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Spectrum Sensing: A Tutorial
Dayan Adionel Guimarães

Abstract—Spectrum sensing, combined or not with database
information on radio-frequency (RF) spectrum occupation, is en-
visaged as part of the solution to the spectrum scarcity inherited
by the fixed spectrum allocation policy currently adopted around
the world. The solution is grounded on the premise of spectrum
sharing between primary (incumbent) and secondary networks
under a new dynamic spectrum access (DSA) paradigm. This
tutorial presents basic concepts, fundamentals and state-of-the-
art techniques related to spectrum sensing. Thought as a short
course material, it covers from concepts regarding the forms
of spectrum sensing and basic fundamentals on detection theory,
to modern cooperative spectrum sensing techniques and research
challenges, passing through the mathematical model for the signal
and the sensing channel, the signal-to-noise ratio wall, practical
issues regarding signal processing tasks, and performance met-
rics. A complete DSA framework is also addressed, which makes
use of Internet of things devices equipped with spectrum sensing
modules as a means to feed spectrum occupation databases.

Keywords—Cognitive radio, dynamic spectrum access, dy-
namic spectrum sharing, spectrum sensing.

I. INTRODUCTION

THE unprecedented demand for new telecommunications
services has become the main research driver on new

technologies, as can be noticed, for instance, in the recent
advances related to the fifth generation (5G) of communication
networks and to the Internet of things (IoT), as well as
regarding the discussions and research already started about
the sixth generation (6G) of these networks [1], [2].

To make many of the envisaged telecommunications ser-
vices come true, especially in the case of wireless systems,
the bottleneck of radio-frequency (RF) spectrum scarcity must
be overcome. This scarcity is owed to the fact that the current
fixed spectrum allocation policy grants to the incumbent (pri-
mary user, PU) network the exclusive usage right to frequency
portions. Hence, with the growth of wireless communication
systems in operation, only a few bands remain unused.

It is a widespread belief that the fixed spectrum alloca-
tion policy may not be capable of accommodating further
growths in wireless communication systems. A new policy
must be adopted, in which spectrum sharing becomes the novel
paradigm. The associated technology is referred to as dynamic
spectrum sharing (DSS) or dynamic spectrum access (DSA).

DSA makes use of the fact that many spectral bands
already allocated to primary networks are underutilized [3],
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[4], potentially allowing to be shared with secondary user (SU)
networks.

In a shared-spectrum scenario, the SU transmissions can
be made in two main ways: simultaneously to the PU trans-
missions, as long as no harmful interference is caused to the
PU network, and in a non-interfering basis, opportunistically
occupying unused licensed bands. The former is usually re-
ferred to as an underlay sharing approach, the latter is known
as interweave approach.

The cognitive radio (CR) concept [5] arose in this spectrum
sharing context. A CR transceiver is a device capable of ac-
quiring cognition on the environment and network in which it
is inserted, adapting its operational parameters to achieve opti-
mized performance targets. Among the multitude of cognition-
related attributes, a CR is also capable of identifying vacant
bands for opportunistic access, applying a technique called
spectrum sensing [1], [6]–[8].

Hence, in a first simplified definition, spectrum sensing is
the technique that makes it possible the monitoring of the
RF spectrum in search for vacant spectral bands, which are
commonly referred to as spectrum holes or white-spaces.

A. Contribution and organization of the article

In this tutorial, basic concepts, fundamentals and state-of-
the-art techniques related to spectrum sensing are addressed.
The content herein is based on a graduate course material, and
as such can be used as the reference text for a short course,
for example spanning from 30 to 40 hours.

The tutorial covers from concepts regarding the forms of
spectrum sensing and basic fundamentals on detection the-
ory, to modern cooperative spectrum sensing techniques and
research challenges, going through the mathematical model
for the signal and the sensing channel, the signal-to-noise
ratio wall concept, practical issues regarding signal processing
tasks, and performance metrics. Several examples are given
throughout the text, aiming at illustrating some theoretical
content and helping the reader to understand more complex
concepts. A complete DSA framework is also addressed as
a closing material. The framework makes use of IoT devices
equipped with spectrum sensors as a means to feed spectrum
occupation databases for subsequent queries by a secondary
network.

Owed to its particular scope and structure, this tutorial
significantly differs from existing tutorials or surveys on
spectrum sensing available in the literature (see, for instance,
[1], [6]–[8] and references therein).

The remaining sections of the article are organized as
follows. Section II addresses the basic initial concepts about
spectrum sensing. Section III is devoted to notions on the
signal detection theory applied to the design of test statistics
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for spectrum sensing. The model for the signals and the
sensing channel is covered in Section IV. Some well-know
as well as recent test statistics are presented in Section V.
Section VI addresses some signal processing aspects of mod-
erns spectrum sensing techniques. The metrics commonly used
to assess the spectrum sensing performance are covered in
Section VII. Section VIII describes the idea behind a complete
DSA framework in which a supporting IoT network is used
as a means for sensing the spectrum and feed a database with
spectrum occupation data. Challenges and research opportuni-
ties covering several aspects of the spectrum sensing context
are discussed in Section IX. Section X summarizes the article
and presents some final remarks.

B. Notation

Throughout the text, the notations 𝑥 (italic lowercase let-
ters), x (boldface lowercase letters) and X (boldface uppercase
letters) represent a scalar, a vector and a matrix, respectively.
The 𝑛-th element of a vector x is denoted by 𝑥𝑛. The element
in the 𝑖-th row and 𝑗-th column of a matrix X is represented
by 𝑥𝑖, 𝑗 . The determinant and the trace of a matrix X are
denoted by det(X) and tr(X), respectively. The set of complex
and real numbers are respectively denoted by C and R. The
absolute value of the scalar 𝑥 ∈ R or the modulus of 𝑥 ∈ C is
represented by |𝑥 |. The smallest integer greater than or equal
to 𝑥 is denoted by d𝑥e (ceil operation). The largest integer
smaller than or equal to 𝑥 is denoted by b𝑥c (floor operation).
The complex conjugate of 𝑥 ∈ C is represented by 𝑥∗. The
sets of matrices of order 𝑥× 𝑦 having complex entries and real
entries are respectively represented by C𝑥×𝑦 and R𝑥×𝑦 . The
operations of vector and matrix transposition are respectively
denoted by xT and XT. The Hermitian operator applied to the
vector x or to the matrix X results in the transposition and
complex conjugation of their elements, being represented by
x† and X†, respectively. The Euclidean norm of the vector x is
denoted by ‖x‖ =

√
x†x. The expected value (or expectation,

or statistical average) of the random variable 𝑍 is represented
by E{𝑍}. The real and the imaginary parts of 𝑟 ∈ C are
represented by <(𝑟) and =(𝑟), respectively. Similarly, if the
argument is a vector x or a matrix X with complex elements,
<(x) and =(x), respectively <(X) and =(X), yield a vector
(resp. matrix) formed by the real and the imaginary parts of the
corresponding elements. The factorial of the scalar 𝑥 is denoted
by 𝑥!. A real (resp. complex) Gaussian random variable 𝑋

with mean 𝜇 and variance 𝜎2 is denoted by 𝑋 ∼ N [𝜇, 𝜎2]
(resp. 𝑋 ∼ CN[𝜇, 𝜎2]). A real-valued (resp. complex-valued)
Gaussian random vector y with mean 𝜇 and covariance matrix
𝚺 is denoted by y ∼ N [𝜇,𝚺] (resp. y ∼ CN[𝜇,𝚺]). A real
uniform random variable 𝑋 in the closed interval [𝑎, 𝑏] is
denoted by 𝑋 ∼ U[𝑎, 𝑏].

II. SPECTRUM SENSING

A. Basic concepts

Figure 1 depicts a didactic example of a primary network
and a secondary network coexisting and having parts of their
coverage areas in common. In this example, the primary
network having two transmission (Tx) stations broadcasts

television (TV) signals to four TV set receivers (Rx). The
secondary cognitive network contains a base station (BS)
and three SUs connected to the BS via wireless links. The
dashed lines represent the hypothetical coverage area limits.
The example is consistent with the IEEE 802.22 standard [9],
[10], which regulates the shared use of TV bands, in the
context of wireless regional area networks (WRANs).

Fig. 1. Didactic example of a primary network and a secondary network
coexisting and having a common coverage area.

The SUs shown in Figure 1 monitor the RF spectrum,
seeking for unoccupied bands via spectrum sensing. In the
example, SU3 is beyond the reach of the primary network
coverage and, as a consequence, it may assume that any
sensed band is vacant. This situation is usually referred to as a
hidden terminal problem. It potentially causes interference to
the Rx3 of the primary network, in case the secondary network
decides to use that band while it is in use by the primary
network. The terminals SU1 and SU2, though reachable by
the primary network signal, may be incapable of detecting it,
a situation that can happen, for instance, if the sensed signal is
subjected to severe fading or is blocked by obstacles between
the PU transmitters and the SU receivers. In this situation,
SU1 and SU2 may start transmitting on a busy frequency band,
producing interference in the primary network devices.

