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Abstract—Empirical mode decomposition (EMD) is a signal
processing method that produces a data-driven multiresolution
representation in time-domain suited to characterize time-varying
and nonlinear phenomena. In EMD, intrinsic mode functions
(IMF) are sequentially estimated from the signal of interest to
represent different intrinsic oscillation modes and produce an
orthogonal representation of the original information. Different
algorithms have been proposed for IMF estimation to deal with
limitations such as mode-mixing and noise sensitivity. EMD
is usually associated with the Hilbert transform to obtain a
frequency-domain representation. In this case, the method is
referred to as the Hilbert-Huang transform (HHT). This paper
presents a theoretical review of the fundamental aspects of
both EMD and HHT, such as the IMF estimation procedure.
Variations of the original EMD algorithm are also presented.
Both simulated and experimental underwater acoustic signals are
used to illustrate the efficiency of EMD/HHT in revealing relevant
characteristics from time-varying and nonlinear phenomena.

Index Terms—Empirical Mode Decomposition, Hilbert-Huang
Transform, Underwater Acoustics, Passive Sonar, Signal Process-
ing.

I. INTRODUCTION

T ime-frequency (TF) representation using Fourier trans-
form (FT) [1, 2] may not be suitable for analyzing

time-varying random signals exposed to nonlinear phenomena.
The Fourier analysis is based on the linear superposition of
sinusoidal functions. Due to this, both nonstationarity and non-
linearity can induce spurious harmonic components, leading
to TF representations with a lack of physical meaning [3,
4]. Many TF representation methods have been proposed
aiming to overcome these limitations of the Fourier transform,
including the short-time Fourier transform (STFT) [5], the
wavelet transform (WT) [6, 7] and the Wigner-Ville (WV)
distribution [4].

In the case of STFT, short time windows are used to
analyze the spectral characteristics of the signal, thus assuming
piecewise stationarity [5]. However, besides suffering from the
same problems as FT within the analysis window, as it uses
the same window width over the entire signal length, STFT
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provides a constant time-frequency resolution for the whole
frequency band. Therefore, STFT does not properly handle
non-stationary signals [8].

Unlike STFT, the WT can be used for the multiresolution
analysis of a signal through dilation and translation operations
of the basis function. It effectively extracts time-frequency
features from a signal at both high and low frequencies [8]. In
the first case, it achieves a high temporal resolution but a low
frequency resolution, while in the second case, the opposite
occurs. Such adaptive ability of TF analysis makes the wavelet
transform a more suitable method for analyzing nonstationary
signals [8]. The main problems of the WT are its inability to
manipulate the phase information of the signal (fundamental
for locating sources in a multi-source audio environment)
and the a priori selection of the appropriate wavelet basis
function [4]. These aspects sometimes limit the application
of wavelet analysis when the signals are unknown, as in the
case of passive SONAR [9] .

Another TF representation widely used in analyzing non-
stationary signals is the Wigner-Ville distribution (WVD).
Theoretically, the WVD provides an infinite TF resolution
due to the absence of an averaging operation over any finite
time duration [10]. In practice, the method presents a side
effect, the introduction of large cross-terms between every
pair of signal components and between positive and negative
frequencies, which makes its original formulation a poor fit
for most analysis applications [10].

By using an adaptive data-driven sequential signal expan-
sion, the empirical mode decomposition (EMD) [3] appears
as an interesting alternative for the representation of random
(specially nonstationary) signals. Intrinsic mode functions
(IMF) are estimated as the orthogonal decomposition basis for
the information of interest. By combining EMD and Hilbert
spectrum estimation, the Hilbert-Huang transform (HHT) is
formulated [3].

The HHT is an empirical method of signal analysis whose
expansion base is adaptive in order to produce a physically
significant spectral representation of nonstationary signals [3].
Different from the Fourier analysis, in which the frequency-
domain transformation uses a fixed (sinusoidal) base, when
adapting to local signal variations, the HHT takes into account
the intrinsic behavior of the natural phenomenon [11]. The
method has been applied to several types of nonstationary
signals [12, 13, 14].

The technical literature has been reporting the use of
HHT/EMD in different contexts. In [15], a vibration signal
analysis technique was proposed to identify bearing faults in
rotating electrical machines. In [16], the EMD was used to
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obtain a diagnosis of potential failures in industrial machines.
Two methods were proposed for wind speed prediction in
power generation systems, one based on the EMD and random
vector functional link network [17] and the other, combining
the random forest model with a variant of the EMD [18].
An innovative predictor of daily solar radiation has been
developed by integrating EMD and a back-propagation neural
network to improve the efficiency of intelligent photovoltaic
systems [19].

In the biomedical applications, the EMD has been used
for hypertension diagnosis [20], electrocardiogram (ECG) data
compression [21], emotion recognition [22], telemedicine [23]
and, when combined with a deep convolutional neural network
(CNN), it performs well in fast and efficient medical imaging
systems [24].

For time-series analysis, EMD may be used for accurate pre-
diction of global energy prices [25], in carbon price forecasting
[26], to predict climate trends, meeting the precision needs in
agricultural production [27], and together with a convolutional
neural network to predict and control air pollution [28].

EMD has also been applied in the acoustic and voice signals
processing [29, 30, 31] and efficient audio coding [32]. Mul-
tisource signal processing has also been addressed with EMD
in [33], in which multidimensional signals were concatenated
into a one-dimensional signal, to be further decomposed using
existing EMD.

This paper focuses on applying EMD to underwater acous-
tic signal (UAS) processing. Underwater acoustics comprises
marine life monitoring [34], underwater communication [35],
oil exploration [36] and also vessel identification for defense
systems [37]. In such applications, a TF analysis is usually
required to characterize the information properly. In the un-
derwater environment, which is time-varying and subject to
nonlinear phenomena, natural or non-natural acoustic noise
sources may compromise the detection of the information [9].
There may also occur different responses linked to multiple
propagation paths and variations in water physical properties
due to temperature, depth, and salinity [38].

The currently most used underwater acoustic signal analysis
algorithms are based on STFT and WT. Although these two
spectral analysis techniques have been achieving good results,
it is worth understanding their limitations [4]. Firstly, the
STFT requires a time window compatible with the specific
spectral content of the analyzed signal, which may be unknown
in the first moment [15]. Besides that, the STFT-based TF
representation exhibits a remarkable amount of cross-spectral
energy due to the harmonic assumption and window over-
lapping, which is not the case with HHT, since it is able
to represent the instantaneous spectral information of a time
series without windowing [39]. Secondly, the WT must have
an adequately chosen basis-function family, which affects the
identification effectiveness of hidden transient elements in
the analyzed dynamic signal directly [15]. These limitations
become evident when the methods are applied to experimental
UAS, which suffer from variations due to propagation path,
environment noise, and the occurrence of multiple signals in
the monitored area [40]. The application of HHT method for
analyzing the UAS arises as an alternative to overcome the

constraints imposed by the uncertainty of the time-frequency
resolution in both STFT and WT [9, 41].

Although several recent studies indicated that HHT might
be efficiently applied to UAS, extracting accurate information
from ship radiated signals may become challenging due to high
background noise levels [42]. In this sense, some methods
have recently been proposed to reduce noise influence for
IMF estimation. In [43], for example, a new technique was
proposed for UAS denoising based on the combination of com-
plete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN), mutual information (MI), permutation
entropy (PE), and wavelet threshold denoising (WTD). The
noise IMFs are identified and removed in this work, while
WTD is applied to noise-dominant IMFs. Similarly, uniform
phase empirical mode decomposition (UPEMD) was used
in [9] together with amplitude-aware permutation entropy and
Pearson correlation coefficient (PCC) to identify and separate
the noise and noise-dominant IMFs from the noise-free ones.
A hybrid noise reduction and prediction method for UAS was
proposed in [44], combining variational mode decomposition
(VMD) and dispersion entropy (DE) to analyze the complexity
of IMFs.

Considering the successful application of EMD to different
problems and the importance of UAS processing for civilian
and military purposes, this work intends to serve as a complete
literature review on EMD accompanied by relevant results
of the method applied to UAS processing. This work main
contributions are: (i) a comprehensive theoretical review of
different EMD algorithms and the associated HHT, which
serves as an extended tutorial on this topic; (ii) an introduction
of the underwater acoustics signal processing problem, along
with the application of HHT to simulated and experimental
signals; (iii) a detailed analysis of the results, indicating the
advantages and drawbacks of HHT for underwater acoustic
signals characterization.

The structure of the paper is as follows: the underwater
acoustic signal processing scenario is described in Section II.
The main theoretical aspects of EMD and HHT are presented
in Section III, including topics such as IMF orthogonality,
mode-mixing, and filter-bank interpretation for EMD. Varia-
tions of the original EMD algorithm are described in Sec-
tion IV. The datasets used for design examples are presented
in Section V. Results from both simulated and experimental
data are detailed in Section VI. Conclusions are derived
in Section VII. The main acronyms and symbols used in this
work are summarized in the Appendix.

II. INTRODUCTION TO UNDERWATER ACOUSTICS SIGNAL
PROCESSING

In recent decades, there has been a significant advance
in UAS processing, both for civilian and military purposes.
For civilian purposes, passive SONAR may be used for the
detection and monitoring of animals using imaging techniques
[34, 45], oil and gas exploration [36], and damage detection
in underwater structures [46].

A critical application of underwater acoustics signal pro-
cessing is military surveillance using SONAR (Sound Navi-
gation and Ranging) systems [47]. SONAR systems require
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different signal processing routines to correctly estimate the
information of interest for vessel detection, identification, and
location and may be classified into two types, active and
passive [47].

Active SONAR has as its main feature the emission of
a pulse that, when reflected on a target, will return to the
source of origin, thus allowing the detection and location
of such target. Examples of applications for active SONAR
are autonomous navigation, submarine communication, and
localization [48, 49]. The passive SONAR systems, which are
addressed in this work, are based on analyzing the acoustic
noises emitted by different sources in a given operational
scenario [49]. They are essential in defense technology (mainly
in submarines [37]) and also find essential usage in marine-
live monitoring [34] and exploitation of the underwater envi-
ronment by robots [50], among other civilian applications.

