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Multilayer Framework for Resource Orchestration
in Next Generation Networks

Ermı́nio A. R. da Paixão, Albert E. Santos, Daniel da S. Souza, Diego L. Cardoso

Abstract—Due to the significant increase in data traffic and
the large number of Internet Protocol (IP) devices, operators
and researchers are seeking solutions to address the greater
demand. One of the most attractive of these is Heterogeneous
Cloud Radio Access Networks (H-CRAN), which has the capacity
to solve problems of the current generation and add several
improvements, such as centralized processing and greater en-
ergy efficiency. However, resource orchestration such as radio,
mapping between radio and BaseBand Unit (BBU) and load
balance in BBU pool are still of the utmost importance. This
paper proposes a multilayer approach that enables Peak Remote
Radio Head (PRRH)-underutilized reconfiguration model and
optimized mapping between PRRH and BBU, with the aim
of achieving high availability, energy savings and a reduction
in high-speed processing. Obtained results were compared with
other approaches in the literature and showed that our model of-
fers a more efficient means of mitigating the problems addressed
in this paper.

Index Terms—H-CRAN, Resource Orchestration, Load Bal-
ance, Multilayer.

I. INTRODUCTION

The growth in the number of connected devices in the
network, with valid IPs by 2023, is estimated to be 29.3
billion devices, about 3.6 devices per person [1]. Also in this
survey, it was found that the support for mobile telephony
will correspond to 71% of the global market by 2023, an
increase of 5% compared with 2018. This underlines that it
is expected there will be an exponential increase in Internet-
connected User Equipment (UE) globally, and this will reach
5.3 billion by 2023, a rise of 1.4 billion UE compared with
2018.

With the emergence of more network-oriented devices and
applications, there is a need to restructure the architecture,
since the current Distributed Radio Access Network (D-RAN)
cannot be adapted to the new requirements, since it incurs high
costs of capital expenditure and higher operational processing
rates with an increase in the number of Base Stations (BSs)
[2]. In response to the new challenges raised by the current
mobile networks, Centralized Radio Access Network (C-RAN)
has emerged as a possible solution, since it is able to centralize
the UE processing, improve the energy efficiency and has the
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capacity to restructure the network data [3]. In addition, an-
other promising technology is the Software Defined Network
(SDN) which incorporates new features and applicability, such
as self-adjusting scheduling, centralized management and a
low cost deployment strategy [4].

The C-RAN architecture has robust requirements, such as
low latency, low jitter, and high infrastructure deployment
costs that are difficult to achieve [5]. However, all these
obstacles can be overcome by H-CRAN which makes it pos-
sible to integrate the decentralized Heterogeneous Networks
(HetNets) and C-RAN architectures, with the aim of meeting
the requirements of signal processing, centralized workload
management, and energy efficiency [5].

One of the main points of discussion in these new architec-
tures is the question of deployment, because when planning
the total capacity of a mobile network and the number of
BSs, an attempt is usually made to meet the maximum traffic
capacity. In this scenario all the BSs remain active regardless
of the change in load throughout the day, thus incurring high
energy costs and leading to an underutilization of equipment.
This pattern of behavior is described as the Tidal Effect [6].

It is stipulated that processing rate for each BBU must be
the total number of simultaneously active UEs in the sectors of
the BBUs [7]. However, with regard to hardware or software,
there is a restriction in the number of active UEs in the BBU,
called the Hard Capacity (HC), which if not met can lead to
a loss of data or decline in performance. Thus, networks must
support the concept of Self-Organization (SO) so that they can
address the problem of resource mapping efficiently.

In light of this, this paper proposes a framework for H-
CRAN/SDN networks that integrates the monitoring of the
network, the optimization of PRRHs and the efficient orches-
tration of resources in the BBU pool, even in different traffic
conditions, aiming to maximize the UE experience, as well
as reduce the number of operational resources. A bio-inspired
multi-objective approach is adopted for this, and, in its first
stage the Simulated Annealing On/Off algorithm (SAoff) is
responsible for the intelligent disconnection and re-distribution
of UEs among the remaining PRRHs. In the second stage,
the Balance Particle Swarm Optimization (BPSO) algorithm is
executed, and is responsible for re-orchestrating the resources
of the PRRHs in the BBU. The whole process is monitored
and carried out by a manager called the SDN Controller.

This paper is structured as follows: Section 2 examines
the related works that are drawn on for this work, Section 3
shows the features of the architecture and the problem being
investigated. Section 4 outlines the main characteristics of
the algorithms used in this work and Section 5 describes the



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 38, NO.1, 2023. 2

parameters that are used for the simulations carried out in
this work. Section 6 analyzes the results and discussions, and
Section 7 concludes with the final considerations of this work
and makes suggestions for further research in the field.