The hidden terminal problem illustrated by the situation
of terminal SU3, as well as multipath fading and signal
shadowing1 are capable of strongly penalizing the PU signal
detection capability when independent spectrum sensing is
made by each SU. To circumvent, or at least alleviate the
hidden terminal problem and combat the deleterious effects of
multipath fading and shadowing, a better choice in opposition
to the independent spectrum sensing is the adoption of cooper-
ative (or collaborative) spectrum sensing (CSS). As the name
suggests, in CSS a group of SUs contribute to the decision on
the occupation state of the sensed band, thus improving the
PU detection capability.

1Multipath fading is the instantaneous variation of the received signal level
due to changes, caused by the relative motion of the transmitter, the receiver
or both, changing the condition of constructive and destructive combination
of the signals arriving at the receive antenna through multiple propagation
paths [11, p. 207]. Signal shadowing is caused by obstacles between the PU
transmitters and the SU receivers, causing long-term signal level variations as
the transmitter, the receiver or both move [11, p. 202].
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B. Distributed and centralized CSS

There are two main forms of CSS: distributed and central-
ized. In distributed CSS, the SUs exchange spectrum sensing
information (local decisions or received samples), then collec-
tively make the global decision (by consensus, for example)
on the occupation state of the sensed band. In centralized
CSS, which is the focus of this tutorial, the spectrum sensing
information gathered by the SUs in cooperation are transmitted
to a fusion center (FC), which can be the BS of the secondary
network or a special-purpose SU, where the global decision
upon the sensed band state is made.

The exchange of sensing information among SUs (in the
case of distributed CSS) or the transmissions from the SUs to
the FC (in the case of centralized CSS) are made through low
bandwidth dedicated control channels. In the latter situation,
the control channels are sometimes referred to as report (or
reporting) channels.

The global decision reached in the FC is subsequently
broadcast to the SUs, also via control channels, and the access
to the vacant band is made by means of some multiple access2

technique appropriate to the secondary network.
The centralized CSS is classified according to how the

spectrum sensing information is transmitted to and processed
by the FC, which is referred to as fusion. A centralized CSS
with decision fusion is realized if the local SUs decisions on
the spectrum occupancy are sent to the FC. If the samples
received by the SUs, or some quantity derived from these
samples are sent to the FC, a centralized CSS with data fusion
takes place [7].

In the case of decision fusion, a logical global decision rule
is applied in the FC, called 𝑘-out-of-𝑚 rule. In this rule, the
global decision is made in favor of a busy frequency band if
at least 𝑘 out of the 𝑚 SUs in cooperation decide that the
band is busy. Three special cases of the 𝑘-out-of-𝑚 rule are
the OR rule (when 𝑘 = 1), the AND rule (when 𝑘 = 𝑚), and
the majority voting (MAJ) rule (when 𝑘 = d(𝑚 + 1)/2e).

Both in data fusion, when the global decision is made
by processing the quantities sent to the FC, and in decision
fusion, when each local decision is made by processing the
quantities gathered by each SU, the global decision and the
local decisions, respectively, result from a binary hypothesis
test. The test is made by comparing a decision variable (or test
statistic) formed from the received samples (or from related
quantities) with a decision threshold, as detailed in Section V.

C. Timing of the spectrum sensing

Fig. 2 depicts a typical frame structure of a secondary
terminal having the spectrum sensing capability. Intervals are
periodically allotted in each frame for spectrum sensing, for
reporting the sensing information to the FC, for the decision
and channel allocation processes, and for the secondary net-
work data communication in the band considered vacant.

2Multiple access is a technique that allows multiple terminals share a
given communication channel established in the frequency, time or code
domains, combined or not. The most known multiple access techniques are
the frequency division multiple access (FDMA), the time division multiple
access (TDMA), and the code division multiple access (CDMA).

The total time dedicated to sensing and reporting, plus
decision and channel allocation is much smaller than the one
dedicated to data communication. On the other hand, the
reporting and decision intervals are usually small compared
to the sensing interval, except when adopting a large number
of SUs in cooperation combined with time multiplexing of the
reporting transmissions to the FC. In this case, the reporting
interval can grow prohibitively because it has to accommodate
the orthogonal transmissions of all cooperating SUs.

Fig. 2. A possible frame structure to coordinate the tasks of a SU terminal.

As formally explained later on in this tutorial, the perfor-
mance of the spectrum sensing improves when the sensing
interval is increased. This is an intuitively satisfying state-
ment, since more samples of the received signal is collected,
increasing the chance of a correct decision upon the presence
of the PU signal. However, the increase of the sensing interval
reduces the interval for data communication, also reducing
the throughput of the secondary network. Thus, a trade-off
solution must be adopted, giving to spectrum sensing the
interval just enough for the target performance to be attained,
aiming at saving resources for communication.

The timing process of the secondary network is not trivial,
since it must guarantee that the sensing information from
the various SUs reach the FC synchronized according to the
adopted frame structure. However, this difficulty is not specific
to CSS, since most wireless communication systems use
frame structures that demand some kind of time coordination,
especially when time division multiplexing (TDM) or time
division duplexing (TDD) is applied.

III. NOTIONS OF SIGNAL DETECTION

A. Binary hypothesis test

Spectrum sensing is a binary hypothesis test in which are
defined the null hypothesis, H0, denoting the absence of the
PU signal in the sensed band (or an inactive PU transmitter),
and the alternative hypothesis, H1, denoting the presence of
the PU signal (or an active PU transmitter).

The main purpose of the detection process is to decide
whether the received signal was generated under the H0
hypothesis or under the H1 hypothesis. To this end, a test
statistic 𝑇 is formed from the received signal samples y and
compared with a decision threshold 𝛾 to decide in favor of
H1 if 𝑇 > 𝛾, or H0 if 𝑇 < 𝛾.

In general, the binary hypothesis test theory postulates that
the test statistic is actually used to decide whether the null
hypothesis should be rejected or not. Thus, the decision made
when comparing the test statistic with the decision threshold
refers to a statement based on the null hypothesis: ‘the null
hypothesis is rejected’ or ‘the null hypothesis is not rejected’.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 37, NO.1, 2022. 13

The alternative hypothesis (the claim) is considered valid if
the null hypothesis (the counterclaim) is unlike to occur.

Associated with the decision is a reliability metric, com-
monly measured by the 𝑝-value [12]. In essence, this metric3

quantifies the statistical significance of the evidence, which
is the test statistic. For spectrum sensing, there are metrics
more suitable than the 𝑝-value. These metrics are covered in
Section VII.

B. Detector design criteria

The fundamental challenge in detector design is to develop
the test statistic 𝑇 and determine the decision threshold 𝛾 so
that the desired spectrum sensing performance is achieved.
Among several approaches to this design [13], [14], there are
two main ones that deserve to be mentioned [14]: the classical
approach and the Bayesian inference.

In the classical approach, the objective is to find 𝑇 and 𝛾

so as to maximize the probability of detection, subjected to a
limitation on the maximum probability of false alarm4, giving
rise to the so-called Neyman-Pearson criterion.

In Bayesian inference, costs (or weights) are assigned to
each possible outcome of the decision process and, taking into
account the prior probability of each hypothesis, the detector
design criterion consists of minimizing the average cost of the
possible decisions.

Despite the differences between the classical approach and
the Bayesian inference, both can result in a test statistic that is
formed by a ratio of two quantities [15], resulting in the test
known as the likelihood ratio test (LRT), whose statistic is

𝑇 =
𝑝 (y|H1)
𝑝 (y|H0)

, (1)

or a scaling factor of it. In Bayesian inference, such a
scaling factor is due to the presence of the weights and
the prior probabilities of the hypotheses. In the above test
statistic, 𝑝 (y|H1) and 𝑝 (y|H0) denote the probability density
functions (PDFs) of the multidimensional (or multivariate)
observed signal vector y, respectively conditioned on the
hypotheses H1 and H0.

The likelihood ratio is sometimes rewritten as the log-
likelihood ratio (LLR)

𝑇 = log
[
𝑝 (y|H1)
𝑝 (y|H0)

]
. (2)

The logarithm of the likelihood ratio does not change the
decision rule, because the log function, whatever the basis,
is monotonically increasing with the argument. However, the
LLR is sometimes preferred because it facilitates the math-
ematical treatment of the resulting ratio, especially when it
involves exponential functions (in this case, the logarithm in
the natural base is used).

