditional
(W = 1, p-value < 0.01), VGG16 (W = 3.5, p-value < 0.01),
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Fig. 4: False Positive.

Fig. 5: False Negative.

VGG19 (W = 95.5, p-value < 0.01), MobileNet (W = 8,
p-value < 0.01), ResNet50 (W = 5, p-value < 0.01), and
Xception (W = 3, p-value < 0.01).

Finally, the specificity metric, the traditional model (W =
69, p-value = 0.15), VGG16 (W = 68, p-value =0.17), VGG19
(W = 66, p-value = 0.22), MobileNet (W = 75.5, p-value=0.05)
and ResNet50 (W = 62, p-value = 0.36) showed no significant
difference. Only the Xception model (W = 85, p-value = 0.01)
showed a significant difference between the imbalanced and
balanced data results.

Considering the F1-score and recall metrics, all models
showed a significant difference between balanced and un-
balanced results. As for accuracy, the models that showed
a significant difference were VGG19 and ResNet50. For
precision, the models showed significant differences, except
with the Xception model. Finally, only Xception showed a
significant difference for the specificity metric.

Thus, we considered VGG19 the best model, with data
balancing using cluster centroid, for presenting the highest
rates, and having a difference in all metrics between the results
with balanced data, except specificity.

The images have different qualities and contrasts, which
makes it difficult to distinguish and generalize the model to
identify the pathology. Fig. 4 and Fig. 5 show examples of
incorrectly classified images. False positives indicated that the
image was classified as glaucoma when the image belonged
to the non-glaucoma class. False negatives, on the other hand,
suggest that the image was classified as non-glaucomatous
when it actually belongs to the glaucoma class.

Fig. 4 shows the false positives. In the first image, it is
possible to visualize the blood vessels and the cup disc, the
lighter region in the optic disc center. However, if the image
is very bright it is hard to find the boundary between the optic
disc and the cup. In the second, third, and fifth images, it is
observed a large cup disc and the entry of blood vessels are
further away from each other, which could be easily confused
with the glaucoma fundus image. The fourth and last images
are blurred, which makes it difficult to identify parameters that

distinguish class.
Fig. 5 exemplifies the false negatives. The first image cannot

distinguish the optic disc from the cup. The second, fifth, and
sixth images are blurred, and it is not easy to distinguish their
features. The third and fourth images show a small cup disc,
which could be mistaken for a healthy optic disc.

We applied the cross-dataset method to evaluate perfor-
mance with new images. We performed three analyzes; in the
first one, we used a RIM-ONE DL and ACRIMA junction
for training and tested with REFUGE. In the second one, we
used REFUGE and RIM-ONE DL for training and tested with
ACRIMA. Finally, we trained with REFUGE and ACRIMA
and tested with RIM-ONE DL.

Table III presents the cross-dataset results. The first column
indicates datasets used in training, the second indicates the test
dataset, and the third indicates balanced classes. The remaining
columns indicate the metrics obtained.

To introduce a dataset not previously seen by the model,
we observed that the rates significantly decreased. In addi-
tion, images from the REFUGE dataset showed more sim-
ilarities between classes, which made it difficult to identify
glaucoma and non-glaucoma types. In contrast, images from
the ACRIMA dataset showed a more significant distinction
between categories and better rates of accuracy.

The traditional model results for the REFUGE and
ACRIMA test datasets are better when using training data
balancing. The F1-score rate for ACRIMA was 46.99% and
74.53% for the imbalanced and balanced data, respectively. For
the REFUGE dataset, F1-score was 30.47% and 37.01%. For
the RIM-ONE DL, the F1-score rate decreased from 64.07%
to 60.54%.

We showed the VGG16 network an improvement in the
classification of new data with class balancing, especially
for the ACRIMA dataset, achieving F1-score of 73.23%. For
imbalanced data, testing with the ACRIMA dataset got F1-
score equals to 51.92%. The F1-score was 30.28% with the
REFUGE test, while with class balanced, the test data reached
a rate of 34.95%. F1-score with imbalanced classes with RIM-
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TABLE III: Cross-dataset for the voting classifier

Train Test Method F1-score Accuracy Precision Recall Specificity TP TN FP FN

Traditional

RIM-ONE + REFEUGE ACRIMA Imbalanced 46.99% 58.72% 84.31% 32.58% 92.23% 129 285 24 267
Cluster Centroid 74.53% 70.92% 73.35% 75.76% 64.72% 300 200 109 96