II. RELATED WORK

The use of HetNets has been widely discussed as a feasible
solution meeting the requirements of 5G networks (CRAN and
H-CRAN). However, the failure to deploy PRRHs correctly
has led to a wide range of problems, from interference
management to financial concerns, such as high deployment
costs or a significant increase in energy consumption, factors
that can make the use of this technology unfeasible. Thus,
several works in the literature employ an intelligent-driven
methodology for matters related to deployment and operations.

In [8] there is a discussion of the two-level energy efficiency
optimization problem in an H-CRAN network. In the first
stage, a dynamic shutdown algorithm for picocell is executed,
based on a utility function which maintains the UE Quality Of
Service (QoS). In the second stage, two algorithms are used
to reduce the number of BBU servers, and thus save energy.
Both these solutions achieved good results and ensured energy
savings without losing QoS quality.

The study by [9], examines what measures need to be taken
in the face of the exponential increase in global data traffic,
since the current network structure will not be able to support
this demand. The work also highlights the C-RAN architecture
as a possible alternative, because of its higher processing
power, capacity for reconfiguration and intelligent mapping
of UE. This was investigated through a Key Performance
Indicator (KPI), which seeks to reduce the number of blocked
UEs so that it can optimize the QoS of the architecture. This
involved using a Discrete Particle Swarm algorithm (DPSO)
to match UE to the KPI and optimize the QoS. The results
obtained for validation purposes were compared with those of
the literature, and found that in periods of low traffic, it can
turn off up to 99% of BSs.

Another work addresses the PRRH-BBU assignment prob-
lem in [10]. An optimization problem is formulated that
models the allocation of resources at these two levels. At the
level between cells and UEs, resources are distributed among
UEs, who have different QoS requirements. As a result, the
system must optimize the allocation of resources accordingly,
while maintaining other features such as the availability of
physical resources, QoS satisfaction, and continuity of service.
At the PRRH and BBU level, computing requirements have to
be processed instantaneously in the available BBU pool, while
maintaining power consumption and optimizing computing
resources.

The authors in [11] mathematically formulate a tidal traf-
fic model and then propose tidal traffic-aware routing and
spectrum allocation algorithms for elastic optical networks.
Based on the traditional Routing and Spectrum Allocation
(RSA) algorithm, the authors created Pre-Deviation RSA (PD-
RSA) and Pre-Deviation K-Path Shorter RSA (PDK-RSA)
algorithms to increase bandwidth efficiency in elastic optical
networks.

It is clear from the analysis of the works conducted here,
that although the resource allocation problems of PRRHs and
BBUs have been addressed extensively (either separately or
together), none of the above-mentioned studies has effectively
dealt with the problem of mapping and load balancing nor
have they taken into account the question of multi-level
based decision-making, which is a determining factor for
efficient resource orchestration. In view of this, it can be
stated that this work makes two key research contributions: a)
the implementation of a new algorithm for PRRH shutdown,
based on Simulated Annealing; b) optimized BPSO-based load
balancing algorithm for a redefinition of BBU-RRH mapping
based on the results of the previous stage.

III. PROPOSED SCENARIO

Fig. 1 explains the framework established for this work.
The map of available PRRHs, as well as the arrangement of
UE, per hour, are used as input data for triggering the SAoff
algorithm, which is responsible for turning off underutilized
PRRHs. This PRRHs traffic has to be forwarded to a BBU,
and, for this the BPSO is used for balancing the load between
the BBU sectors, and thus reducing the number of blocked
UEs between the BBU sectors. The proposed architecture is
triggered at pre-established time intervals to ensure it always
provides an appropriate configuration for each fluctuation of
the UEs. The modules are described below:

1. Coverage Area: PRRHs are randomly placed, the UEs
have the same traffic profiles and their traffic requirements
were obtained from [6].

2. SDN controller: The SDN controller is the manager of
all the processes in this diagram, as described below:

2.1. Traffic profile: Uses the traffic extracted from [6].
2.2. SAoff: This algorithm is explained in section IV.A.
2.3. Convert UE traffic to blocked UEs: UE data are

converted to blocked UEs and sent to BBU pool.
2.4. Mapping UE: Maps the blocked UEs and determines

where they will be allocated.
2.5. Initial UE-PRRH-BBU allocation: Starts the allocation

of UE in the PRRHs and PRRHs in the BBUs.
2.6. Load Balancing on BBUs: Performs resource balancing

on BBUs, which have a capacity that is determined by the KPI
of the blocked UEs.