3For details on the computation and interpretation of the 𝑝-value, be-
sides [12], see also https://en.wikipedia.org/wiki/P-value.

4The probability of detection is the probability of declaring the PU signal
present in the sensed band, when it is indeed present. The probability of false
alarm is the probability of declaring the PU signal present in the sensed band,
given that it is in fact absent. For more details on these probabilities, refer to
the beginning of Section VII.

To compute the likelihood ratio 𝑇 , the probability distribu-
tion of the observation y must be determined perfectly under
both hypotheses, which means that all parameters involved in
such a distribution must be known in advance. However, it is
not uncommon for some of the parameters to be unknown,
which sometimes makes it difficult to obtain optimal test
statistics according to the aforementioned criteria.

Example 1: To illustrate the application of the Neyman-
Pearson criterion in the design of a test statistic, consider that
the vector y of samples received by an SU contains 𝑛 signal
samples plus noise, that is,

y = x + v, (3)

where x e v are the vectors that represent the signal and the
noise samples, respectively.

It is assumed that v is a vector of independent and identi-
cally distributed complex Gaussian random variables with zero
mean and variance 𝜎2, that is, v ∼ CN[0, 𝜎2I], where I is the
identity matrix of order 𝑛×𝑛 and 𝜎2I is the covariance5 matrix
of v. Then, it follows that y = v under the hypothesis H0, and
y = x + v under H1.

Before going on, recall that the optimal Neyman-Pearson
criterion consists of comparing an LLR, constructed from y
according to (2), with a decision threshold.

It is assumed that the received signal does not have any
structure that can be exploited to facilitate the detection
process. In this case, it is considered that x is simply a vector
of independent and identically distributed complex Gaussian
random variables with zero mean and variance 𝜎2

x , that is,
y ∼ CN[0, 𝜎2I] under H0, and y ∼ CN[0, (𝜎2 + 𝜎2

x )I] under
H1, with 𝜎2

x denoting the variance of the signal samples.
It is known [16, p. 575] that the PDF of an 𝑛-dimensional

random vector z having real Gaussian-distributed entries,
mean 𝝁 and covariance matrix 𝚺, usually referred to as the
multivariate Gaussian PDF, is given by

𝑝(z) = 𝑝(𝑧1, 𝑧2, . . . , 𝑧𝑛)
= (2𝜋)− 𝑛

2 det (𝚺)− 1
2 𝑒−

1
2 (z−𝝁)

T𝚺−1 (z−𝝁) , (4)

where 𝑝(𝑧1, 𝑧2, . . . , 𝑧𝑛) denotes the joint PDF of the elements
of z. Since for the case in analysis 𝚺 = 𝜎2I or 𝚺 = (𝜎2+𝜎2

x )I,
additionally knowing that the determinant of a diagonal matrix
is the product of its diagonal elements, and that the inverse of a
diagonal matrix is another diagonal matrix with elements equal
to the reciprocal of the corresponding original elements [17],

5A covariance matrix R is a square matrix that gives the covariance between
each pair of elements of a random vector y = (𝑦1, 𝑦2, ..., 𝑦𝑚)T. The element
of the 𝑖-th row and 𝑗-th column of R is 𝑅𝑖, 𝑗 = cov[𝑦𝑖 , 𝑦 𝑗 ] = E[ (𝑦𝑖 −
E[𝑦𝑖 ]) (𝑦 𝑗 − E[𝑦 𝑗 ]) ]. If 𝑛 realizations of the 𝑚-dimensional random vector
are arranged in a matrix Y, the covariance matrix is estimated as R̂ = 1

𝑛
YYT,

which is called the sample covariance matrix. For more interpretations and ex-
planations, see for example https://en.wikipedia.org/wiki/Covariance matrix.
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then the LLR is given by

𝑇 = ln
[
𝑝 (y|H1)
𝑝 (y|H0)

]
= ln


1

(2𝜋)𝑛/2 (𝜎2+𝜎2
x )𝑛/2

exp
(
− ‖y‖2

2(𝜎2+𝜎2
x )

)
1

(2𝜋)𝑛/2𝜎𝑛 exp
(
− ‖y‖2

2𝜎2

)  . (5)

Applying ln(𝑎/𝑏) = ln(𝑎) − ln(𝑏) and noticing that the
multiplicative constants of the exponentials are independent
of y, it follows that

𝑇 ∝ ‖y‖2

2𝜎2 − ‖y‖2

2(𝜎2 + 𝜎2
x )

=
1
2

(
1
𝜎2 − 1

𝜎2 + 𝜎2
x

)
‖y‖2, (6)

meaning that the resulting test statistic is proportional to ‖y‖2,
which is the energy of the samples that form y. Since the
proportionality constant is independent of y, then

𝑇 ∝ ‖y‖2

= y†y

=

𝑛∑︁
𝑖=1

𝑦∗𝑖 𝑦𝑖

=

𝑛∑︁
𝑖=1

|𝑦𝑖 |2. (7)

As any proportionality constant applied to a test statistic
does not affect the performance of the hypothesis test, but
only changes the decision threshold in the same proportion, it
is convenient for the present analysis to apply the scale factor
1/𝑛 to the test statistic, yielding

𝑇 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 |2. (8)

The test statistic (7) or, equivalently, (8), refers to the well-
known energy detector (ED), which is therefore an optimal
detector6 according to the Neyman-Pearson criterion, under
the conditions imposed by the signal model considered in the
present example.

It is noteworthy that the determination of the decision
threshold with which 𝑇 is compared presupposes that the
noise variance is known, so that the energies of y under the
hypotheses H0 and H1 are discriminated. This is a major
limitation of the energy detector, as explored later.

Mathematical analyzes of the energy detector are relatively
simple due to the fact that the distributions of 𝑇 are known
under both hypotheses: for the model at hand, one has the sum
of 2𝑛 zero-mean, squared Gaussian random variables (recall
that y is composed of complex random variables). Then, the
variable 𝑇 has a central chi-square distribution [18] under both
hypotheses.

6A detector considered optimal under a given design criterion may have
lower performance with respect to another optimal detector developed under a
different design criterion. Therefore, when one says that a detector is optimal,
it means that there is no other better detector under the same design criterion,
which does not prevent the existence of a detector that performs better when
designed under another criterion.

One of the biggest obstacles to the development of test
statistics is to determine the PDFs operated in the likelihood
ratio, not only due to lack of knowledge of some parameter,
but also when the observation is a quantity resulting from
some operation on the values of the received signal samples,
that may make the mathematical treatment of the resulting test
statistic difficult. In other words, when the collected samples
are processed to generate other quantities from which the
likelihood ratio is defined, the analytical development of the
test statistic may become extremely cumbersome or, in some
cases, even prohibitive.

When some parameters are not known in advance, one
of the strategies typically used in the classical approach to
hypothesis testing is to estimate them. A standard technique is
to perform maximum likelihood estimates, which replaces the
actual parameters in the likelihood ratio. This strategy gives
rise to the so-called generalized likelihood ratio test (GLRT).
In summary, the GLRT is a likelihood ratio test, LRT, in
which unknown parameters are replaced by their maximum
likelihood estimates [14, p. 430].

It is worth stating that a model is always a simplification
of reality. Consequently, probability distributions are never or
rarely perfectly known. In other terms, even if the model is
consistent with reality, there may still be parameters that are
unknown or uncertain, for example the noise power, the signal
strength and the coefficients (gains) of the sensing channel.

Fortunately, sometimes there is an escape from such design
limitations. For example, a detector can be developed based
on some existing discrepancy metric adopted in a different
context. Indeed, this was the approach used to design the
detectors proposed in [19], [20] and [21], which is also
explored in this tutorial, specifically in Section V.

C. Signal-to-noise ratio wall

Cognitive secondary terminals must be able to detect very
weak primary user signals. This is difficult as there are
fundamental limits to the detection at low signal-to-noise
ratio (SNR). Specifically, due to uncertainties about model
parameters, accurate detection is impossible below a certain
level of signal-to-noise ratio known as the SNR wall [22].

The SNR wall, which can be denoted by SNRw, is the
upper limit below or equal to which it is impossible to control
the probability of detection, 𝑃d, and the probability of false
alarm, 𝑃fa, to yield 𝑃fa ≈ 0 and 𝑃d ≈ 1, or at least so that
these probabilities can reach any desired values within their
useful limits, which are 0 ≤ 𝑃fa ≤ 0.5 and 0.5 ≤ 𝑃d ≤ 1.
Such control is performed through the number of samples, 𝑛,
meaning that, if SNR ≤ SNRw, the increase of 𝑛 does not
bring improvement of the spectrum sensing performance.