RIM-ONE + ACRIMA REFUGE Imbalanced 30.47% 61.58% 18.60% 84.17% 59.07% 101 638 442 19
Cluster Centroid 37.01% 71.92% 23.86% 82.50% 70.74% 99 764 316 21

ACRIMA + REFUGE RIM-ONE Imbalanced 64.07% 63.92% 49.52% 90.70% 49.20% 156 154 159 16
Cluster Centroid 60.54% 61.03% 47.23% 84.30% 48.24% 145 151 162 27

VGG16

RIM-ONE + REFEUGE ACRIMA Imbalanced 51.92% 60.85% 83.71% 37.63% 90.61% 149 280 29 247
Cluster Centroid 73.23% 62.98% 61.66% 90.15% 28.16% 357 87 222 39

RIM-ONE + ACRIMA REFUGE Imbalanced 30.28% 87.33% 33.67% 27.50% 93.98% 33 1015 65 87
Cluster Centroid 34.95% 88.83% 41.86% 30.00% 95.37% 36 1030 50 84

ACRIMA + REFUGE RIM-ONE Imbalanced 58.82% 53.81% 43.01% 93.02% 32.27% 160 101 212 12
Cluster Centroid 58.51% 51.75% 42.09% 95.93% 27.48% 165 86 227 7

VGG19

RIM-ONE + REFEUGE ACRIMA Imbalanced 46.50% 55.60% 71.96% 34.34% 82.85% 136 256 53 260
Cluster Centroid 71.16% 67.80% 71.61% 70.71% 64.08% 280 198 111 116

RIM-ONE + ACRIMA REFUGE Imbalanced 37.94% 80.92% 28.11% 58.33% 83.43% 70 901 179 50
Cluster Centroid 35.92% 78.00% 25.34% 61.67% 79.81% 74 862 218 46

ACRIMA + REFUGE RIM-ONE Imbalanced 58.95% 59.79% 46.20% 81.40% 47.92% 140 150 163 32
Cluster Centroid 59.18% 55.05% 43.65% 91.86% 34.82% 158 109 204 14

MobileNet

RIM-ONE + REFEUGE ACRIMA Imbalanced 52.01% 59.43% 77.50% 39.14% 85.44% 155 264 45 241
Cluster Centroid 75.67% 70.35% 70.19% 82.07% 55.34% 325 171 138 71

RIM-ONE + ACRIMA REFUGE Imbalanced 34.10% 71.33% 22.14% 74.17% 71.02% 89 767 313 31
Cluster Centroid 35.80% 74.00% 23.77% 72.50% 74.17% 87 801 279 33

ACRIMA + REFUGE RIM-ONE Imbalanced 61.78% 65.57% 50.94% 78.49% 58.47% 135 183 130 37
Cluster Centroid 60.30% 61.44% 47.49% 82.56% 49.84% 142 156 157 30

ResNet50

RIM-ONE + REFEUGE ACRIMA Imbalanced 49.10% 55.89% 69.77% 37.88% 78.96% 150 244 65 246
Cluster Centroid 70.98% 63.69% 64.40% 79.04% 44.01% 313 136 173 83

RIM-ONE + ACRIMA REFUGE Imbalanced 43.88% 90.83% 56.58% 35.83% 96.94% 43 1047 33 77
Cluster Centroid 53.10% 91.17% 56.60% 50.00% 95.74% 60 1034 46 60

ACRIMA + REFUGE RIM-ONE Imbalanced 59.02% 53.61% 42.97% 94.19% 31.31% 162 98 215 10
Cluster Centroid 54.17% 41.03% 37.39% 98.26% 9.58% 169 30 283 3

Xception

RIM-ONE + REFEUGE ACRIMA Imbalanced 37.31% 52.34% 71.43% 25.25% 87.06% 100 269 40 296
Cluster Centroid 64.67% 54.75% 57.59% 73.74% 30.42% 292 94 215 104

RIM-ONE + ACRIMA REFUGE Imbalanced 34.47% 75.92% 23.68% 63.33% 77.31% 76 835 245 44
Cluster Centroid 34.05% 74.50% 22.97% 65.83% 75.46% 79 815 265 41

ACRIMA + REFUGE RIM-ONE Imbalanced 55.97% 51.34% 41.21% 87.21% 31.63% 150 99 214 22
Cluster Centroid 54.25% 42.27% 37.73% 96.51% 12.46% 166 39 274 6

ONE DL came to 58.82%, while with balanced classes, this
index dropped to 58.51%, but recall increased to 95.93%.