A. Passive SONAR System

For military purposes, passive SONAR systems are essential
for submarines, whose main purposes are to detect, classify
and locate vessels (contacts) in an underwater environment
while avoiding their own detection by others. The passive
SONAR uses the fact that target vessels behave as an emitting
source of acoustic signals, which propagate through the under-
water environment and eventually reach the SONAR system
receiver (hydrophones arrays). Fig. 1 shows a hypothetical
scenario where a submarine tracks two contacts using passive
SONAR.

Sea State Noise
Vessel Noise

Submarine 
Radiated Noise

Array of 
Hydrophones 

Fig. 1: A typical passive SONAR system surveillance scenario.

One crucial signal processing technique for passive SONAR
signals is the DEMON (Demodulation of Envelope Modu-
lation on Noise) spectral analysis. The DEMON analysis is
used to extract vessel information from its cavitation noise
[51], which is generated from the vessel’s helix [52]: when the
blades start to operate, the liquid around them is shaken, creat-
ing air bubbles, which implode and explode, thus generating a
characteristic noise [49]. The cavitation noise is composed of a

broadband (continuous spectrum) and a narrowband (spectral
tones) signals [47].

The continuous spectrum noise (broadband noise) is gener-
ated from random explosions caused by the collapse of air bub-
bles. The frequency band ranges from 10 Hz to 20 kHz [49].
By its turn, the narrowband noise comprises discrete spectral
tones below 1 kHz. From the cavitation noise spectral analysis,
some vessel parameters may be extracted, such as the number
of helix blades, which is related to the number of harmonics in
the frequency-domain, the number of shafts, and their rotation
speed, which is usually given by the first harmonic of the
DEMON spectrum [49].

Fig. 2 shows the block diagram for the standard DEMON
analysis [7, 53]. Initially, the acquired signal x[n] (discrete
form of x(t), where t is the continuous-time variable) from a
given direction of arrival (bearing) goes through a preprocess-
ing step, in which it is filtered using a bandpass filter (BPF) for
accessing the cavitation noise frequency band. In this work, a
BPF with a bandwidth from 1 to 3 KHz is used. The signal
is then demodulated to undo the amplitude modulation that
occurs in the cavitation noise generation process [7]. Since the
signal sampling frequency Fs (in this paper, equal to 31,250
Hz or 52,734 Hz, depending on the dataset analyzed) is larger
than the preserved frequency band after bandpass filtering,
downsampling is performed (here, by a factor of 625). In the
following, the STFT is applied using, in the present case, a
Hanning window with 1,024 samples (overlap factor of 0.976).
Then, a two pass-split window filtering (TPSW-F) is used to
reduce the background noise [54], thus obtaining the frequency
spectrum of the demodulated signal. After that, the signal is
normalized and displayed. The result of the DEMON analysis
applied to a passive SONAR signal is presented in Section
III-A, as time-frequency (spectrogram) and frequency (average
normalized power spectrum density - PSD) representations.

This work evaluates a new approach for the DEMON
analysis, which concerns the replacement of the STFT block
by the HHT processing step (see the dashed box in the bottom-
left part of Fig. 2). The benefits of this modification are
discussed in Section VI.

BEARING FILTER DEMODULATION RESAMPLE

STFT TPSW-F TF NORMALIZED 
REPRESENTATION

x[n]

Pre-processing

HHT 
EMD 

Fig. 2: Block diagram of the standard DEMON analysis, indicating a possible
replacement of the STFT block by the HHT.
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B. Underwater Acoustic Environmental Noise

One of the problems associated with the target detection in
passive SONAR systems is that, under actual operating condi-
tions, the signal of interest is usually contaminated by various
noise sources. Underwater acoustic ambient noise comes from
natural sources present in the underwater environment. Among
such noise sources, the ones arising from sea conditions and
the rain (see Fig. 3) may be highlighted.

The sea state noise combines the influence of wind and
waves on the ocean surface [49], being classified into seven
levels of intensity, each one associated with specific wave
height and wind speed. On the other hand, rain noise is
generated from the impact of raindrops on the ocean’s sur-
face [49], and it is usually classified into four levels of intensity
according to rainfall conditions.
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Fig. 3: Spectra for typical environmental acoustic noise sources: (a) sea state
and (b) rain (graphics implemented based on data from [47]).

III. EMPIRICAL MODE DECOMPOSITION AND THE
HILBERT-HUANG TRANSFORM

This section describes the main theoretical aspects related
to both EMD and HHT. Although EMD obtains time-domain
representations of the original signals for different oscillation
modes (known as IMF), it may also be used in the context of
the HHT to obtain a frequency-domain mapping for the target
information.

As illustrated in Fig. 4, the HHT estimation comprises the
following steps:
(i) EMD is performed to decompose the signal of interest

into a set of zero-mean orthogonal components (IMFs).
(ii) Hilbert transform is applied to each IMF.

(iii) Hilbert Spectrum (HS) is estimated from the time-
frequency-energy information, preserving the temporal
localization of frequency components.

A. The EMD Algorithm

The EMD is a simple, intuitive, direct, and adaptive signal
decomposition method whose essence is to identify and em-
pirically extract the intrinsic modes of oscillation contained
in a signal. Accordingly, the signal of interest is decomposed
into a set of band-limited components (IMFs) with variable
amplitude and frequency. An IMF is defined by two properties
[11, 39, 55]:

Fig. 4: Hilbert-Huang Transform (HHT) block diagram.

(i) In the whole time length of the data, the number of
extremes and the number of zero-crossings must be the
same or differ at most by one.

(ii) At any point, the average value between the envelopes
defined by the local extremes (maximum and minimum)
is zero. The signal is symmetrical concerning the local
mean level.

Unlike the harmonic components of the Fourier spectrum,
which have constant amplitude and frequency, the IMFs are
more appropriate for representing nonstationary signals [3]. It
is important to note that the EMD algorithm decomposes a
signal into a finite and complete set of components: IMFs and
a residue.

The IMFs are obtained through an iterative procedure
known as “sifting”, in which the asymmetries between the
upper and lower envelopes of the original signal x(t) are
progressively removed [11, 55].

The basic steps of the EMD algorithm are presented below:
1) For the jth iteration ( j = 1,2, ... ,K), determine all

local extremes (maximum and minimum) of the iterative
signal dj(t), for the first iteration: d1(t) = x(t);

2) Retrieve maximum and minimum envelopes of dj(t)
(respectively e(j)max(t) and e(j)min(t)) by interpolation with
signal extreme values;

3) Determine the mean curve:

mj(t) =

[
e(j)max(t) + e(j)min(t)

]
2

, j = 1,2, ... ,K (1)

4) Compute the residue dj+1(t):

dj+1(t) = dj(t) − mj(t), j = 1,2, ... ,K − 1 (2)

5) While dj+1(t) does not meet the properties that define
an IMF (convergence criterion), steps (1) to (4) are
recursively applied over dj . This sifting process con-
tinues through K iterations, until a stop criterion is
satisfied [11, 55];

6) In the Kth iteration, once the stop criterion is met, dj(t)
becomes the ith IMF {ci(t) = dK (t)} , i = 1,2, ... ,N ,
which is extracted from x(t), leaving, then, the residue
ri(t):

ri(t) = x(t) − dK (t) (3)
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Since ri(t) contains information from components with a
longer time scale (period), it is treated as a new data xr (t),
and the sifting process described above is repeated. These
iterations continue until the residue becomes monotonous or a
fixed number N of IMFs is specified a priori for the extraction.
In the latter case, the residue will not necessarily be monotonic
and depends on what will be left once the first N IMFs are
extracted.

At the end of the process, the original signal x(t) may be
represented by N IMFs and one final residue rN (t) [55]:

x(t) =
N∑
i=1

ci(t) + rN (t) (4)

For signals that show a specific trend, it can be determined
by different estimation methods. There are several definitions
for the term "trend" in the literature, among which stands out
the one that considers it to be a "smooth additive compo-
nent which contains the information about time series global
changes" [56]. A time series can be seen as the superposition
of two components, the fluctuation, and the trend. The esti-
mation of this last one can yield valuable information about
the associated physical process, such as the periods of cyclic
components eventually present in the data [57].

In this sense, several trend estimation methods have been
proposed, including regression-based techniques, model-based
approach (MBA), singular spectrum analysis (SSA), and
wavelet-based methods [56]. More recently, considering the
problem of trend estimation in EMD, trend filtering was
proposed [57]. In this method, the trend is approximated by
slow IMFs, which are identified based on the zero-crossing
rate. The IMFs energy decrease is also considered in this
selection, and eventually, the final residue is included [57].

In order to achieve a signal representation more symmetrical
concerning the local mean level, the sifting procedure shall
be repeated several times during the EMD process. However,
in case this process goes beyond a specific limit (over-
decomposition), the intrinsic amplitude variations contained
in the original signal may disappear in the resulting IMF [3,
58]. In order to prevent over-decomposition, the number of
iterations of the sifting process should be limited by a stopping
criterion. Since EMD is a numerical algorithm, irrelevant IMFs
may be produced in the decomposition process due to possible
limitations such as a non-ideal interpolation method, numerical
rounding errors in the sifting process, and the chosen stopping
criteria.

Some methods have been proposed in the literature for
selecting the relevant IMFs. In [59] and [60], two similar
methods are presented, using the correlation coefficients be-
tween the IMFs and the analyzed input signal as a selection
criterion. The greater this coefficient, the more relevant the
IMF, which is selected based on comparison with a fixed
threshold. In [61], an energy-based method is proposed, which
can be seen as a generalization of correlation-based techniques.
In this case, a relevant group of IMFs is selected, rather than
individual ones, as in the case of correlation-based methods.
There is also a method based on information theory, which
combines EMD with entropy and mutual information to extract

only the most informative oscillatory modes [62]. Finally, we
can mention the adaptive method of selecting relevant IMFs
proposed in [63], based on a machine learning approach.