Example 2: To better understand the SNRw, firstly it is con-
venient to interpret that, in the case of the energy detector, the
objective is to discriminate the values 𝜎2 and (𝜎2+𝜎2

x ), which
are the powers of the received signal under the hypothesis H0
and H1, respectively. This conclusion can be easily drawn
from (8), as explained in the sequel.
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Observing the test statistic defined in (8), it can be noticed
that it is nothing more than an estimate of the average power
𝑃 of the received signal, since, by definition,

𝑃 = lim
𝑛→∞

1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 |2. (9)

However, from (8) one realizes that 𝑇 is a random variable
due to the randomness of 𝑦𝑖 . Hence, for sufficiently high 𝑛,
the test statistic 𝑇 approximates a Gaussian random variable,
according to the central limit theorem (CLT). The mean of
this random variable is 𝜎2 under H0 and (𝜎2 +𝜎2

x ) under H1,
with variances inversely proportional to 𝑛, as detailed below.

Since the samples in y are mutually independent, due to the
mutually independent samples in x and v, the expectation of
the ED test statistic given in (8) is E[𝑇] = (1/𝑛)𝑛E[|𝑦𝑖 |2] =
E[|𝑦𝑖 |2] = E[𝑦∗𝑖 𝑦𝑖] = E{[<(𝑦𝑖)]2+[=(𝑦𝑖)]2} = E{[<(𝑦𝑖)]2}+
E{[=(𝑦𝑖)]2}, whose result is E[𝑇] = 𝜎2/2 + 𝜎2/2 = 𝜎2

under H0, and E[𝑇] = (𝜎2 + 𝜎2
x )/2 + (𝜎2 + 𝜎2

x )/2 = 𝜎2 + 𝜎2
x

under H1. The variance is var[𝑇] = (1/𝑛2)𝑛var[|𝑦𝑖 |2]. Taking
into account that the variances of [<(𝑦𝑖)]2 and [=(𝑦𝑖)]2

are the same, and denoting <(𝑦𝑖) by 𝑋 , it follows that
var[𝑇] = (2/𝑛)var[𝑋2] = (2/𝑛){E[𝑋4] − E2 [𝑋2]}, where it
has been used the fact that the variance of a random variable is
its second moment minus its squared first moment. Moreover,
the fourth central moment [18, p. 144] of a Gaussian random
variable whose variance (second central moment) is 𝜎2/2 is
3𝜎4/4. Then, one obtains var[𝑇] = 𝜎4/𝑛 under H0, and
var[𝑇] = (𝜎4 + 𝜎4

x )/𝑛 under H1.
Fig. 3 illustrates the PDFs of 𝑇 under both hypotheses, for

an arbitrary high value of 𝑛 and arbitrary values of signal and
noise variances. This figure shows that it is possible to set the
decision threshold somewhere in-between the PDFs so as to
result in an almost perfect spectrum sensing, with 𝑃fa ≈ 0 and
𝑃d ≈ 1 , because 𝜎2 is easily distinguishable from 𝜎2 + 𝜎2

x .
It is also clear from Fig. 3 that the reduction of the signal-

to-noise ratio 𝜎2
x /𝜎2 corresponds to the approximation of the

means of the two PDFs.

Fig. 3. Distributions of the test statistic 𝑇 defined in (8) for a large 𝑛.

In the limit of 𝑛 → ∞, the variances of both PDFs tend
to zero, still allowing the averages of 𝑇 under H0 and H1 to
be discriminated even if 𝜎2

x /𝜎2 → 0, which means SNRw →
0. However, the variance of the noise, 𝜎2, must be perfectly
known, in such a way that the decision threshold is set with a
value infinitesimally greater than such variance, thus making
it possible to distinguish 𝜎2 from 𝜎2 + 𝜎2

x with accuracy.
Now assume that 𝜎2 may not be known perfectly, with

its value having an uncertainty between 𝜎2/𝜌 and 𝜌𝜎2, with

𝜌 ≥ 1. In other words, the estimated variance, �̂�2, to be used
in the computation of the decision threshold lies in-between
𝜎2/𝜌 and 𝜌𝜎2. Such uncertainty is mainly due to the fact
that, in practice, when the noise variance is not known, it is
estimated and, therefore, carries an inherent estimation error.

On the other hand, even if 𝜎2 is accurately determined in
the detector design phase, and the decision threshold is set
using such information, variations in 𝜎2 may occur due to
natural miscalibration among receivers or due to unwanted
signals entering the receiver as if they were noise.

The noise uncertainty has the potential to deteriorate the
spectrum sensing performance, as the estimated noise variance,
�̂�2, when applied in the computation of the energy detector test
statistic, divides the right-side7 of (8), changing the averages
of this statistic under H0 and H1. The worst-case situations
correspond to �̂�2 = 𝜎2/𝜌 under the hypothesis H0 and �̂�2 =

𝜌𝜎2 under H1, cases in which the test statistic has its mean
increased under H0 and decreased under H1, meaning that the
conditional PDFs of 𝑇 become close to each other.

Taking the previous paragraph and Fig. 3 as references,
assume that, in the limit, the signal-to-noise ratio 𝜎2

x /𝜎2

is such that the means of the test statistic under H0 and
H1 are the same. In light of the test statistic given in the
footnote, it follows that 𝜎2/�̂�2 = (𝜎2 + 𝜎2

x )/�̂�2. In this
case, reliable detection is impossible even with 𝑛 → ∞, as
it becomes impossible to set the decision threshold to have
control over the false alarm and detection probabilities. Thus,
the corresponding SNR is the SNR wall, whose value can be
determined by operating with the above-mentioned equality
under the worst-case situations, that is, 𝜎2/�̂�2 = (𝜎2+𝜎2

x )/�̂�2

⇒ 𝜎2/(𝜎2/𝜌) = (𝜎2 + 𝜎2
x )/(𝜌𝜎2) ⇒ 𝜌 = (1 + 𝜎2

x /𝜎2)/𝜌 ⇒
𝜎2

x /𝜎2 = 𝜌2 − 1.
Hence, for the energy detector with uncertainty between

𝜎2/𝜌 and 𝜌𝜎2 in the noise variance, the signal-to-noise ratio
wall is given by

SNRw = 𝜌2 − 1. (10)

Note that if there is no uncertainty in the noise variance,
in which case 𝜌 = 1, it follows that SNRw = 0 = −∞ dB, as
expected.

The method explained in the previous example is intuitively
satisfying to determine the SNR wall, and the reasoning behind
it is formally grounded on a theorem from [22], stating that
the existence of an SNR wall below which every detector is
not capable of meeting useful performance metrics requires
the test statistics to have overlapping medians under the two
hypotheses. In the case of the ED, the medians are equal to
the corresponding means, due to the Gaussian approximation
of the distributions of its test statistic for sufficiently large 𝑛.

In fact, the method of searching for the SNR in which the
medians of the test statistic under both hypotheses become
the same, for sufficiently large number of samples, in thesis

7The same performance deterioration occurs if the noise uncertainty is
applied to the computation of the decision threshold, that is, if the noise
variance is embedded into this threshold. However, didactically it is more
appropriate to consider that the noise variance is moved to the test statistic,
dividing the right-side of (8), that is, 𝑇 = 1

𝑛�̂�2
∑𝑛

𝑖=1 |𝑦𝑖 |
2.
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can be applied to any detector, as indicated by the above-
mentioned theorem. Another indication of this possibility can
be seen in [23], where a coarse empirical version of the method
has been applied to show the existence of such wall for the
maximum-minimum eigenvalue (MME) detector.

IV. SIGNAL AND CHANNEL MODELS

A. Modeling for CSS with data fusion

The model for centralized CSS considered herein assumes 𝑚
spectrum sensors, which suits to 𝑚 SUs equipped with a single
antenna each, or a single SU equipped with 𝑚 antennas. Each
sensor collects 𝑛 complex samples8 of the signal transmitted
by 𝑠 primary transmitters during each sensing interval. In CSS
with data fusion, such samples form, at the fusion center, the
matrix Y ∈ C𝑚×𝑛 given by

Y = HX + V. (11)

Under H0 the PU signal is absent in the sensed band, that is,
Y = V. Under H1 the PU signal is present, that is, Y = HX+V.

In (11), the samples associated to the signals transmitted
by the 𝑠 PUs are arranged in the matrix X ∈ C𝑠×𝑛. In order
to model the envelope fluctuations of modulated and filtered
signals [25], such samples are complex Gaussian random
variables with zero mean and variance dependent on the
average SNR at the input of the SUs receivers. Another
option that can be considered is to adopt complex samples
to model, for example, the signal of a baseband quaternary
phase-shift keying (QPSK) modulation. In this case, it is
common to set the number of samples per QPSK symbol
as a fraction of the total number of samples 𝑛, so that the
temporal correlation between samples of the modulated signal
is controlled. This second option is particularly useful for
analyzing the performance of detection techniques that assume
that there is such temporal correlation to work properly, as is
the case of the family of detectors based on the cooperative
power spectral density split cancellation (CPSC) method [26].