The VGG19 network results with imbalanced data for
the REFUGE and RIM-ONE DL tests were better than the
ones with balanced data. The ACRIMA testing showed im-
provement with balanced data, reaching F1-score equals to
71.16%. Considering VGG19, the imbalanced model with the
REFUGE test obtained F1-score equals to 37.94%, while for
the balanced model, the F1-score was equal to 35.92%. For the
RIM-ONE DL, the F1-score obtained was 58.95% and 58.51%
for training with imbalanced and balanced data, respectively.
For VGG19, imbalanced results are better for specificity rates,
while results with balanced training have increased precision
and reduced recall.

The MobileNet network results were similar to the
VGG16’s. The results for ACRIMA and REFUGE test data
were better for balanced training. On the other hand, the RIM-

ONE DL results were better with the imbalanced data, with
the F1-score equals to 61.78%. For balanced data, there was
an improvement in recall rates.

The ResNet50 model improved the rates with balanced
data for the ACRIMA and REFUGE test, increasing all the
evaluated metrics. For ACRIMA, the F1-score model reached
49.10% for the imbalanced training data and 70.98% for
the balanced training data. For the REFUGE results with
balanced and imbalanced data, the F1-score reached 43.88%
and 53.10%, respectively. Results with balanced training data
for testing with RIM-ONE DL were worse than those with
imbalanced training data. And finally, the results with the
Xception model improved only with the ACRIMA test dataset.

Accuracy is a metric for comparing results. However, we
had to evaluate more than this metric since analyzing the
false positives and negatives are crucial to verify each model’s
performance. For example, the VGG16 model presented an
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accuracy rate of 88.83% with the REFUGE base for testing.
However, the recall rate was low; the model identified only 36
of the 120 images with glaucoma. As for the RIM-ONE DL
dataset, the same VGG16 network correctly classified more
glaucoma images than non-glaucoma images, with a recall rate
of 95.93%, while its specificity was only 27.48%.

We can obtain different model evaluations if we compare
only one metric. Thus, analyzing many metrics and checking
false positive and false negative rates is essential. The best
results were from VGG19, VGG16 and traditional models,
mainly with balanced data and using ACRIMA as a test
dataset.

According to the results, some CNN architectures can get
essential and sufficient information to distinguish a normal
and glaucomatous fundus image. Even using different image
datasets, our models correctly identified the classes. Thus, we
chose the VGG19 network with a dense layer to classify the
features, as it had the best rates with balanced data and pre-
sented a good performance in the cross-dataset. Furthermore,
we improved the general model rates with the data balancing,
especially with the VGG19 architecture, which achieved the
best results.

We compared our proposed model with other related works,
according to Table I. We obtained competitive results using
various datasets, image qualities, and cameras. Our results are
promising, with average rates higher than the ones founded
in several studies, achieving satisfactory rates for identifying
glaucoma in medical images.

[5], [6] and [7] applied a method of extraction of features
non-structural in which the descriptors were chosen to obtain
information from the images; [5], and [7] applied statistical
information, [6] used information such as energy and entropy.
We achieved competitive results even with our traditional
model. We emphasize that the comparison is affected by the
form of validation of the data and the bases used, mainly in
works that use private datasets and without the application
of evaluation techniques, which makes it difficult to replicate
the techniques. Still, we got satisfactory results with merging
datasets and 10-fold cross-validation.

Some authors merged features from different methodolo-
gies and added other descriptors manually to improve image
class distinction, such as [8], which used structural and non-
structural descriptors to represent images. [9], [10], and [19]
used Convolutional Neural Networks with manually chosen
feature extractors. [19] applied geometric features and CNN
models to evaluate the results. The combination of these tech-
niques can generate higher computational costs. In addition,
some methods presented excellent results without the need for
combining two or more methodologies.

Most related works applied cross-validation or repetition
to obtain model results. Although [18] presented 10-folds
validation, the authors opted for a methodology that presents
optimistic results since the data increase was used before
separating training, validation, and testing. Despite the changes
in the image, variations of the same image can occur during
training and testing, generating optimistic results once the data
augmentation images come from the original image.