2.7. Load Balancing on BBU sectors: Carries out resource
balancing among the BBU sectors.

2.8. BPSO: Used to optimize load balancing; Its operation
is described in Section IV.B.

2.9. Re-orchestrated Resources: After going through all the
balancing stages, the re-orchestrated resources are revealed in
their respective BBUs and sectors.

The sequence diagram shows the operating stages of the
SDN controller within the framework of BBU pool load
balancing. In the first stage, the data decisions are transmitted;
in the second stage these data are distributed among the
available BBUs and the third is responsible for restructuring
the resources among the sectors of the BBUs. The stages
followed in this diagram are shown in Fig. 2.
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Fig. 1. Proposed framework.

Fig. 2. BBU mapping and balancing process.

IV. OPTIMIZATION ALGORITHMS

In this section, the choice of the algorithms used and
their characteristics will be outlined in detail. According to
[12], bio-inspired algorithms are among the best for solv-
ing optimization-based problems, especially Nondeterministic
Polynomial (NP)-hard problems.

Two search algorithms were used for this study. The first
algorithm is SA which in this work is referred to as SAoff,
and is based on annealing. This method is used for the
improvement of steel, by heating it to high temperatures [13].
The second is PSO which will be called BPSO. This mimics
the social habits of animals, such as insects, fish and birds.
Each potential solution (called particles) is also assigned a
randomized velocity, and then are “flown” through hyperspace.
Each particle tracks its coordinates in hyperspace and is linked
to the best solution (fitness) that it has reached so far [14].

A. Simulated Annealing on/off (SAoff)

Fig. 3 and Algoritmo 1 illustrates how SAoff works. The
SAoff starts the search for the optimal solution using a random
initial solution represented by a vector of size equal to the
maximum number of PRRHs. This vector has binary values
that correspond to the on/off state of the PRRH, where 1

represents the active PRRH and 0 represents the off state. To
generate new solutions, SAoff modifies the binary values of
this vector. It is worth noting that the SAoff must be performed
for each period of study, separately, thus turning on only
the PRRHs needed for that specific demand. This solution is
evaluated through its objective function, which is calculated
by equation 1.

MIN−TPRRH(i) =

n∑
j=0

Aj (1)

subject to
BP(i)−MAX <= x (2)

Where:
TPRRH(i) is the total number of PRRHs on at hour i;
n is total number of PRRHs in the network;
A is binary variable that indicates whether PRRH j is active
or not;
BP (i): is the maximum blocking probability for hour i.

The blocking Probability is calculated according to the
equation 3:

BP(i) =
Nc(i)

Tuc(i)
(3)

Where:
Nc(i) is number of users not covered at hour i;
Tu(i) is total users available on the network.

The stopping criterion used in this algorithm is given by
equation 1, that is, a vector with the smallest combination
of PRRHs that must be active, in each period. Rest of the
parameters can be found in Table I.

B. Balance Particle Swarm Optimization (BPSO)

The objective function of the algorithm 2 was changed,
where the algorithm starts by creating a swarm of particles
where each particle corresponds to a candidate solution. Then
the particles randomly ascertain the solution area with different
velocities. After passing through the fitness of the algorithm
the particles are directed to their best fitness values. The
velocity of an individual particle is changed stochastically in
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Fig. 3. SAoff.

Algorithm 1: SAoff Pseudocode
Generates the initial solucion xi(i = 1, 2, ..., n)
Objective Function equation 1
begin

σ(S) = 0
while t < MaxGenerations do

for i = 1 until n do
for j = 1 until n do

if Ij > Ii then
verifies the probability is less than

or equal to 0.1%
end
evaluate the solution

end
end
Presents the solution

end
end

TABLE I
SAOFF PARAMETERS

Parameters Values
Hybridization rate 0.8

Mutation rate 0.1
blocking probability 10%
Number of iterations 100

each iteration and its update stems from the experience of the
best historical position of the respective particle and the best
position experience of neighboring particles, i.e., the global
best position.

In this second step, the algorithm uses a performance
indicator based on the one proposed in [9], to minimize

the number of blocked UEs. The objective function of the
algorithm was changed, to equally distribute the amount of
UEs by the number of available sectors in the BBU pool. To
do this, initially, a vector of UEs per sector is created, as
modeled in equation 4.