The channel matrix H ∈ C𝑚×𝑠 in (11) is formed by elements
ℎ𝑖, 𝑗 , 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑠 that represent the gains
of the sensing channels between the 𝑗-th PU and the 𝑖-th
SU. The variation of these gains can model the fading effect
produced in the signal due to multipath propagation of the
electromagnetic wave, and other variations related to signal
propagation, such as distance-dependent attenuation and signal
shadowing due to blockage.

In the context of spectrum sensing, channel gains are nor-
mally considered constant during the sensing interval, being
independent and identically distributed among consecutive
sensing realizations. Constant gains mean that the sensing
duration is smaller than the coherence time9 of the sensing

8The adoption of complex samples aligns with the usual quadrature
receiver structure, in which the received signal is converted into baseband
by quadrature carriers (sine and cosine functions). The resulting baseband
signals compose the real and imaginary parts of the sampled signal [24].

9The coherence time is the time interval during which successively ob-
served channel impulse responses exhibit high correlation. Alternatively, the
coherence time is the interval during which the channel practically does not
change its response [11, p. 223].

channel, that is, the fading produced in the channel is con-
sidered slow during the sensing interval. The independence
between successive sensing rounds means that the interval
between them is greater than the channel coherence time.
Both situations are quite plausible in practice. Moreover, the
multiplication between H and X in (11) is meant to represent
a flat fading channel [11, p. 222], meaning that the sensed
signal bandwidth is smaller than the coherence bandwidth10

of the multipath fading channel.
In the present model, the channel matrix is given by

H = GA, (12)

where G ∈ R𝑚×𝑚 controls the powers of the signals received
by the SUs, as detailed a little ahead, and A ∈ C𝑚×𝑠 models
a multipath Ricean fading11.

Matrix A is formed by elements 𝑎𝑖, 𝑗 that are
complex Gaussian random variables with mean√︁
𝜅𝑖, 𝑗/(2𝜅𝑖, 𝑗 + 2) and variance 1/(𝜅𝑖, 𝑗 + 1), that is,

𝑎𝑖, 𝑗 ∼ CN[
√︁
𝜅𝑖, 𝑗/(2𝜅𝑖, 𝑗 + 2), 1/(𝜅𝑖, 𝑗 + 1)], such that

E{|𝑎𝑖, 𝑗 |2} = 1, with 𝜅𝑖, 𝑗 being the Rice factor of the
channel between the 𝑗-th PU and the 𝑖-th SU. The magnitude
of 𝑎𝑖, 𝑗 , i.e. |𝑎𝑖, 𝑗 |, represents the voltage gain of the channel
between the 𝑗-th PU and the 𝑖-th SU. The unitary value
for the second moment of this magnitude, i.e. E{|𝑎𝑖, 𝑗 |2},
is intended to model unit power gain, without losing the
generality of the model, as other power gains could be used.
However, there is no need of using E{|𝑎𝑖, 𝑗 |2} ≠ 1, because
different power gains are already being modeled by G.

The values of the mean 𝜇𝜅 and variance 𝜎2
𝜅 of both the

real and imaginary parts of 𝑎𝑖, 𝑗 are obtained by applying the
equalities: E{|𝑎𝑖, 𝑗 |2} = 2𝜇2

𝜅 + 2𝜎2
𝜅 and 𝜅𝑖, 𝑗 = 𝜇2

𝜅/𝜎2
𝜅 . Alterna-

tively, one can model the Rice fading by applying the mean
𝜇𝜅 only to the real part or to the imaginary part of 𝑎𝑖, 𝑗 . In this
case, the following relations are used: E{|𝑎𝑖, 𝑗 |2} = 𝜇2

𝜅 + 2𝜎2
𝜅

and 𝜅𝑖, 𝑗 = 𝜇2
𝜅/2𝜎2

𝜅 .
In a channel with Ricean fading, the Rice factor is the ratio

of the signal strength received via the dominant propagation
path, for example in a line-of-sight (LoS) condition or specular
reflection, and the power contained in the signals from the
other paths. A larger Rice factor means less variability (less
fading) in the instantaneous received signal strength. A null
Rice factor means the absence of a dominant path, which
corresponds to a channel with Rayleigh fading. In practical
terms, a Rice factor greater than 10 already makes the channel
approximately free of fading.

10The coherence bandwidth is a reference bandwidth value that determines
if the signal undergoes frequency flat fading (approximately the same time-
varying channel gain applied to all frequency components of the signal) or
frequency selective fading (possibly different time-varying channel gains over
the frequency components of the signal). The coherence bandwidth is inversely
proportional to the time dispersion produced by the channel due to the echo-
like effect of the multipath propagation [11, p. 221].

11The Ricean (or Rice-type) fading is a short-term signal level variation that
occurs due to the already-mentioned interfering behavior of signals received
via multiple paths. In this type of fading there is a level dominance of some
path or cluster of paths with respect to the remaining ones, yielding less
signal variations in comparison with the Rayleigh fading. In the latter, such
domination does not exist, i.e. the signals coming from all paths and all
directions have the same average level [11, p. 212].
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In the model described herein, realistic sensing channels
are taken into account by means of adopting realistic Rice
factors 𝜅𝑖, 𝑗 = 10𝐾𝑖, 𝑗/10, being 𝐾𝑖, 𝑗 a Gaussian random
variable with mean 𝜇𝐾 and standard deviation 𝜎𝐾 , in dB,
that is, 𝐾𝑖, 𝑗 ∼ N [𝜇𝐾 , 𝜎2

𝐾
]. According to a study published

in [27], typical values of such mean and standard devia-
tion are 𝜇𝐾 = 1.88 dB and 𝜎𝐾 = 4.13 dB for urban areas,
𝜇𝐾 = 2.41 dB and 𝜎𝐾 = 3.84 dB for suburban areas, and
𝜇𝐾 = 2.63 dB and 𝜎𝐾 = 3.82 dB for rural or open areas.

This model for the Ricean fading is consistent with the fact
that a moving SU experiences, along its path, different situa-
tions in terms of the LoS degree with the primary transmitter.
Urban areas typically unveil more and larger obstacles between
PUs and SUs, with varied characteristics, reducing the mean
Rice factor and increasing its variability, which is measured
by the standard deviation 𝜎𝐾 . On the other hand, rural or
open areas tend to exhibit higher Rice factors, on average,
with lower variability, due to the smaller quantity and lesser
diversity of obstacles typically found in these regions.

When the possibility of inequality between the power levels
of the signals received by the PUs is admitted, the matrix
G ∈ R𝑚×𝑚 present in (12) is given by

G = diag
(√︂ p

𝑝avg

)
, (13)

where p = [𝑝1, 𝑝2, . . . , 𝑝𝑚] is the vector containing the power
levels of the signals received by the SUs, and

𝑝avg =
1
𝑚

𝑚∑︁
𝑖=1

𝑝𝑖 (14)

is the average power of these signals. Since the average power
gain of the channel is unitary by hypothesis and without loss of
generality, also without loss of generality it is considered that
each PU transmits with a constant power 𝑝avg/𝑠. Additionally,
when the received signal powers are time-varying, at each
sensing round the values of 𝑝𝑖 are uniformly distributed in
the range [(1 − 𝜌S)𝑝avg, (1 + 𝜌S)𝑝avg], that is,

𝑝𝑖 ∼ U[(1 − 𝜌S)𝑝avg, (1 + 𝜌S)𝑝avg], (15)

where 𝜌S, 0 ≤ 𝜌S < 1, is the fraction of variation intended for
the received signal power around the average.

The variation of the received signal power levels across the
SUs is consistent with the signal level variations experienced
by moving SUs, mainly due to signal shadowing caused by
obstacles, and distance-dependent signal attenuation.

When taking into account the possibility of temporal vari-
ation of the power levels of the additive white Gaussian
noise (AWGN) in the PUs, the 𝑖-th row of the matrix V ∈
C𝑚×𝑛 in (11) is composed of zero-mean Gaussian random
variables with variance uniformly distributed in the interval
[(1 − 𝜌N)𝜎2

avg, (1 + 𝜌N)𝜎2
avg], that is,

𝜎2
𝑖 ∼ U[(1 − 𝜌N)𝜎2

avg, (1 + 𝜌N)𝜎2
avg] (16)

in each realization of the spectrum sensing, with

𝜎2
avg =

1
𝑚

𝑚∑︁
𝑖=1

𝜎2
𝑖 (17)

denoting the average noise power in the SUs and 𝜌N, 0 ≤
𝜌N < 1 denoting the desired fraction of variation for the noise
power around the average.