There are three stop criteria in the literature [3, 11, 64],
the Cauchy convergence test [3] being the most used one. It
basically assesses the normalized quadratic deviation between
the residues from two successive sifting iterations and com-
pares it to a pre-established threshold. The sifting is terminated
when the deviation is less than this threshold. The choice
of the stopping criterion to be used depends on the specific
application and is made empirically [58].

Given the EMD dyadic filter structure (to be discussed in
Section III-F), prior knowledge of the frequency band in which
the target signal is located can be used as a stopping criterion.
The idea is to avoid generating IMFs with components outside
the target signal band.

The choice of the interpolation method used to estimate the
upper and lower envelopes plays a crucial role in the EMD per-
formance [64]. In its original implementation, EMD relies on
the cubic natural spline for its simplicity and flexibility [65].

In [64], the authors consider that in linear and polynomial
interpolation, there is a tendency for a significant increase in
the number of sifting iterations. This generally leads to over-
decomposition of the signal, with the consequent spreading
of its components over adjacent IMFs (component leakage).
Given the smallest interpolation error, spline interpolation
methods are preferred over polynomial ones, even when using
low-degree polynomials as base functions. Spline interpolation
also avoids Runge’s phenomenon, in which oscillation may
appear when interpolating using high-degree polynomials [66,
67].

Different interpolation methods have been proposed, lead-
ing to modified versions of EMD, such as the B-spline
interpolation-based EMD (B-EMD) and cardinal spline
interpolation-based EMD (C-EMD). Such approaches reduce
the interpolation artifacts and the computational cost [68].
Cubic polynomial and trigonometric functions are used in
these two methods, respectively. In the first case, the local
properties are improved concerning the original EMD, mak-
ing the method more adaptive in processing non-stationary
signals [68].

A typical passive SONAR signal is shown in Fig. 5a (time
domain), together with the result of the standard (STFT-based)
DEMON analysis applied to this signal: the time-frequency
(Fig. 5b) and the frequency (Fig. 5c) representations. The
analysis of these graphs provides the spectral signature of
the vessel and information about the scenario in which it
finds itself. The harmonic components at 146.5 rpm and 293
rpm characterize a ship with a two-blade propeller rotat-
ing at approximately 146.5 rpm. The presence of frequency
peaks at 120.1 rpm and 304.7 rpm may indicate possible
interference from another target or the vessel’s self-noise.
It is worth mentioning that frequency values are usually
given in rotation/minute (rpm), as the spectral components are
mainly associated with the rotation of the ship’s propeller and
machines.

The result of applying EMD to this signal sample is pre-
sented in Fig. 6, for a set of N = 9 IMFs and the final residue.
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As i grows (from 1 to 9), the ith IMF contains successively
lower frequency oscillations. This seems reasonable since the
sifting process is based on successive extractions of low-
frequency components (mean curve of the envelopes), until
an IMF is obtained, acting as a high-frequency component
tracker. Thus, higher-frequency IMFs are obtained first.
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Fig. 5: Results of DEMON analysis applied to a passive SONAR signal
showing (a) the signal in the time-domain (b) spectrogram and (c) average
normalized PSD (SOURCE: Brazilian Navy).
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B. Hilbert-Huang Transform

The Hilbert transform may be used to obtain a frequency-
domain representation for the IMFs. Such a combination of
Hilbert transform and EMD is referred to in the literature as
the Hilbert-Huang transform (HHT) [55].

Once the N IMFs ci(t), i = 1,2, ... N are estimated
(Equation (4)), the instantaneous amplitude (IA) ai(t) and
instantaneous frequency (IF) fi(t) [69, 70, 71] are estimated
using Equations (5), (6) and (7), in which zi(t) is the so-called
analytical version (defined by Equation (5)) of the ith IMF ci(t)
and HT {·} is the Hilbert Transform operator [4, 55]:

zi(t) = ci(t) + jHT {ci(t)} = ai(t)e jϕi (t) (5)

in which ai(t) = |zi(t)| and ϕi (t) = arg {zi (t)},

HT {ci(t)} =
∫ ∞

−∞

ci(t − τ)
πτ

dτ (6)

fi(t) =
1

2π
d
dt
ϕi(t) (7)

The Hilbert amplitude spectrum (HS) H(ω, t), associated to
x(t), is given by the superposition of individual contributions
ai(t) and fi(t) of the N IMFs ci(t) [4, 55], where ω is the
continuous angular frequency:

H(ω, t) =
N∑
i=1

ai(t) exp
(

j
∫ t

−∞

ωi(τ)dτ
)
, (8)

in which ωi(t) = 2π fi(t).
The discrete form of HS is obtained from Equation 8 and

provides a 3D time-frequency-amplitude representation for a
given signal x(t) as a function of the discrete frequency k and
discrete time n. Equation (9) shows that the global Hilbert
discrete spectrum H[k,n] results from the superposition of the
Hilbert spectral H(i)[k,n] of the N individual IMFs [4, 39]:

H[k,n] =
N∑
i=1

H(i)[k,n], n = 1,2, ... Ns ; k = 1,2, ...
Fs

2∆ f
(9)

in which Ns, Fs and ∆ f are total number of samples, sampling
frequency and frequency resolution, respectively.

From H (ω, t), it is possible to obtain the marginal Hilbert
spectrum (MHS), representing the total amplitude relative to
each instantaneous frequency component f (t), accumulated in
the signal duration range [0,T] [55]:

hM (ω) =

∫ T

0
H (ω, t) dt, ω = 2π f . (10)

The MHS may alternatively be expressed in the discrete form:

hM [k] =
Ns∑
n=1

H [k,n] (11)

While the MHS represents the cumulative energy over the
entire data span in a probabilistic sense at a frequency index k,
the HS corresponds to the frequency-time distribution of the
amplitude, indicating the exact moment of occurrence of the
component at this index [55]. In this sense, the interpretations
of MHS and Fourier spectra are quite different. While in the
latter, the existence of energy at the frequency index k means
the persistence of a sinusoidal component in the whole period
[0,T] of the data, in the MHS, it means that there is a higher
likelihood of this component having appeared locally [4, 72].

Fig. 7 shows the results of HHT analysis of the passive
SONAR signal from Fig. 5a. The time-frequency (HS) and
frequency (MHS) representations can be seen in Fig. 7a
and Fig. 7b, analogous to those resulting from the standard
DEMON analysis applied to the same signal, as shown in
Fig. 5b and Fig. 5c, respectively. The comparison between
Figs. 7a and 5b, and between Figs. 7b and 5c, shows that,
also in the case of HS and MHS, four significant harmonic
components are present with frequencies relatively close to
those of the harmonics present in the frequency and time-
frequency representations of the standard DEMON analysis.
Therefore, it is also possible to obtain static information
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from the HS and MHS (spectral signature of the vessel) and
dynamic information (possible interference from other vessels
and the self-noise) similar to those obtained from the standard
DEMON analysis. The correspondence between the HS/MHS
and the standard DEMON analysis representations is used
throughout this work to compare the signal analysis results
performed with the two methods.
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Fig. 7: Results of HHT analysis of the signal in Fig. 5: (a) HS and (b) MHS.

C. Comparison Between HS and STFT
The analysis of a signal in the TF domain comprises, among

other aspects, locating, detecting and measuring experimental
or synthetic events [3]. For this, the lower the temporal (∆t)
and frequency (∆ f ) resolutions (t and f = ω/2π are the
continuous-time and frequency variables, respectively), the
better the characterization of such events [3, 4]. In the case
of STFT, the selection of ∆t and ∆ f is not independent and
must satisfy the "Gabor-Heisenberg" theorem, expressed by
the relation ∆t∆ f ≥ 0.5 [69, 70]. Therefore, if the chosen time
window is small, to guarantee a good temporal resolution and
localized stationarity the frequency resolution will deteriorate
(∆ f will be large). On the other hand, HS does not use a time
window, as ∆t is equal to the sampling period 1/Fs, having ∆ f
limited only by Nyquist’s theorem. Therefore, in theory, HS
provides a better TF representation with respect to STFT [4].

Another aspect to be considered in this comparison concerns
the inverse transformation from time-frequency to time domain
of the original signal. While in HS the reconstruction error
is negligible, in STFT the reconstruction process can be quite
complicated, especially when there is an overlap between win-
dows [3, 4]. Such overlap may cause the emergence of cross-
spectral energy between adjacent time frames and consequent
spectral spread across the high-frequency range [4]. In this
case, it is necessary to know the number of points used in the
fast Fourier transform, the window’s type and width, and the
amount of overlap. In HS, however, no parameter is needed to
get back to the time domain signal, considering that, during
the application of HT, the real part Re[H(w,t)] (Equation (8))
of the signal remains unchanged and, therefore, it can be
recovered by filtering [4].

On the other hand, the HS does not include any signifi-
cant amount of cross-terms and, therefore, presents a sharper
frequency definition compared to the STFT-based TF repre-
sentation [4].

D. Orthogonality and Completeness of the IMFs
The completeness of the EMD decomposition is theoret-

ically guaranteed by Equation (4) [4, 55]. The original x(t)

signal can be reconstructed by the sum of a finite number
(N) of IMFs ci(t) plus a final residue rN (t). But in practice,
there may be an error between the reconstructed and the
original signals. This error is referred to as residual noise
(RN). The smaller is RN, the more accurate is the result of
the decomposition of x(t) in the set of IMFs [4], that is, the
greater the completeness of the representation base formed by
this set.

The accuracy of the EMD decomposition may also be
evaluated by the degree of orthogonality among the estimated
IMFs [41, 55].