Us(i) =

N∑
j=1

CjRs, S =1, 2, ...,K (4)

Where:
Us(i) is the number of UEs in the sector;
N is the total PRRHs;
K is the total sectors;
C is the number of UEs connected in PRRHj;
R is a binary variable where it takes the value 1 if PRRHj is
allocated to sector s;

For each period i, and for each sector s, a vector Us(i) is
created, which is used in the objective function, respecting
the maximum capacity of each sector, which is given by the
variable HC (Hard Capacity). All Us(i) are tested to obtain the
combination that generates the lowest possible KPI(i) value.
This process involves reducing the number of blocked UEs
and consequently maximizing QoS, as shown in equation 5.

MIN−KPI(i) =

k∑
s=1

(Us(i) −HC), (5)

(0, if(Us(i) −HC) < 0)or((Us(i) −HC)if(Us(i) −HC)>=0)
(6)

Where:
KPI(i) is the total number of UEs per sector on at hour i;
HC is the maximum capacity per BBU sector.
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The output of the model is given by the vector:
Si
j={Si

1, S
i
2, ..., S

i
N}, representing the sectors of the BBUs Si

j

and PRRHs that have been allocated to these sectors. Rest of
the parameters can be found in Table II.

Algorithm 2: BPSO Pseudocode
Objective Function equation 2
Generates the initial particle pop
Determines the acceleration factor l c1 = 1.8
begin

Initial Swarm
while t < MaxGenerations do

for i = 1 until n do
for j = 1 until n do

if Ij > Ii then
search i search for solutions j

end
Evaluates new solutions and updates

particles
end

end
Rank the particles and find the best one

end
end

TABLE II
BPSO PARAMETERS

Parameters Values
Local acceleration factor(Pbest) 1.8

HC 200
Global acceleration factor (Gbest) 1.8

Total size 220
Number of interactions 100

V. SIMULATION

In this section, the details of the scenario implemented in
this work will be outlined. These involved procedures that
were carried out in a machine with an Intel(R) Core(TM) i5-
3317u processor and with a 1.7GHz clock and 8GB DDR3
RAM. The simulator chosen to perform the simulations was
Matlab1, since it has vast documentation.

A. Network Parameters

Cellular coverage can be defined based on coverage, power,
coding methods and propagation losses [15]. Effectively, the
path loss can be measured from the Hata model and its
COST231 extension for Carrier Frequency (CF) below 2 GHz
and from the Stanford University Interim (SUI) model for
CF above 2 GHz [16]. The Signal-to-Interference-Plus-Noise
Ratio (SINR) of the downlink for a given sub-carrier N is
assigned to UE k in the PRRH to which it is connected. This
can be expressed as equation 7:

SINRk =
Pk,b(j)

σ2 + Ik
(7)

1https://la.mathworks.com/products/matlab.html

Where Pk, b(j) is the received power (in watts) on subcar-
rier N assigned to UE k by the PRRH b(j) serving it, σ2 is
the thermal noise power and Ik is the intercellular interference
from neighboring PRRHs. All the PRRHs are assumed to be
transmitting at maximum power P . The received power at UE
k of PRRH b(j) can be calculated using equation 8, which
expresses the received power of a UE k based on transmitted
power and signal fading. The SUI [17] propagation model was
used to calculate the fading signal.

Pk,b(j) =
10

TP+G(k)−LSUI
10

1000
(8)

Where TP is total power of the incoming signal of interest,
G is the Gain and LSUI it is the value in dB of the fading
signal which is calculated by the SUI propagation model, and
expressed by the following equations:

LSUI = A+ 10γlog
d

do
+W,d > do, (9)

A = 20log
4πdo
λ

, (10)

γ = a− bhb +
c

hb
(11)

In which d is the distance from the PRRH to the measured
point in meters, do is equal to 1 meter in accordance with [18];
λ is the wavelength in meters; γ is the exponent of the path
loss; hb is the height of the PRRH, which can be between 10
and 80 meters; a, b and c are the constants that depend on the
type of terrain of the scenario; in this case, c was used (a =
3.6, b = 0.005 and c = 20 ); W is the shading effect, which
can be between 8.2 and 10.6 dB.

It was assumed that each UE reaches the limit set by the
Shannon capacity theorem, that is, the data rate for k is
expressed as [18], where B is the system bandwidth equation
12.

Ck = Blog2(1 + SINRk) (12)

In the proposed scenario, a mobile H-CRAN network was
implemented, where, the network flow was based on the
UE profile of districts of New York City, which have an
area is 4km long [6]. This scenario will make it possible to
investigate a large amount of information that plays a vital
role in traffic engineering, network design, load balancing and
pricing, which can be observed in Fig.4. 100 PRRHs were
randomly placed, one MRRH, one BBU pool with five resident
BBUs and 3600 UEs with uniform characteristics, so that all
the UEs could have the same requirements. The dimensions
of the scenario were normalized according to the territorial
limits of the New York [6] region. The rest of the parameters
can be found in Table 3.