Noise power variations can occur because of variations in
the ambient temperatures to which the SUs are subjected, as
well as owed to uncalibrated receiver front-end circuits or
uneven gains and noise figures among low noise amplifiers
(LNAs), or even due to the presence of unwanted signals in
the sensed band, which can be considered as background noise
added to thermal noise.

Finally, in the present model it follows that the average
SNR, in dB, over the SUs, is given by

SNR = 10 log10

(
𝑝avg

𝜎2
avg

)
. (18)

B. Modeling for CSS with decision fusion

In centralized CSS with data fusion, it is known that the 𝑖-th
row of the matrix Y generated in the 𝑖-th SU is sent to the
fusion center, where Y is formed. Subsequently, the samples
of Y are processed to give rise to the desired test statistic,
according to the adopted detection technique. On the other
hand, in centralized CSS with decision fusion, each row of
the matrix Y is operated in each SU to generate a test statistic
to allow the local decision on the occupancy state of the sensed
band. The decisions of all SUs are then transmitted to the FC,
where they are logically combined to yield the global decision.
Note that when the decision fusion takes place, the matrix Y
is not defined as in (11). In this case, the 𝑖-th SU forms its
own test statistic by processing the sample vector

yT
𝑖 = (h𝑖X)T + vT

𝑖 . (19)

where y𝑖 , v𝑖 and h𝑖 correspond to the 𝑖-th row of the matrices
Y, V and H, respectively.

To illustrate the spectrum sensing scenario covered by the
model discussed throughout this section, Fig. 4 highlights the
sensing channel between 𝑠 = 2 primary transmitters and 𝑚 = 3
secondary receivers, as well as the control channel used for
transmitting the decisions made by the secondary receivers to
the fusion center of the secondary network (in the case of
decision fusion), or for transmitting the samples collected by
them, or quantities derived from these samples, to the fusion
center (in the case of data fusion).

Fig. 4. Spectrum sensing scenario covered by the model discussed throughout
this Section IV.
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V. SOME TEST STATISTICS

There are several detection techniques for spectrum sensing,
the most famous among them being the ED, the detection by
matched filtering, the cyclostationary feature detection, and the
eigenvalue-based detection [7], [28], [29].

ED is often adopted as a reference in studies on spectrum
sensing because of its simple implementation and satisfactory
performance in many situations. However, it has the big
disadvantage of requiring knowledge of the noise power at the
input of each receiver so that the appropriate decision threshold
is determined. Furthermore, the ED is optimal only when
samples of the primary signals are uncorrelated over time, as
is the case when considering that such signals are represented
by white noise samples. Additionally, the performance of the
energy detector is affected by the inherent uncertainty about
the noise power that is used in composing its test statistic
or in determining the decision threshold, as discussed in
Section III-C.

Matched filter detection is considered optimal, but it needs
to know information about the waveform of the primary signal
pulses, as well as the channel between PUs and SUs, which
makes it quite complex to implement.

High complexity is also a striking characteristic of the de-
tection by exploring cyclostationary properties of the primary
signal (however, such complexity is lower than in the matched
filter detection), which has an attractive performance, though
inferior to the detection by matched filter. The high complexity
is due to the need of knowing the waveform of the primary
signal so that its cyclostationary properties can be extracted.
These properties allow determining the presence of the primary
signal, since noise is not a cyclostationary process, making it
possible to differentiate it from a cyclostationary process.

Eigenvalue-based detectors can assume different forms in
their test statistics, but they are all constructed from the
eigenvalues of the received signal covariance matrix12. Its
main advantages are high detection reliability and no need
to know the characteristics of the sensed signal. In some
eigenvalue sensing techniques it is also not necessary to know
the noise power in the receiver, in which case such techniques
are considered completely blind.

The main test statistics in eigenvalue spectrum sensing are
the aforementioned GLRT, operating on the eigenvalues of the
received signal covariance matrix, the detection by the ratio
between the maximum and the minimum eigenvalue (MMED),
and the maximum eigenvalue detection (MED), also known
as Roy’s largest root test (RLRT) [25]. The GLRT and the
MMED are blind, while the MED is semi-blind due to the
fact that it needs the knowledge of the noise power, likewise
in the case of the ED.

Among the detectors mentioned above, the remainder of this
section details a little more, as case studies, with the ED, with
the GLRT based on eigenvalues, with the MMED and with
the MED. Later, the article also focuses on other detectors not

12The covariance matrix (or autocovariance matrix, in this case) is R𝑌 =

E{ [Y − E(Y) ] [Y − E(Y) ]† }, but since in the present context we have E(Y) =
0, then the covariance matrix reduces to R𝑌 = E

[
YY†] . In this case it is

usually referred to as the correlation matrix, or autocorrelation matrix.

mentioned yet, which have low complexity and were recently
proposed in the literature.

A. Energy detection and eigenvalue detection

The test statistic of the energy detector in the case of
centralized CSS with data fusion is given by

𝑇ED =

𝑚∑︁
𝑖=1

1
𝜎2
𝑖

𝑛∑︁
𝑗=1

|𝑦𝑖, 𝑗 |2, (20)

where 𝑦𝑖, 𝑗 is the element on the 𝑖-th row and 𝑗-th column of Y.
Notice that, as previously highlighted, the energy detector
needs to know the noise variance 𝜎2

𝑖
in the 𝑖-th SU. This

variance can be incorporated into the test statistic itself, as in
(20), but not into the decision threshold.

The ED test statistic in the case of unequal noise vari-
ances across the SUs sometimes is found in the litera-
ture written with the average of the variances, that is,
𝑇ED = (1/�̄�2)∑𝑚

𝑖=1
∑𝑛
𝑗=1 |𝑦𝑖, 𝑗 |2, where �̄�2 = 1

𝑚

∑𝑚
𝑖=1 𝜎

2
𝑖

. This
form of test statistic is not correct and leads to performance
degradation in comparison with (20). Now, observe that the
average noise variance �̄�2 can be embedded into the test
statistic or into the decision threshold.

The reason for performance degradation of the ED in the
case where the average noise variance �̄�2 is used instead of
the correct variances 𝜎2

𝑖
, 𝑖 = 1, . . . , 𝑚, is that each row of Y

is weighted equally in the formation of the test statistic, but
the true noise power affecting the 𝑖-th row is 𝜎2

𝑖
.

In the literature, the most common situation, although
unrealistic, considers identical noise variances across the SUs,
that is, 𝜎2

1 = 𝜎2
2 = · · · = 𝜎2

𝑚 = 𝜎2, yielding the ED test statistic

𝑇ED =
1
𝜎2

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

|𝑦𝑖, 𝑗 |2. (21)

In centralized eigenvalue-based CSS with data fusion, spec-
tral holes are detected based on the eigenvalues of the co-
variance matrix of the signal received by the 𝑚 secondary
terminals, which, as already mentioned, is defined by R𝑌 =

E
[
YY†] . In practice, R𝑌 is not exactly known, instead being

used its maximum likelihood estimate

R̂𝑌 =
1
𝑛

YY†, (22)

which is referred to as the sample covariance matrix (SCM).
The matrix R̂𝑌 approaches R𝑌 as the number 𝑛 of samples
collected by each SU increases. In the limit, it follows that

R𝑌 = lim
𝑛→∞

(
1
𝑛

YY†
)
. (23)

When analyzing (22) one notices that the elements in the
𝑖-th row and 𝑘-th column of R̂𝑌 , for 𝑖, 𝑘 = 1, 2, . . . , 𝑚, which
are given by

𝑟𝑖,𝑘 =
1
𝑛

𝑛∑︁
𝑗=1

𝑦𝑖, 𝑗 𝑦
∗
𝑘, 𝑗 , (24)

are estimates of the correlation between each of the possible
pairs of the elements in the 𝑚-dimensional random vector
whose realizations are the 𝑛 columns of Y.
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From the Linear Algebra theory, it is known that the
eigenvalues {𝜆𝑖}, 𝑖 = 1, . . . , 𝑚, of a square matrix Z of order
𝑚×𝑚 are the solutions (roots) of the equation det(Z − 𝜆I) = 0,
known as the characteristic equation or characteristic polyno-
mial [17]. However, in practice, eigenvalues are not commonly
computed by solving such an equation, but rather using more
appropriate numerical algorithms, such as those described
in [30], [31].

The eigenvalues of a square matrix Z are the scalars that,
when multiplied by the eigenvectors w of the matrix, produce
vectors in the same direction of the vectors produced by the
linear operation Zw, that is, Zw = 𝜆w.