We compared different extraction methods and used 10-
fold cross-validation to generalize our results. Our pro-
posed methodology achieved promising results for joining the
ACRIMA, REFUGE, and RIM-ONE DL datasets. The metrics
rates were similar and even better than some works in the
literature. Our results were satisfactory due to data validation
since we used a 10-folds average. We emphasized that our
study used the recent RIM-ONE DL dataset, which is few
analyzed in the literature and it is composed of images from
the three datasets of the RIM-ONE version, RIM-ONE v1, v2,
and v3.

Some studies used the old versions of RIM-ONE, which
could have duplicate images if the datasets are combined, as
in the works by [6], [9] and [14].

The RIM-ONE DL dataset showed promising results when
evaluated individually using transfer learning, as seen in [15]
and with other datasets, such as our analysis. However, if
used only for test analyzes, the values obtained are lower than
those obtained with images of this dataset used in training, as
shown in the cross-dataset analysis in Table III. Few authors
dealed with this approach. Just [13] compared the model with
an independent dataset, demonstrating a 12% reduction in
retest accuracy. Furthermore, images from different datasets
are labeled differently. It increases the noise and makes it
challenging to generalize automatic classification.

Few related works approached dataset reduction to balance
classes. In our work, we evaluated techniques that proved ef-
ficient for improving model performance. [5] also reduced the
data to obtain better results. However, they used only random
undersampling to define the images of the majority class. They
had just 80 images and used 10-fold cross-validation, just eight
images to test for each folder. Although we merged different
datasets in addition to the REFUGE dataset, we got better
results than [5].

In general, our method achieved promising results and
showed high rates of reduced false negatives and false pos-
itives. In this way, the proposed method with balanced classes
improved the model and increased the average rates obtained
in test results. Therefore, the cluster centroid balancing method
proved efficient in improving the model in learning the image
features. In addition, we compared our results through non-
parametric tests to verify the improvement in applying a
balance to the dataset. Unfortunately, to our best knowledge,
only some authors compared these results using statistical
tests. For example, only [6], and [7] used statistical methods
to validate their improvements.

Our methodology has many strengths, including analysis
with different datasets, model evaluation using 10-fold cross-
validation and cross-dataset methods. Moreover, the cluster
centroid undersampling method improved the evaluation of
the metric. However, some limitations can be improved. As
in works involving medical images, the generalization with
other datasets still needs to be enhanced due to image quality
differences. A common way to deal with this issue is the
application of pre-processing techniques such as CLAHE to
improve image contrast. However, it is necessary to conduct
more analysis to improve the model accuracy and gener-
alization. Also, the acquisition angle changes according to
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the dataset, and our method does not have an automatic
localization technique of disc optics.

V. CONCLUSIONS

This paper exploited different feature extractions from fun-
dus images and evaluated classification from traditional ML
and DL methods. We presented an overview of descriptors
and classifiers to identify glaucoma. Furthermore, we showed
that the VGG19 network with the voting classifier is an
efficient method to detect glaucoma in optic disc images. Our
methodology has been adequate for encompassing different
public datasets: ACRIMA, REFUGE, and RIM-ONE DL. We
applied the recently available RIM-ONE DL dataset, which
combines previous versions and removes duplicate images.
In addition, we evaluated our models with 10-fold cross-
validation and cross-dataset, allowing the generalization of the
result.

The balanced method proved to be an alternative for the
reduction of false positives and false negatives. The cluster
centroid stood out from the others in the undersampling step
and it has increased rates. The Mann-Whitney test confirmed
this information, for most metrics had a significant difference
to the results with imbalanced and balanced classes.

The VGG19 network achieved the best results with the
combined dataset and class balancing. Regarding F1-score,
the results achieved average rates of 94.69%, accuracy of
94.77%, precision of 96.10%, a recall of 93.45%, and a
specificity of 96.08%. For the cross-dataset, the best result was
training using the REFUGE and RIM-ONE DL datasets. The
test dataset ACRIMA achieved F1-score equals to 75.67%,
accuracy of 70.35%, precision of 70.19%, recall of 82.07%
and specificity of 55.34%.

Our work achieved excellent results. However, we suggest
implementing improvements for future works to overcome
the limitations mentioned, such as real-time recognition of
glaucoma. Furthermore, we recommend applying automatic
detection algorithms such as YOLO to identify the optic disc.
In addition, we also suggest including optic disc and cup
segmentation to calculate structural features such as CDR
in fundus images. Finally, adding other public datasets and
evaluating other network CNN architectures for extraction and
classification is also recommended.
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