The problem discussed in this paper is divided into two
phases. The first stage seeks to reduce the number of under-
utilized PRRHs during their daily operation; this process is
explained in Section IV.A. In the second, after obtaining
the results from the first stage, a balancing between the
active BBUs and their respective sectors; this methodology
is explained in Section IV.B.
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Fig. 4. Traffic Pattens per Hours from New York city [6].

TABLE III
SIMULATION PARAMETERS

Parameters Values
Propagation loss (MRRH) COST231
Propagation loss (PRRH) SUI-TYPE A
Transmit Power (MRRH) 43 dBm
Transmit Power (PRRH) 23 dBm

Total Scene Area 4km²
PRRH Height 16m

Coverage area PRRH 150m
Coverage area MRRH 4km

Confidence Interval 95%
Number of Experiments 31

VI. RESULTS

In this section, the results obtained from our framework
will be examined and compared with other approaches in the
literature, LTE-A, HDSO and DPSO [3], [8], [9]. In Fig. 5
the averages of active PRRHs are displayed over a period of
24 hours, where it can be observed that the SAoff algorithm
proved to be more effective in solving the problem being
studied. On average, it maintained 89% of their active PRRHs,
9% less than HDSO and 10% less than LTE-A. In the period
when there was a lower data flow, SAoff managed to turn
off 44% of underutilized PRRHs, 20% more than HDSO and
44% more than LTE-A, thus showing the high capacity of the
algorithm to deal with the heavy traffic of big cities.

In Fig. 6 the average throughput of the UEs in the network
is analyzed. It can be seen that both the approaches discussed
here can maintain the minimum throughput, although the
SAoff can keep more UEs connected even with an average
throughput 0.5% lower than HDSO. This fact can be attributed
to the effectivce decision to keep the PRRHs active and, hence
ensure a better distribution of resources among all the UEs.

In the context of load balancing between the sectors of
the BBUs, three different techniques have been applied to
mitigate the problem studied. The first is called Random
Balance, which is an approach without any load balancing or
intelligent mapping; the second, called BPSO, uses the two-
level balancing system proposed here; finally, DPSO also uses
intelligent balancing, as advocated by [9].

Fig. 7 presents the results obtained, where it can be seen
that the convergence curve of UEs per sector of the BBUs
in BPSO has a lower average than the other approaches,
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Fig. 9. Number of users blocked in 24 hours.

which results in a more balanced and optimized network, thus
reducing the number of blocked UEs. In Fig.8 the average
of UEs allocated in the sectors is presented but normalized
by the current number of active UEs in a given hour, it can
be seen that the algorithm better distributes users among the
sectors, where it should be highlighted hours 15 to 17, where
there was an increase in the number of users per sector when
compared to the other approaches. This fact is attributed to
the mapping process between RRHs and the sectors of BBUs,
where a load coming from a RRH cannot be divided among
different sectors.

This statement is supported by the average number of
blocked UEs, which is shown in Fig. 9, over the 24h. The
Random Balance which, using random assignment, averaged
153.8 blocked UEs, while DPSO averaged 57.2 and BPSO
averaged 18.3. This represents a decrease of approximately
88.1% and 68% in the number of blocked UEs, respectively,
thus demonstrating the effectiveness of the proposed resource
orchestration.

VII. CONCLUSION

The constant increase in the number of cell phones and IP
devices has driven the industry and academia to seek new so-
lutions to meet this new demand. For this reason, the problem
investigated in this paper is the intelligent orchestration of the
resources of an H-CRAN network, through the intelligent turn
off of PRRHs and optimized load balancing of UEs between
the BBUs. In the context of PRRH sleep, the SAoff that had
been designed, was able to ’sleep’ more PRRHs than the
algorithm used in the literature and maintain the stipulated
QoS. Regarding resource balancing, BPSO averaged 68%
fewer blocked users during the 24h analyzed when compared
to DPSO, thus resulting in a more balanced network. In
future work, it is recommended that the new KPIs should be
incorporated to evaluate new factors and test the balancing in
several scenarios.
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sity of Pará (UFPA). He was a fellow of the Labora-
tory of Didactic Innovation in Physics (LIDF), where
he worked on Arduino prototyping and IoT. [give
dates] He is interested in Data Science Programming
and Computational Intelligence. He is currently the
holder of a scientific initiation scholarship which
was awarded by the Institutional Program for Sci-
entific Initiation Scholarships (PIBIC) at the Oper-
ational Research Laboratory (LPO) of the Federal

University of Pará.
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