E. Mode Mixing

Theoretically, the EMD is a very efficient analysis tool for
decomposing a multi-component signal into a set of (single-
components) IMFs [3]. It may present some limitations in
practice, such as Mode Mixing (MM) among the most serious
ones. This phenomenon consists of the presence of oscillatory
modes with very different time scales mixed in the same IMF
or an oscillatory mode that spreads in time through different
IMFs. The last effect is usually referred to as mode splitting
(MDS) [55, 73, 74].

The MM results from how the EMD generates an IMF
through the sifting process. In cases of intermittent signals
with excessive noise or very close frequency components,
this process may fail [74]. Some modifications to the EMD
algorithm have been proposed to reduce the MM problem in
the literature. Those methods are described in Section IV.

F. Filter Bank Interpretation for EMD

Although straightforward, the EMD lacks a solid analytical
basis for performance evaluation and optimization. In this
sense, numerical experiments carried out with the application
of the algorithm to white noise [75] and fractional Gaussian
noise (fGn) [76] signals have been important for understand-
ing some aspects of the method. In both studies, based on
a detailed statistical analysis involving extensive numerical
simulations, it was shown that, for white noise, EMD behaves
like a dyadic filter bank [75, 76]. Specifically, the second study
revealed that the first IMF has high-pass characteristics, and
a set of overlapping band-pass filters characterizes the upper
index IMFs. Moreover, each IMF in the last group occupies
a frequency band approximately equal to half the previous
one [76, 77].

To illustrate the important results of the second study, EMD
was applied in this paper to 106 simulation samples of zero
mean and unit variance white Gaussian noise (WGN). The
discrete representations in time and normalized frequency are
shown in Fig. 8a and Fig. 8b, respectively. With respect to
Fig. 8a, only thFig. result related to the first 103 samples
was presented in order to allow better visualization of the
oscillations of the IMFs in the time domain. As expected [76],
Fig. 8b shows IMF1 with a high-pass frequency profile, while
IMF2 to IMF5 have overlapping band-pass profiles.

Equation (12) defines EBWi as the total band energy of the
ith IMF and the center frequency Fi

c , which divides the ith
band into two sub-bands with equal energy content EBWi/2.
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This is illustrated in Fig. 8b, where it is possible to identify
Fi

c (solid vertical line) and the upper band limit (dashed
vertical line), with a value equal to the central frequency of
the previous IMF and from which energy content is negligible.

Following the increasing order of the IMFs index, both the
values of Fi

c and EBWi are approximately halved between
each IMF and the subsequent ones, the latter values being
calculated by Equation (12) and represented on a (base 2)
logarithmic scale in Fig. 9 as a function of IMFs index. From
the straight line obtained by linear regression of the calculated
EBWi values, two points (X1,Y1) and (X2,Y2) were selected
(Fig. 9) to determine its slope α. The value of the slope
α � −0.95, obtained by Equation (13), indicates a ratio of
2−0.95 � 0.52 between the band energies of two consecutive
IMFs, suggesting a dyadic behavior similar to what is observed
in the sequential filter bank decomposition (and also in wavelet
decomposition). Considering this, EMD may be interpreted as
a sequential data-driven approximate filter bank when applied
to a finite set of WGN samples [75, 76]. In fact, as shown
in [76], in a more general way, this behavior of EMD is
extensive for the decomposition of fGn signals.

EBWi = 2
F i

c∑
k=0
|Ci[k])|2 = 2

F i−1
c∑

k=F i
c

|Ci[k])|2 , i = 1, ...N (12)

in which F0
c = 0.5 and Ci[k] is the normalized amplitude of

the ith IMF in the normalized frequency k.

α =
∆

{
log2(EBWi)

}
∆ {i}

=
Y2 − Y1
X2 − X1

=
23.08 − 24.04

6 − 5
= −0.95

(13)
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Fig. 8: EMD decomposition of 106 samples of a WGN signal: (a) time domain
(the 103 first samples) and (b) frequency domain.
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approximate dyadic profile of the EMD equivalent filter bank.

IV. EMD VARIATIONS

Considering the literature available for EMD, different algo-
rithms have been proposed for IMF estimation. Some of them
include modifications for solving limitations such as mode-
mixing (MM) and noise sensitivity, the latter being addressed
in Section IV-F.

Among these algorithms, there are the disturbance-
assisted [78] ones, such as ensemble empirical mode decom-
position (EEMD); complementary ensemble empirical mode
decomposition (CEEMD); complete ensemble empirical mode
decomposition with adaptative noise (CEEMDAN); improved
complete ensemble empirical mode decomposition with adap-
tive noise (ICEEMDAN); masking signal empirical mode
decomposition (MS-EMD) and uniform phase empirical mode
decomposition (UPEMD) [9, 78, 79, 43].

These methods have been employed in several applications,
and they usually lead to better results in the analysis of
experimental signals. The specific characteristics of some
of these methods make them potentially more suitable for
application to underwater acoustic signals and will be briefly
discussed in the following subsections.

A. Ensemble Empirical Mode Decomposition

The EEMD algorithm is a modification of the EMD that
consists of sifting a set of signals formed by the signal
of interest added to different WGN realizations. The final
IMF is obtained by averaging the IMFs resulting from EMD
processing of this set of signals. The basic idea is to use
the WGN statistical properties to disturb signals that have
intermittent oscillatory modes and thus force the separation of
such modes into distinct IMFs, thus avoiding the occurrence
of MM. However, it cannot avoid MM in the case of signals
with very close frequency components [73].

While each decomposition may result in noisy IMFs, they
are theoretically canceled in the averaging process. But for
such cancellation to be effective, a sufficiently large number
of realizations is required. Otherwise, there will often be a
significant increase in the RN value. The EEMD algorithm is
illustrated in Fig. 10 and it is described in the following [80]:

1) Generation of the signal xγ[n], containing the target
signal x[n] added to the γth realization of a zero-mean
and unit-variance WGN wγ[n] (γ = 1,2, ...,Γ), in which
Γ is the total number of realizations:
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xγ[n] = x[n] + β0w
γ[n] (14)

where β0 = ε0std(x[n]), std(·) is the standard deviation
operator and ε0 = std(wγ[n]) is the root mean square
(RMS) value of the added noise amplitude [80, 81].

2) EMD decomposition is applied for each xγ[n], obtaining
Γ sets of N IMFs (IMFγi [n], where i = 1,2, ... ,N is the
IMF index).

3) IMFγi [n] averaging is performed:

IMFi[n] =
1
Γ

Γ∑
γ=1

IMFγi [n], i = 1,2, ... ,N . (15)
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Fig. 10: Diagram of the Ensemble Empirical Mode Decomposition (EEMD)
algorithm.

B. Complementary Ensemble Empirical Mode Decomposition

The CEEMD algorithm is very similar to the EEMD, as
now the WGN samples are added in pairs, with opposite signs,
to the target information [81], generating two sets of signals
y
γ
1 [n] and y

γ
2 [n] (γ = 1,2, ... ,Γ) (Equation (16)). Similarly to

xγ[n] (Equation (14)), these signals separately follow the same
processing steps as the EEMD, being added together in the
final average of Equation (15) (see Fig. 11).(

y
(γ)
1 [n]
y
(γ)
2 [n]

)
=

(
1 1
1 −1

) (
x[n]

β0 w
(γ)[n]

)
(16)

The advantage of this approach is the reduction of the RN,
by decreasing the residue of added WGN. Therefore, a prac-
tically exact reconstruction of the original signal is obtained
from the IMFs, with a significant reduction in computational
cost [81].

In order to demonstrate the performance improvement pro-
vided by the CEEMD, a numerical experiment is presented in
[81], in which the percentages of added WGN are varied, thus
evaluating the resulting RN. The results of this trial indicate

that, unlike EEMD, CEEMD is able to eliminate virtually all
WGN, regardless of the amount added.

However, despite the substantial reduction in RN, the diffi-
culty of performing the final average (Equation (15)) persists
since different realizations of the signal plus noise can produce
different numbers of IMFs [81].
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Fig. 11: Diagram of the Complementary Ensemble Empirical Mode Decom-
position (CEEMD) algorithm.

C. Complete Ensemble Empirical Mode Decomposition with
Adaptative Noise

The CEEMDAN and its improved version ICEEMDAN
form a class of conceptually similar methods based on EEMD
and which provide the reconstruction of the original signal
with negligible error (RN ≈ 0) and a better spectral separation
of the IMFs. Such aspects are directly reflected in a lower
MDS, as there is a more significant restriction on sharing
equivalent components between neighboring IMFs [79, 82].
Considering that a high RN indicates a greater distortion by
the generating non-relevant IMFs, and that a greater MDS can
lead to an underestimation of the amplitude of the IMFs [78].
CEEMDAN and ICEEMDAN are methods that potentially
provide higher precision in estimating the spectral signature
of underwater acoustic signals [43].

Fig. 12 illustrates the CEEMDAN algorithm, which is also
detailed in the following steps:

1) Apply EEMD to Γ realizations of xγ[n] = x[n] +
β0w

γ[n], γ = 1,2, ... ,Γ, until the first average IMF
is computed (ĨMF1[n] in Eq. 17) together with the
respective residue r1[n]:

ĨMF1[n] =
1
Γ

Γ∑
γ=1

IMFγ1[n] = IMF1[n] (17)

2) Apply EMD to r1[n]+β1E1(w
γ[n]) until the first average

IMF is obtained, where βi = εistd(ri[n]), εi is the ith
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IMF added noise amplitude and Ei(·) is an operator that
produces the ith IMF using EMD.