The eigenvalues and eigenvectors of a matrix have different
interpretations and usages, depending on the application. The
Appendix A demonstrates how the eigenvalues of R𝑌 (or,
in practice, the eigenvalues of R̂𝑌 ) are associated with the
power of the received signal and how they can be used in
the formation of test statistics for spectrum sensing. It is
recommended to study this appendix carefully, as it contains
interesting concepts, and from where can be extracted some
important interpretations.

After the computation of the eigenvalues, it is convenient to
put them in descending order, that is, {𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑚}.
Subsequently, the test statistics of the detectors GLRT, MMED
and MED are respectively formed at the FC according to [25]

𝑇GLRT =
𝜆1

1
𝑚

𝑚∑
𝑖=1
𝜆𝑖

, (25)

𝑇MMED =
𝜆1
𝜆𝑚

, (26)

𝑇MED =
𝜆1

𝜎2 . (27)

Notice that the detectors GLRT and MMED are blind,
whereas the MED is semi-blind due to the need of the noise
variance information. Notice also that if the SUs are subjected
to unequal noise variances, there is no way of plugging these
variances into the MED test statistic, unless in terms of their
average �̄�2, yielding 𝑇MED = 𝜆1/�̄�2. However, the use of �̄�2

induces performance loss, for a reason equivalent to the one
related with the energy detector.

B. Low complexity robust detectors

Other recent test statistics that deserve to be highlighted,
mainly because they are blind, robust and have low compu-
tational complexity, are the locally most powerful invariant
test (LMPIT) [32], the Gerschgorin radii and centers ratio
(GRCR) [19], the Gini index detector (GID) [20], and the
Pietra-Ricci index detector (PRIDe) [21].

When it is said that a technique is robust, depending on
the context it may refer to different interpretations. The most
common interpretation states that a robust detector is one that
has little sensitivity of a performance metric to variations in
system parameters. In the context of spectrum sensing, the de-
tection technique that has its average performance unaffected

(or at least slightly affected) by the temporal variation of the
received signal power, the noise power at the sensor inputs or
both, is considered robust, maintaining fixed the averages of
these parameters.

The test statistic of the LMPIT is given by

𝑇LMPIT =

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

|𝑐𝑖, 𝑗 |2, (28)

where 𝑐𝑖, 𝑗 is the element on the 𝑖-th row and 𝑗-th column of
the matrix C = D−1/2R̂𝑌D−1/2, for 𝑖, 𝑗 = 1, 2, . . . , 𝑚, where D
is the diagonal matrix in which 𝑑𝑖,𝑖 = 𝑟𝑖,𝑖 , with 𝑟𝑖,𝑖 denoting
the elements of the main diagonal of the sample covariance
matrix R̂𝑌 .

It can be noticed that the computation of 𝑇LMPIT is quite
simple, since C is formed by a matrix multiplication, with
the operation D−1/2 being also simple due to the fact that D
is a diagonal matrix, so that D−1/2 is formed simply by the
reciprocal of the square root of the main diagonal elements
of D. The greatest implementation complexity of the LMPIT
detector lies, therefore, in the computation of R̂𝑌 .

In the case of the GRCR, the test statistic is

𝑇GRCR =

𝑚∑
𝑖=1

𝑚∑
𝑗=1, 𝑗≠𝑖

|𝑟𝑖, 𝑗 |

𝑚∑
𝑖=1
𝑟𝑖,𝑖

, (29)

where 𝑟𝑖, 𝑗 is the element on the 𝑖-th row and 𝑗-th column of
of the sample covariance matrix R̂𝑌 .

Finally, the test statistics of the GID and the PRIDe are
given respectively by

𝑇GID =

𝑚2∑
𝑖=1

|𝑟𝑖 |

𝑚2∑
𝑖=1

𝑚2∑
𝑗=1

|𝑟𝑖 − 𝑟 𝑗 |
, (30)

𝑇PRIDe =

𝑚2∑
𝑖=1

|𝑟𝑖 |

𝑚2∑
𝑖=1

|𝑟𝑖 − 𝑟 |
, (31)

where 𝑟𝑖 , for 𝑖 = 1, 2, . . . , 𝑚2, is the 𝑖-th element of the vector r
formed by stacking all columns of R̂𝑌 , and 𝑟 = (1/𝑚2)∑𝑚2

𝑖=1 𝑟𝑖 .
Observe that the calculations of 𝑇GRCR, 𝑇GID and 𝑇PRIDe

are simple, even simpler than the calculation of 𝑇LMPIT,
since for the first three statistics the greatest complexity is
associated with the computation of R̂𝑌 . These four detectors
are, therefore, slightly more complex than the energy detector,
being the blind detectors of less computational complexity
known to date.

It must be kept in mind that, although the complexity of
computing the test statistic 𝑇ED is low if the noise variances
are known in advance, the practical-appealing scenario of
unknown noise variances should be considered instead, a case
in which the complexity associated to the computation of 𝑇ED
increases due to the signal processing operations needed to
estimate the noise variances.
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It is informative to mention that the GRCR detector was re-
cently implemented using a hardware-efficient very large scale
integration (VLSI) architecture and an application-specific
integrated circuit (ASIC) [33], adopting a simplified version
of the test statistic (29). A similar implementation strategy
applied to the PRIDe detector is now in ongoing development.

Finally, it is worth emphasizing that if centralized CSS
with decision fusion is to be implemented, the test statistic
chosen among those discussed herein, or among others, must
be computed in each SU from the samples defined in (19). For
the energy detector, it is enough for each SU to acquire a given
number of samples, which have their squared modules added
and divided by the variance of the Gaussian noise present in
the SU’s input, generating the test statistic 𝑇ED analogously
to (20). To form a local eigenvalue-based test statistic (MED,
MMED or GLRT), or one of those for the LMPIT, GRCR,
GID and PRIDe detectors, the SCM must be built in each SU
through the samples collected by multiple antennas, thus fitting
the signal model given in (11). Alternatively, the SCM can be
computed in each SU by applying a technique called smooth-
ing [34] in the case of using a single antenna (smoothing can
be also applied to the multi-sensor approach).

VI. PRACTICAL ASPECTS OF THE SCM

A. Eigenvalue-equivalent matrix

In practice, in terms of signal processing circuits and even in
some simulation software, a complex quantity is manipulated
by operating with the real values corresponding to the real and
imaginary parts of the quantity. This must be done because the
imaginary value 𝑗 =

√
−1 does not exist in the environment of

certain simulators13, nor in the hardware of real circuits.
This section describes how the eigenvalues of a complex

SCM can be computed from a real matrix, which is an
eigenvalue-equivalent form of the complex SCM. From this
matrix, test statistics based on eigenvalues can be imple-
mented, as is the case of the GLRT, the MED and the MMED
detectors presented in the previous section, as well as other
detectors that make use of the elements of the SCM, such as
the LMPIT, the GRCR, the GID and the PRIDe.

Consider the matrix Y defined in (11), rewritten as

Y = <(Y) + 𝑗=(Y) = YR + 𝑗 YI, (32)

where YR = <(Y) and YI = =(Y) are real matrices formed by
the real and imaginary parts of the elements in Y, respectively.
Hence, the product YY† in (22) can be written as

YY† = (YR + 𝑗 YI) (YR + 𝑗 YI)†

= (YR + 𝑗 YI) (YT
R − 𝑗 YT

I )
= YRYT

R + YIYT
I + 𝑗 YIYT

R − 𝑗YRYT
I ,

(33)

from where can be defined the matrices

S = YRYT
R + YIYT

I , (34)

T = YIYT
R − YRYT

I . (35)

13For example, the imaginary 𝑗 =
√
−1 does not exist in VisSim/Comm,

which is a graphical language for simulation and modeling of end-to-end
communication systems at the signal or physical level [35].

Thus, the SCM R̂𝑌 in (22) can be rewritten as

R̂𝑌 =
1
𝑛

YY†

=
1
𝑛
(S + 𝑗T) .

(36)

Recall that an eigenvector w of a square matrix Z is a non-
zero vector that, when multiplied by Z, produces a vector in
the same direction as w, multiplied by a real or complex scalar
𝜆, that is,

Zw = 𝜆w, (37)

where the scalar 𝜆 is an eigenvalue of Z associated with the
eigenvector w. Applying the definition (37) to the alternative
representation of R̂𝑌 in (36), it follows that

1
𝑛
(S + 𝑗T) (u + 𝑗v) = 1

𝑛
𝜆 (u + 𝑗v) , (38)

where u and v are the real and the imaginary part of any of
the eigenvectors of YY†, respectively, with the variables 𝜆 that
satisfy the equation being the corresponding eigenvalues.