3) The second IMF is defined as:

ĨMF2[n] =
1
Γ

Γ∑
γ=1

E1 (r1[n] + β1E1 (w
γ[n])) (18)

4) For i = 2, ... ,N , where N is the total number of ĨMFs,
the ith residue ri[n] is computed using:

ri[n] = ri−1[n] − ĨMFi[n] (19)

5) Apply EMD to ri[n] + βiEi(w
γ[n]) to compute only the

first IMF of the γth realization and estimate ĨMFi+1[n]
as:

ĨMFi+1[n] =
1
Γ

Γ∑
γ=1

E1 (ri[n] + βiEi (w
γ[n])) (20)

6) Return to step 4 and make i → i + 1;
7) Compute the final residue R[n] as:

R[n] = x[n] −
N∑
i=1

ĨMFi[n]. (21)

Despite CEEMDAN overcoming the main problems of
EEMD and CEEMD (increased values of RN and MDS),
it still presents some difficulties, the most serious being the
presence of spurious ĨMFs. These problems were solved in the
ICEEMDAN, which performs better at a lower computational
cost, producing less noisy IMFs with patterns similar to the
physical phenomenon to which the target signal may be
associated [79].

D. Masking Signal Empirical Mode Decomposition

As emphasized in Section IV-A, the basic principle of the
EEMD and its optimized versions (CEEMD, CEEMDAN, and
ICEEMDAN) is the use of WGN as an assisted disturbance to
solve the MM caused by applying EMD to intermittent signals.
However, these methods do not guarantee a solution to the MM
problem when it is caused by very close spectral components
(within the same octave) in the target signal. In the MS-EMD
method, the white noise source is replaced by a sinusoidal
disturbance signal aiming at separating two components with
very close frequencies into two distinct IMFs, preventing a
possible occurrence of MM [74].

In the MS-EMD method, initially proposed in [83], a
masking signal (MS) is added to the target signal before it
undergoes conventional EMD. The used MS is a sinusoidal
signal with amplitude Am and frequency fm higher than the
highest frequency component of the target signal ( fmax).

The basic idea is to cause an artificial MM between the MS
and one of the target signal components. In the end, these two
components may be separated into different IMFs, virtually
solving the problem of the original MM [74]. The MS-
EMD algorithm diagram is shown in Fig. 13 and summarized
below . artigo:hu2013study, artigo:senroy2007two:

EEMD

Define residue
𝑟1[n]

෫IMF1[𝑛]

Define ෫IMF2[n]
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𝑖 = 𝑖 +1

Digite a
equação aqui.
Define final
residue R[𝑛]

End
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𝑥[𝑛]
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residue 𝑟𝑖[𝑛]

Define ෫IMF𝑖+1[n]

yes

no

Fig. 12: Diagram of the Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN) algorithm.

1) Construction of the MS xm[n] by the method proposed
in [74], which consists basically of three steps:
• Analysis of IAs and IFs obtained by the HT for the

target signal x[n], to identify the amplitudes and
frequencies of IMF components with MM;

• Choice of Am and fm > fmax, considering the
ratios between the amplitudes and the frequencies
of two mixed components, and on the “Boundary
Condition Map” (a graphical representation showing
the different regions where MM is most likely to
occur, depending on the relative frequencies and
amplitudes involved in the two components) [74];

• MS definition:

xm[n] = Amsin (2π fmn) (22)

2) Application of EMD to the signal x+[n] = x[n]+ xm[n],
obtaining the IMF set y(u)+ [n] (u = 1,2, ... ,U);

3) Similarly, it is obtained y(v)− [n] (v = 1,2, ... ,V) from
x−[n] = x[n] − xm[n];

4) Determination of the average IMF yi[n] for the two sets
of IMFs obtained in steps 2 and 3:

yi[n] =
y
(i)
+ [n] + y(i)− [n]

2
, i = 1,2, ... ,N = min(U,V)

(23)
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Fig. 13: Diagram of the Masking Signal Empirical Mode Decomposition
(MS-EMD) algorithm.

Finally, it is essential to note that MS-EMD usually pro-
duces less MDS than methods based on EEMD, as a nar-
rowband (sinusoidal signal) disturbance is used instead of a
broadband (white-noise). A limitation of the MS-EMD is that
the choice of the disturbance signal (amplitude and frequency
of the MS) requires previous knowledge of the features of the
target signal, such as the expected instantaneous amplitudes
and frequencies. Such parameters are necessary to build the
optimal MS based on the Boundary Condition Map, and
maybe known a priori in simulated signals but unknown for
experimental signals.

E. Uniform Phase Empirical Mode Decomposition

While the EEMD aims to reduce the RN by increas-
ing the number of process realizations and in CEEM-
DAN/ICEEMDAN, this effect is practically nonexistent. The
MS-EMD’s leading quality is that it does not produce MDS. To
combine the virtues of both methods, the UPEMD algorithm
was proposed [78].

In MS-EMD two realizations of sinusoidal signals of oppo-
site phases are insufficient to eliminate the RN. Increasing
the number of sinusoids with phases in the [0,2π] range
could minimize this effect. In the UPEMD algorithm, the total
number of considered phases (np) usually varies according to
the signal of interest [78].

Initially, the algorithm was implemented in two levels (2L-
uPEMD), getting, in the end, only two IMFs. Then it was
extended to a multilevel version (ML-uPEMD) [78], to deal
with multiple component signals. The 2L-uPEMD algorithm
is shown in Fig. 14 and detailed below:

1) Fixing the amplitude Am = ε, the frequency fm (Equa-
tion (22)) and the total number of phases np of MS;

2) Construction of the sth MS, based on Equation 22:

εs[n] = ε cos [2π fmn + θs] (24)

θs =
2π(s − 1)

np
, s = 1,2, ... ,np (25)

3) Obtaining the disturbed signal ys[n] = x[n] + εs[n], in
which x[n] is the input signal;

4) Application of conventional EMD to ys[n], limited to
two IMFs:

cs,i[n] = Ei {ys[n]} , i = 1,2 (26)

where the EMD operator’s output Ei {·} is the ith IMF
cs,i[n];

5) Repetition of steps 2 to 4 for s = 1,2, ... ,np;
6) Obtention of the two resulting IMFs ci[n]:

ci[n] =
1

np

np∑
s=1

cs,i[n], i = 1,2 (27)

Note that MS-EMD is a special case of 2L-uPEMD with
np = 2.

The extension of 2L-uPEMD to ML-uPEMD [78] is carried
out by taking c1[n] (IMF1) as the resulting IMF and c2[n]
(IMF2), as residue r[n] = c2[n] = x[n]−c1[n], to be recursively
used as inputs to 2L-uPEMD algorithm for estimation of the
resulting IMFs with lower frequencies.

Construction
𝑠th MS

𝑠 = 𝑠 +1

End

𝑠 = 1

yes

no

𝜀, 𝑓𝑚, 𝑛𝑝

Obtaining
𝑦𝑠[𝑛]

Obtaining IMFs
𝑐𝑠,𝑖 𝑛 , 𝑖 = 1, 2

𝑠 ≤ 𝑛𝑝
Obtaining

resulting IMFs
𝑐𝑖 𝑛 , 𝑖 = 1, 2

Fig. 14: Diagram of the two-level Uniform Phase Empirical Mode Decom-
position (2L-uPEMD) algorithm.

Considering that underwater acoustic signals have relatively
close harmonic components (usually within the same octave of
frequency), MS-EMD and UPEMD are more suitable methods
for this type of signal, given their greater resilience to MM
being originated by very close components. However, in MS-
EMD, it is necessary to know the frequency values of the
harmonic components for the construction of the masking
signal (MS), which a priory is unknown in such an appli-
cation. UPEMD employs a set of sinusoidal components with
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uniformly distributed phases. It has a very low computational
cost and exhibits negligible RN and MDS values. UPEMD
can be considered the most appropriate method among those
analyzed for the application in underwater acoustic signals [9].

F. Resilience to Noise

Although it stands out as a suitable method for analyzing
nonstationary signals, EMD cannot solve cases where the
target signal and noise occupy the same frequency band. In
such cases, the separation between the IMF of interest and the
noisy ones may become impossible [75].

In specific applications (such as passive SONAR), where
the information of interest contained in the analyzed noisy
signal is associated with sinusoidal or narrowband harmonic
components, and the noise is usually wideband, EMD can
produce three types of IMFs [69, 84]:

1) Noisy IMFs: containing only broadband noise, which
can therefore be discarded;

2) Transition IMFs (TIMF): containing both target signal
and noise, which can be treated by some suitable de-
noising method;

3) Real (or true) IMFs: monocomponent (or nearly mono-
component) narrowband signals, associated with signif-
icant information.

The most common ways to deal with noise in EMD esti-
mation are: (i) noise attenuation using an IMF denoising stage
and (ii) application of modified EMD versions that are resilient
to additive noise [9] [85] .

Given their implementation simplicity, linear filtering meth-
ods, such as Wiener filtering [86], have traditionally been
used. However, these methods are not optimized for processing
signals originating from nonlinear and nonstationary systems,
especially when they are broadband, occupying the same fre-
quency range as the noise band, which sometimes may occur
for underwater acoustic signals [87]. In this scenario, nonlinear
filtering methods, such as the wavelet threshold denoising
(WTD), may be applied to overcome this limitation [85].

V. EXPERIMENTAL CASE STUDY APPLICATION

This section presents the datasets used to illustrate the
potential advantages of EMD/HHT analysis for underwater
acoustic signals. The main focus is on passive SONAR appli-
cations. Both experimental and simulated signals are used. The
experimental datasets were acquired and made available by the
Brazilian Navy Research Institute (IPqM) and the University
of Vigo, Spain. Simulated signals were also used to highlight
some specific advantages of EMD/HHT.

A. Experimental Signals from the Brazilian Navy

This dataset was made available by the Brazilian Navy
Research Institute (IPqM) and was acquired in Guanabara Bay,
Rio de Janeiro, using a hydrophone array [88]. The recorded
scenario consists of an offshore ship (used in the operation of
oil platforms) while it passes next to another smaller ship (see
Fig. 15a).

Figs. 15b and 15c show the hydrophone array, which follows
an elliptical arch shape comprising 12 staves. Each vertical
stave holds three hydrophones. After the signal acquisition,
analog-to-digital conversion is performed at a sampling fre-
quency (Fs) of 31,250 Hz. The acquisition system comprises
an anti-aliasing filter at 6,500 Hz and a high pass filter with
a cutoff frequency of 100 Hz.

(a)

sistema de aquisição.  O sinal  é  amplificado com 40dB de ganho e digitalizado por  uma placa  de
conversão  analógico-digital  (CAD)   de  24bits  (convertido  para  32bits  no  computador),  com
digitalização sigma-delta, simultânea dos 32 canais, com frequência de amostragem de 31.250Hz. É
utilizado  um  filtro  passa-baixa  anti-aliasing com  frequência  de  corte  em  6.5kHz.  O  dados
disponibilizados foram filtrados com um filtro passa-altas com frequência de corte em 100Hz.

A instalação do arranjo no cais pode ser observada na Figura 4. O arranjo foi fixado por cabos de aço,
sendo um superior, para suportar o peso, e outro “abraçando” o arranjo a um “dolphin” (estrutura que
serve de antepara para atracação dos navios contra choques diretos no cais). Foram adaptados pneus na
parte traseira do arranjo para amortecimento e redução das vibrações do dolphin/cais.
A profundidade local é de cerca 6 metros e a parte inferior do arranjo ficou a cerca de 3  metros do
fundo.  Apesar  da  amarração  do  arranjo  ao  cais,  o  mesmo  sofre  pequenos  movimentos  devido  à
correnteza (não pôde-se mensurar estas flutuações).

Figura 2 - Dimensão do stave/arranjo

Figura 3: Arranjo de hidrofones

(b)

Conjunto de dados do VIPP

São disponibilizados dois conjuntos de dados coletados por este arranjo de sensores. O primeiro deles
“offshoreVIPPf.bin”, consiste na passagem de um navio offshore, que cruza com uma embarcação de
pequeno porte. No diretório “OFFSHORE_VIPP” é disponibilizada a imagem “offshore.jpg”, onde é
mostrada a passagem do navio em uma imagem panorâmica com o navio em diferentes posições da
imagem. O tempo total desta passagem é de cerca de 6 minutos. Pode-se observar o momento do
cruzamento do navio com a embarcação de pequeno porte. Podemos considerar como referência de 90°
(ou broadside) uma plataforma da “Petrobras” que está atracada no estaleiro em frente ao arranjo. 
Também é disponibilizada a imagem “Energia.png”, onde a passagem do navio pode ser notada em um
gráfico da evolução temporal da energia do sinal em função da marcação (waterfall display). Neste
gráfico, não é possível verificar o cruzamento do navio com a embarcação de pequeno porte. Nota-se,
também, a presença de uma fonte de ruído no início da gravação que não pode ser identificada.
São disponibilizados os audio referentes às três marcações que podem ser vistas no gráfico de energia
waterfall.  Os  espectros  das  marcações  B  e  C  (marcações  fixas)  são  mostrados  nas  imagens
“EspectroMarcB.png” e “EspectroMarcC.png”. É disponibilizado o arquivo “ler_dados.m” para abrir o
arquivo “offshoreVIPPf.bin” no Matlab.
O segundo conjunto de dados, “lanchaVIPPf.bin” presente no diretório “LANCHA_VIPP”, consite em
um cruzamento de duas lanchas de pequeno porte que passam pelo canal em alta velocidade. A imagem
“LanchasCruzamento.jpg” apresenta um instante onde estas embarcações estão próximas a realizar o
cruzamento.   Esta  gravação tem cerca de 1  minuto  e o gráfico  de energia  waterfall  mostrado em

“Energia.png”  apresenta  o  trecho  onde  ocorre  o  cruzamento.  Os  áudios  das  embarcações  são
disponibilizados nos arquivos “lanchaMarcA.wav” e “lanchaMarcB.wav”.  O arquivo de leitura dos
dados “lanchaVIPPf.bin” é disponibilizado neste diretório.

Figura 4: Instalação do arranjo no cais(c)

Fig. 15: Details of the data acquisition setup used at Guanabara Bay, Rio de
Janeiro, Brazil [88].

B. Experimental Signal from ShipsEar database

In [89], researchers from the University of Vigo (Spain)
presented an underwater acoustics database composed of
recordings made at the port of Vigo, Spain. Fig. 16 illus-
trates the signal acquisition setup diagram. A set of three
hydrophones (H1, H2, and H3) positioned at different depths
(c1, c2 and c3 are the distances from each hydrophone to
the seafloor) was used. The hydrophones were anchored at
the seafloor and attached to a submerged buoy to ensure an
approximately vertical disposition. A surface buoy was used
to facilitate location and recovery. Digital acoustic recorders
with a sampling frequency (Fs) of 52,734 Hz were used to
obtain the experimental data.

C. Simulated Signals

A simulated dataset was also applied to highlight some
EMD/HHT analysis features. For that, an underwater acoustics
signal simulator [90] that provides both cavitation vessel noise
(Section II-A) and environmental noise (Section II-B) was
used.

The simulator can be configured to operate at different levels
of ambient noise intensity and cavitation noise characteristics
(vessel shaft rotation speed and number of propeller blades).
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H1

H2

H3

a

b

c1
c2

c3

Surface buoy vessel

hydrophones

Submerged
buoy

Fig. 16: Diagram of the ShipsEar database underwater signal acquisition
system, adapted from [89].

Environmental Noise Simulation: Figure 17 shows the
model used for generation of simulated environmental noise,
usually considered to be Gaussian distributed [49], in which
sin[n], sout[n] and h[n] are the input, output and impulse
response of the system, respectively.

Therefore, the output noise signal sout[n] is obtained through
feeding a WGN process sin[n] into linear and time-invariant
low-pass filter. Since the white noise has a constant power
spectral density (PSD) for the whole frequency band, a colored
Gaussian noise with the specific PSD can be synthesized by
choosing a suitable filter.

Digital Filter

Fig. 17: Block diagram of the underwater acoustics environment noise
simulation system.

Cavitation Noise Simulation: The cavitation noise is
an amplitude modulated signal [91] that brings information
from the vessel shaft speed and the number of blades in
the propeller. Fig. 18 shows the cavitation noise simulation
model [90].

Narrow
Band

Broad
Band

Cavitation 
Noise

Modulated 
Signal

Modulating 
Signal

Carrier

Modulation  
Index

Fig. 18: Block diagram of the cavitation noise model, as proposed in [90].

Equation (28) [91] expresses the simulated cavitation noise
g[n] considered here, where snb[n] is the narrow-band signal,

sbb[n] is a broad-band noise and λ is the modulation index.
The narrow-band information is composed by discrete spectral
tones [92], where fsh is the shaft rotation speed, Nh is the
number of harmonics (number of blades in the propeller) and
Aq (q = 1,2, ... ,Nh) is the qth harmonic amplitude. The
broad-band noise is considered to be Gaussian distributed
and presents a sort of band-pass frequency behaviour (with
maximum at ∼100 Hz) [93].

g[n] = (1 + λ snb[n]) sbb[n]

=
©«1 + λ

Nh∑
q=1

Aq cos[2πq fshn]ª®¬ sbb[n].
(28)

VI. RESULTS

This section presents results from the application of HHT
and its variations to simulated and experimental passive
SONAR signals. The operational parameters used in the ap-
plication of the methods were as follows:

1) EMD - maximum number of iterations set in the sifting
step (Kmax) equal to 2000; a cubic spline function was
used to interpolate points between each sequential pair
of maximum and minimum extreme points to generate
the upper and lower envelopes, respectively;

2) EEMD/CEEMDAN/ICEEMDAN - noise amplitude
RMS value (ε0) equal to 0.7; number of random re-
alizations (Γ) equal to 100; Kmax = 5000;

3) UPEMD - maximum number of phases per IMF (np)
equal to 32; ε0 = 0.52; Kmax = 10.

Several aspects of ships’ mechanical design (such as power
efficiency, hydrodynamics, and traveling speed) restrict the
minimum shaft rotation cruising speed to approximately 70
rpm [94]. Considering this, for the passive SONAR signals
analysis of ships at cruising speed, it is not expected to exist
frequency components below the range comprised in the 5th
IMF (f < 50 rpm). So, for this study, it was chosen N = 5 for
all cases.

A. Performance Evaluation
The performance measures described here were applied for

evaluation considering simulated and experimental signals.
Fig. 19 shows a generic passive SONAR test signal, with a de-
tailed indication of the graphical parameters used to compute
Equations (29) to (31). It is important to note that, in order to
enable the comparison between the various methods covered
in this work, the same frequency resolution (∆ f = Fs/(2048))
was used in all of them:

1) The average frequency deviation percentage ∆Fp (Equa-
tion (29)) is used to evaluate the frequency estimation
accuracy:

∆Fp =
1

Nh

Nh∑
q=1

��Fq − FNq
��

FNq
. 100% (29)

where Fq and FNq (q = 1, . . . ,Nh) are, respectively, the
frequency values of the detected Nh harmonic compo-
nents and their true values (simulation nominal values).
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In the case of the experimental signal, this parameter is
not applied, as there is no reference to the true harmonic
frequencies.

2) The average signal-to-noise ratio SNR represents the
average difference between the harmonic peaks Hq and
the average background noise level ANL. SNR indicates
the degree of resilience to background noise and may be
computed from Equations 30 and 31:

SNR =
Nh∑
q=1

SNRq =
1

Nh

Nh∑
q=1

��Hq − ANL
�� . (30)

ANL =
2∆ f
Fs

Fs/2∆ f∑
k=1

hq[k] (31)

in which:

hq[k] =
{

hq[kq − ∆], f or kq − ∆ < k ≤ kq + ∆
hM [k], otherwise,

hM [k] is the MHS amplitude at frequency index k,
kq = Fq/Fs is the discrete frequency location of the Nh
harmonic components Fq and ∆ is the discrete frequency
deviation around each kq , defining the range in which
the harmonics are eliminated for calculating the ANL
value. The ∆ value is fixed empirically based on the
average value of the bandwidths of the same harmonics
Fq detected by standard DEMON analysis, taken at the
background noise level.

3) The average spectral width ∆F3dB, estimates the har-
monics frequency resolution. It is computed from Equa-
tion (32), where Fq1 and Fq2 are the lateral frequencies
measured at -3dB from the harmonic peak.

∆F3dB =
1

Nh

Nh∑
q=1

��Fq1 − Fq2
�� . (32)
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Fig. 19: Amplitude spectrum of a generic SONAR test signal with four
harmonic components (Nh = 4), indicating the graphical parameters used
in calculating ∆F3dB and SNR.

B. Performance on Simulated Signal

Three simulated signals were produced to represent variable
acoustic ambient noise conditions associated with a simulated
version of the experimental signal acquired by the Brazilian
Navy in the Guanabara Bay, State of Rio de Janeiro, Brazil
(described in Section V-A). In the first case, the aim was to
produce low ambient noise conditions (SS0: sea-state noise
level 0). In the second and third cases, the goal was to evaluate

the signal processing methods at moderate environmental
noise, using sea-state noise level 1 (SS1) and level 3 (SS3),
respectively (see Sections II-B and V-C). Taking into account
the characteristics of the cavitation noise associated with this
experimental signal, in all three cases, the simulator was
configured to operate with a propeller (composed of 3 blades)
shaft rotation speed of 149.4 rpm [88].

The graphical results obtained in the application of standard
DEMON and the EMD-based methods (only for the two with
the best performance) to the simulated signal SS0 are shown
in Fig. 20. The performance measures obtained by applying
all the different processing methods to this same simulated
signal are presented in Table I.

A visual comparison of HS and MHS with the spectrogram
and the average standardized PSD P( f ) (Fig. 20.a to Fig. 20.c)
indicates qualitatively better resolution in frequency of EMD-
based methods when compared to the standard DEMON
analysis, since HS has thinner spectral lines and MHS has
sharper and more well-defined spectral peaks. This initial
qualitative assessment is confirmed by the performance mea-
sures obtained in the methods applied to the simulated signal
(Table I).

Comparing the values obtained from the various methods
applied to the simulated signal (Table I), it may be noted that,
in general, HHT-ICEEMDAN and HHT-UPEMD presented the
best performance with respect to SNR and ∆F3dB reduction.
Only for ∆Fp , the best result was from the standard DEMON
analysis, but HHT-UPEMD also achieved low value for this
last parameter (∆Fp = 0.23%).

Although HHT-UPEMD was the most accurate EMD-based
method(∆Fp = 0.23%), HHT-ICEEMDAN had the smallest
average spectral width (∆F3dB = 0.4 rpm), 50% smaller
than that of HHT-UPEMD, thus having the highest spectral
resolution among all the evaluated methods.

The simulation considering the application of the HHT-
UPEMD under moderate noise conditions are presented in
Fig. 21 and Table II, respectively.

The results of applying HHT-UPEMD to SS0, SS1 and SS3
signals (see Figs. 20c, 21b and 21d, respectively) point out
increasing performance degradation, as the HS spectral lines
become increasingly irregular and the spectral peaks of the
MHS become less and less sharp and well defined. On the
other hand, the standard DEMON analysis performed in the
same signals (Figs. 20a, 21a and 21c, respectively), shows well
defined spectral lines.

However, the results in Table II indicate a higher spectral
resolution of the HHT-UPEMD in the three noise levels,
as ∆F3dB was reduced up to 45% (SS3) with respect to
the standard DEMON analysis. Also, better performance is
achieved in terms of SNR, which was approximately 2.5 times
higher for the three noise levels. Finally, the increasing values
of ∆F3dB and decreased SNR values, when going from SS0 to
SS3, express an increasing performance degradation in case
the target application has to face increasing noise levels.

It is important to note that, when adopting a STFT analysis
window with Nb = 1024 samples, the frequency resolution
of the analyzed simulated signal is ∆ f ' 1.5 rpm. This value
is calculated by Equation (33), where, after resampling, Fs =
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TABLE I: The performance measures for the different methods processing
simulated data contaminated by zero level sea state environmental noise (SS0)

Method ∆Fp (%) SNR (dB) ∆F3dB (rpm)
Standard DEMON 0.01 24.7 2.8

HHT-EMD 5.67 28.3 1.7
HHT-EEMD 2.10 38.0 1.2

HHT-CEEMDAN 0.44 43.7 1.1
HHT-ICEEMDAN 0.74 54.8 0.4

HHT-UPEMD 0.23 51.9 0.8

TABLE II: The performance measures for Standard DEMON and HHT-
UPEMD processing simulated data contaminated by multi-level sea state
environmental noise

Noise level Method ∆Fp (%) SNR (dB) ∆F3dB (rpm)
SS0 Standard DEMON 0.01 24.7 2.8

HHT-UPEMD 0.19 62.1 0.3
SS1 Standard DEMON 0.01 21.7 2.8

HHT-UPEMD 1.11 56.4 0.6
SS3 Standard DEMON 0.01 18.5 2.9

HHT-UPEMD 1.23 45.9 1.3

50 samples/s. Since this value is higher than the frequency
resolution (∆F3dB) of HHT-ICEEMDAN and HHT-UPEMD
(Tables I and II), calculated (as shown in Section VI-A) from
the values obtained by these two methods, it is concluded that
they have sufficient selectivity to treat the simulated signal.

∆ f =
Fs

2 Nb
(60 rpm) =

50 x 60
2 x 1024

' 1.46 rpm (33)
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Fig. 20: Results of the methods applied to the simulated signal contaminated
by zero level sea state environmental noise (SS0): (a) Standard DEMON
analysis (spectrogram on the left and P( f ) on the right), (b) HHT-ICEEMDAN
(HS on the left and MHS on the right) and (c) HHT-UPEMD (HS on the left
and MHS on the right).
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Fig. 21: Results of the methods applied to the simulated signal contaminated
by multi-level sea state environmental noise: (a) SS1: Standard DEMON
analysis (spectrogram on the left and P( f ) on the right), (b) SS1: HHT-
UPEMD (HS on the left and MHS on the right), (c) SS3: Standard DEMON
analysis (spectrogram on the left and P( f ) on the right) and (d) SS3: HHT-
UPEMD (HS on the left and MHS on the right) HHT-UPEMD (HS on the
left and MHS on the right).

C. Experimental Signal

Fig. 22a shows the results of applying HHT-UPEMD to the
Guanabara Bay experimental signal. Compared to Fig. 20c, it
is possible to observe that in the former case, the spectral lines
of the HS are less rectilinear, and there is a greater spectral
spread in the MHS. These aspects may be explained by a
lower signal-to-noise ratio in the experimental signal (which
was acquired in a highly-populated area and thus subject to
heavy marine traffic). HHT-UPEMD results were also worse
than those obtained when applying standard DEMON analysis
to the same experimental signal (Fig. 22c).

Similarly, comparing the proposed performance parameters
applied to the experimental signal (Table III) with those ob-
tained with the simulated one (Table I), the worst performance
in the former case is clear for all methods. Although the HHT-
UPEMD presented similar performances for the SNR with
both the experimental (51.1 dB) and the simulated (only about
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1 dB above) signals, the same did not occur in relation to the
average spectral width ∆F3dB . In this case, the values obtained
for UPEMD and ICEEMDAN applied to the experimental
signal (2.4 rpm and 1.9 rpm) are about 3 and 5 times
greater than those of the simulated signal, thus presenting a
degradation of the spectral resolution.

Even so, as in the simulated case, HHT-UPEMD and HHT-
ICEEMDAN presented in the experimental situation a higher
SNR and a smaller ∆F3dB when compared to the standard
DEMON analysis (7.1 dB and 5.7 rpm, respectively). This
confirms the greater resilience to background noise and the
higher spectral resolution of the methods based on EMD.

D. Noise Resilient Methods

A spectral analysis of the IMFs obtained after applying
HHT-UPEMD to the Guanabara Bay experimental signal was
conducted. As it can be seen in Fig. 22a, the three harmonic
components (148, 296.2 e 592.2 rpm) share the same fre-
quency band with band-pass profile signals, thus indicating
that these IMFs may be transition-IMFs (TIMF). As shown
in the same figure, they cause the appearance of wavy (non-
straight) spectral lines in the HS and also produce intense
spectral spreading in the MHS.

The three IMFs may be denoised using linear band-pass
filters centered at the most energetic frequencies of each IMF.
The characteristics of the filter used in this work are as follows:
a finite impulse response (FIR) filter of order 415, bandwidth
(BW) of 24 rpm, stopband attenuation of 60 dB, and passband
ripple of 0.2 dB. As shown in Fig. 22b, the degradation
observed in the HS and MHS harmonic components almost
disappears completely, producing very straight spectral lines
in the HS and spectral components with sharp and well-
defined peaks in the MHS. In this case, the relative difference
between the frequency values estimated with DEMON and
HHT-UPEMD was approximately 0.5%.

Therefore, the interconnection between the band-pass profile
signals sharing, in the IMFs, the same frequency band as
the harmonic components and the degradation caused in the
HS and MHS was observed, as expected, in this particular
experiment. Since SONAR’s experimental signals are gener-
ally quite noisy, we may assume that these band-pass signals
are environmental noise and the three analyzed IMFs are
TIMFs. This filtering process shall be automated by designing
a standard band-pass filter with fixed bandwidth centered in
each spectral peak.

Another possible denoising solution is the application of
WTD to the three TIMFs (Fig. 22a).

As described in previous sections, the EMD algorithms
usually decrease their performance in the presence of noise. So
they would benefit from a noise reduction preprocessing step,
such as WTD. One challenge of noise reduction methods is
preserving the components of interest in the noisy signal and
eliminating only noise-related ones. This problem increases
when noise components occupy the same frequency band of
the signal of interest [85].

In this sense, the working principle of the WTD is based
on the assumption that after wavelet decomposition, the total
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Fig. 22: Results of the methods applied to the experimental signal acquired
at Guanabara Bay: (a) HHT-UPEMD to the original signal (noisy frequency-
domain IMFs on the left, HS on the top-right, MHS on the bottom-right), (b)
HHT-UPEMD to the denoised signal (filtered frequency-domain IMFs on the
left, HS on the top-right, MHS on the bottom-right) and (c) Standard DEMON
analysis (spectrogram on the left and P( f ) on the right).

energy of the target signal is concentrated in only a few
wavelet coefficients of high amplitude. At the same time, the
noise is mapped to low amplitude coefficients [95]. Therefore,
the noise reduction process consists of setting a comparison
threshold to select the coefficients of interest (amplitude higher
than the threshold) and eliminate (hard threshold) or attenuate
(soft threshold) the noise components (amplitude smaller than
the threshold), improving the signal SNR [95].

This approach substantially reduced the noise level in the
harmonic sidebands without significant loss of information
(Fig. 23). When compared to Fig. 22a, the HS and the MHS
(Fig. 23) resulting from the application of WTD presented
less distortion, with more straight spectral lines and less
spectral spread (notably the first two harmonic components).
The relative difference in the frequency estimation compared
to DEMON for this case was always smaller than 0.6%. The
Daubechies 4 (db4) wavelet function and four decomposition
levels [9] were used in this analysis. Those parameters were
chosen after exhaustively testing different configurations.

The results from applying WTD for the specific case of
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IMF2 are shown in Table IV. In the [200, 400] rpm range,
a SNR increase as high as 7 dB can be observed after
filtering was achieved, while for rotations outside this range,
the SNR was greater than 37 dB. Comparing the values of the
performance parameters when applying the WTD to the HHT-
UPEMD TIMFs (Table III), we found an increase of 1.7 dB
in SNR and an approximate decrease of 80% in ∆F3dB, still
remaining better than those of DEMON.
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Fig. 23: Results of WTD applied to IMF1, IMF2 and IMF3 of the experi-
mental signal acquired at Guanabara Bay: denoised IMFs (left), HS (top-right)
and MHS (bottom-right).

TABLE III: The performance measures for the different methods processing
the Guanabara Bay experimental signal

Método SNR (dB) ∆F3dB (rpm)
Standard DEMON 7.1 5.7
HHT-ICEEMDAN 30.3 1.9

HHT-UPEMD 51.1 2.4
HHT-UPEMD-WTD 52.8 0.5

TABLE IV: Noisy IMF2 and denoised IMF2 SNRs (experimental signal
acquired at Guanabara Bay)

Rotation (rpm) 100 200 300 350 400 500 600
SNR (dB)

Noisy IMF2 34.3 16.6 9.7 7.7 15.9 23.0 40.3

SNR (dB)
Denoised IMF2 45.1 18.8 9.7 10.2 22.7 42.5 77.6

E. Dynamic Behavior Assessment

The use of HHT for frequency-domain representation usu-
ally presents benefits in the time-varying case. So, a special
comparison was made in this section considering an experi-
mental signal in which the monitored ships change the shaft
velocity along the monitored period.

Considering an experimental signal from the ShipsEar
database, the acoustic information was acquired from two
different passenger ships passing through the Vigo Port area,
one arriving and another leaving the port. A linear bandpass
pre-filtering was applied for noise reduction, resulting in more
detailed observation of the HS and MHS. The filter used
here is similar to the one presented in Section VI-D, except
for a larger bandwidth, which was chosen to accommodate
the vessel propeller frequency variation. The purpose of this
change is to avoid the elimination of information on the
dynamics of the vessel, possibly contained in the sidebands
of the harmonic components of interest.

The results achieved for the passenger ship leaving Vigo
Port are shown in Fig. 24. A satisfactory agreement can be
noted between the frequency values of the three spectral com-
ponents detected by standard DEMON analysis (spectrogram)
and those obtained by HHT-UPEMD (HS). It can also be
observed in the TF representations with expanded scale (zoom)
of Fig. 24 that the spectral line for frequency ∼606 rpm
is visible in the range [0,120.7] s only for HHT, revealing
important details of the boat’s speed variation dynamics.
A similar fact was observed for the frequency component
around ∼355 rpm, which is interrupted around ∼95 s in the
spectrogram but is visible in the HS throughout the whole
range [0,145]s. The component in 1321 rpm, clearly visible
in the HS in the same range, practically does not appear in
the spectrogram.

The results for the passenger ship arriving at Vigo Port are
presented Fig. 25. Also, in this case, the HS shows more
details in the temporal evolution of the frequency in the
band [802,811] rpm (see zoom scale) when compared to the
spectrogram, allowing to obtain more information about the
dynamic behavior of the vessel in this interval.
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Fig. 24: Results of the application of DEMON and UPEMD to the experi-
mental signal from a passenger ship leaving Vigo Port. On the top (normal
frequency scale): spectrogram (left) and HS (right). On the bottom (expanded
frequency scale): spectrogram (left) and HS (right).
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VII. CONCLUSIONS

This work presented a theoretical review of the fundamental
aspects of both, empirical mode decomposition (EMD) and
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Hilbert-Huang transform (HHT). The decomposition princi-
ples were detailed, and different EMD extended approaches
were introduced, including some resilient to noise. As a
method suited for time-varying nonlinear signals analysis,
HHT was applied to underwater acoustic signals character-
ization, particularly considering the passive SONAR frame-
work. Results obtained from simulated and experimental data
indicate the advantages of the presented methods: background
noise level reduction, time-varying frequency components
monitoring, and sharp frequency estimation resolution. The
HHT results become particularly interesting when experimen-
tal time-varying signals are under analysis. In this case, a
considerable gain in frequency resolution may be achieved
along the time-varying period. From the obtained results, HHT
appears as an important alternative method to be used in
underwater acoustic signal processing to enhance the informa-
tion characterization with respect to the current Fourier-based
methods.

APPENDIX

NOMENCLATURE

Acronyms
2L-uPEMD Two-level Uniform phase empirical mode decomposi-

tion
ANL Average background noise level
BW Bandwidth
CEEMDAN Complete ensemble empirical mode decomposition

with adaptative noise
DEMON Demodulation of envelope modulation on noise
EEMD Ensemble empirical mode decomposition
EMD Empirical mode decomposition
fGn Fractional Gaussian noise
FIR Finite impulse response
HHT Hilbert-Huang transform
HS Hilbert spectrum
HT Hilbert transform
IA Instantaneous amplitude
ICEEMDAN Improved complete ensemble empirical mode decom-

position with adaptative noise
IF Instantaneous frequency
IMF Intrinsic mode function
MDS Mode splitting
MHS Marginal Hilbert spectrum
ML-uPEMD Multilevel Uniform phase empirical mode decompo-

sition
MM Mode mixing
MS Masking-signal
MS-EMD Masking-signal empirical mode decomposition
PSD Power spectral density
RMS Root mean square
RN Residual noise
SNR Signal-to-noise ratio
SONAR Sound navigation and ranging
STFT Short-time Fourier transform
TF Time-frequency
TIMF Transition intrinsic mode function
TPSW Two-pass split-window filtering
UAS Underwater acoustic signal
UPEMD Uniform phase empirical mode decomposition
WGN White Gaussian noise
WT Wavelet transform
WTD Wavelet threshold denoising

Symbols
∆F3dB Average spectral width at -3dB
∆Fp Average percentage frequency deviation
εo Noise standard deviation
Am Masking-signal amplitude
ci(t) The ith IMF
Fs Sampling frequency
fm Masking-signal frequency
N Total number of IMFs
Nh Total number of harmonics
np Total number of phases
P( f ) Average standardized PSD
SNR Average signal-to-noise ratio
rN (t) Final residue of EMD decomposition
x(t) Original signal (continuous time domain)
x[n] Original signal (discrete time domain)
fi(t) The ith instantaneous frequency
ai(t) The ith instantaneous amplitude
zi(t) Analytical version of the ith IMF
Ns Total number of samples
ϕi(t) The ith instantaneous phase
ω Continuous angular frequency
H(ω, t) Global Hilbert continuous spectrum
H[k,n] Global Hilbert discrete spectrum
hM (ω) MHS’s amplitude in continuous angular frequency ω
∆t Temporal resolution
∆ f Frequency resolution
f Continuous linear frequency
EBWi Total band energy of the ith IMF
Fi

c Center frequency of the ith IMF’s band
k Discrete frequency index
Ci[k] Normalized amplitude of the ith IMF in the index k
hM [k] MHS’s amplitude in the frequency index k
ε0 RMS value of the added noise amplitude

Total number of realizations
Ei(·) Operator that produces the ith IMF using EMD
ri[n] The ith residue of EMD decomposition
xm[n] Masking-signal
εs[n] The sth masking-signal of 2L-uPEMD
ε The fixed masking-signal amplitude of 2L-uPEMD
θs The sth masking-signal phase of 2L-uPEMD
ys The sth disturbed signal of 2L-uPEMD
sin Input of the environment noise simulation system
sout Output of the environment noise simulation system
h[n] Impulse response of the environment noise simulation

system
g[n] Simulated cavitation noise
snb Narrow-band signal in the simulated cavitation noise
sbb Broad-band signal in the simulated cavitation noise
λ Modulation index in the simulated cavitation noise
Aq The qth harmonic peak value (time domain)
Hq The qth harmonic peak value (frequency domain)
K Number of iterations in the sifting process
Kmax Maximum number of iterations set in the sifting

process
Fq The frequency value of the qth detected harmonic

component
FNq The nominal simulation frequency value of the qth

harmonic component
hq[k] MHS’s amplitude of the qth harmonic component, in

the frequency index k
kq Frequency index of the qth harmonic component
∆ Deviation around the discrete frequency of the qth

harmonic component
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