From (38) one can write

Su − Tv + 𝑗Tu + 𝑗Sv = 𝜆u + 𝑗𝜆v,

or as the system of equations

Su − Tv = 𝜆u,

Tu + Sv = 𝜆v,

from where it can be obtained the matrix representation[
S −T
T S

] [
u
v

]
= 𝜆

[
u
v

]
. (39)

Observe that this representation is analogous to the ba-
sic equation for relating eigenvectors and eigenvalues given
in (37). Therefore, the eigenvalues of R̂𝑌 can be obtained from
the eigenvalues of the block matrix formed with the matrices
S and T defined in (34) and (35), that is,

eig
(
R̂𝑌

)
=

1
𝑛

eig
(
YY†

)
=

1
𝑛

eig
( [

S −T
T S

] )
, (40)

where eig(·) are the eigenvalues of the underlying matrix. Note
that the block matrix contains only real values, as desired.
Note also that such matrix has order 2𝑚, that is, it has
2𝑚 eigenvalues, which appear duplicated (with multiplicity
2). The eigenvalue pairs are distinct from each other with
probability 1 due to the random nature of S and T. Therefore,
only the distinct eigenvalues of the block matrix are used,
which, after being multiplied by 1/𝑛, become equal to the
eigenvalues of R̂𝑌 .
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B. Extended sample matrix

Another way to perform the SCM computation, operating
with real matrices, is to calculate

R̂𝑌 ≈ 1
𝑛

YeY†
e , (41)

where Ye is the real matrix generated by concatenating the
matrices formed by the real and imaginary parts of Y, that is,

Ye = [Y𝑅 Y𝐼 ] . (42)

However, it is noteworthy that the approximation given
in (41) is quite crude, that is, the SCM estimated by means
of (41) differs considerably from the maximum likelihood
estimate of R𝑌 obtained via (22).

It is also important to point out that the block matrix formed
from the matrices S and T is not equal to R̂𝑌 , but it has
eigenvalues and eigenvectors equal to those calculated from
R̂𝑌 . Additionally, S and T have the real and imaginary parts of
all elements of R̂𝑌 , which opens the possibility of using these
matrices for computing any SCM-based test statistic. Thus,
the performance of any spectrum sensing technique that uses
R̂𝑌 is the same as the one achieved using S and T. However,
one have to pay attention to the possible need of adapting the
calculations that involve R̂𝑌 to those that involve S and T.

On the other hand, there is no way to predict how the
performance of detectors that make use of the SCM will
behave when this matrix is approximated by means of (41).
Such performance may be better or worse than in the case of
using R̂𝑌 computed according to (22).

VII. PERFORMANCE METRICS

A. Probability of false alarm and probability of detection

The main spectrum sensing performance metrics have al-
ready been briefly covered in Section III, but in this section
they are explored in more depth.

As we already know, the spectrum sensing performance is
commonly measured through the probability of false alarm

𝑃fa = Pr{𝑇 > 𝛾 |H0}, (43)

and the probability of detection

𝑃d = Pr{𝑇 > 𝛾 |H1}, (44)

where Pr{·} denotes the probability of occurrence of the
underlying event, 𝑇 is the test statistic (or decision variable)
from the adopted detection technique, and 𝛾 is the decision
threshold.

In the more general context of binary hypothesis test, the
probability of false alarm is also referred to as false positive
rate, or type I error rate. The probability of detection is
sometimes called true positive rate and the complement of
it is called missed detection rate, or type II error rate.

Fig. 5 illustrates the PDFs of a hypothetical test statistic 𝑇 ,
conditioned on the occupancy state of the sensed band, as well
as the areas that define the probabilities 𝑃fa and 𝑃d, which are
given by

𝑃fa =

∫ ∞

𝛾

𝑓𝑇 {𝑡 |H0}𝑑𝑡, (45)

𝑃d =

∫ ∞

𝛾

𝑓𝑇 {𝑡 |H1}𝑑𝑡. (46)

Fig. 5. Definitions of 𝑃fa and 𝑃d from the conditional PDFs (respectively
conditioned on H0 and H1) of a hypothetical test statistic 𝑇 .

The probabilities 𝑃fa and 𝑃d can also be calculated from the
cumulative distribution functions (CDFs) of the test statistic,
yielding

𝑃fa = 1 − 𝐹𝑇 (𝛾 |H0), (47)

𝑃d = 1 − 𝐹𝑇 (𝛾 |H1), (48)

where 𝐹𝑇 (𝛾 |H0) and 𝐹𝑇 (𝛾 |H1) are the CDFs of 𝑇 under
H0 and H1, respectively, in 𝑡 = 𝛾, that is, 𝐹𝑇 (𝛾 |H𝑖) =

𝐹𝑇 (𝑡 |H𝑖) |𝑡=𝛾 , for 𝑖 = 1 and 𝑖 = 2.
The decision threshold 𝛾 can also be calculated from the

CDF of the test statistic under the hypothesis H0, having as
input the desired 𝑃fa, that is,

𝛾 = 𝐹−1
𝑇 (1 − 𝑃fa |H0), (49)

where 𝐹−1
𝑇

(·) is the inverse function of 𝐹𝑇 (𝑡 |H0) for 𝑡 = 𝛾,
that is, 𝛾 is the value of 𝑡 for which 𝐹𝑇 (𝑡 |H0) = 1 − 𝑃fa.

It is desirable to have a high value of 𝑃d and a low
value of 𝑃fa, which is justified as follows. The detection of
primary signals with high probability translates into reduced
interference in the primary network caused by an opportunistic
transmission made in an occupied frequency band wrongly
detected as unoccupied. On the other hand, a low probability
of false alarm corresponds to a small probability of considering
a band that is in fact unoccupied as occupied, increasing the
chances of opportunistic use of the spectrum, which in turn
increases the data throughput in the secondary network.

Unfortunately, as can be seen from Fig. 5, the goals of
increasing 𝑃d and reducing 𝑃fa are concurrent (or competitors),
meaning that increasing the first (by lowering the decision
threshold) also causes the second to increase; and the reduction
of the second (by increasing the decision threshold) also
causes the reduction of the first. In practice, a trade-off
typically governed by a standardization document is adopted.
For example, the IEEE 802.22 standard [10] requires 𝑃d ≥ 0.9
and 𝑃fa ≤ 0.1.

It is also usual to specify a constant target false alarm
probability, better known as constant false alarm rate (CFAR),
ensuring that the detection probability (or detection rate) stays
above of a minimum acceptable value, also recommended by
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a standard. For example, one can set 𝑃fa = 0.1 and configure
the system parameters so that, in the worst case situation in
terms of SNR, 𝑃d ≥ 0.9 to comply with the IEEE 802.22
standard.

B. The ROC curve

The probabilities 𝑃fa and 𝑃d are typically expressed through
the receiver operating characteristic (ROC) curve, in which 𝑃d
is expressed as a function of 𝑃fa according to the value of the
decision threshold 𝛾, as illustrated by14 Fig. 6.

Each point on a ROC curve is equally optimal in comparison
to any other point, as it establishes the intrinsic trade-off
resulting from the attempt of optimizing competing objectives,
that is, minimize 𝑃fa and maximize 𝑃d.

Each point on a ROC curve is associated with a decision
threshold value 𝛾, whose range of variation depends on the
implemented test statistic. Usually such range corresponds to
the union of the supports of both PDFs, beyond which they
become practically zero. As an example, in Fig. 5 the range
goes from ≈ 0.05 to ≈ 0.6.

Fig. 6. Examples of ROC curves.

In Fig. 6, curve ‘a’ shows the worst performance, followed
by curve ‘b’ and finally curve ‘c’. Notice this by choosing 𝑃fa
at some value other than 0 and 1 and verifying that, for the
chosen value, 𝑃d is smaller for the curve ‘a’ than for curve
‘b’, which in turn has 𝑃d smaller than in the case of curve ‘c’.

Increasing the SNR is the most commonly adopted alter-
native for improving the performance of a given spectrum
sensing technique. This improvement can also come from
changes in other systemic parameters, such as an increase in
the number of samples collected by the SUs or an increase in
the number of SUs in cooperation, as discussed in Section IV.
Different sensing techniques can also perform differently un-
der the same system conditions, as discussed in Section V.

It is noteworthy that it is not always feasible or possible
to change certain system parameters or even the sensing

14It is not uncommon to find ROC curves expressing the missed
detection probability, which is the complement of the detection prob-
ability (𝑃md = 1 − 𝑃d), as a function of 𝑃fa . The 𝑃md is the prob-
ability of not detecting the primary signal as present, if in fact it
is present. There are many other concepts, interpretations and ap-
plications of ROC curves in different contexts. See, for example,
https://en.wikipedia.org/wiki/Receiver operating characteristic.

technique during the operation (on the fly), due to an intrinsic
design limitation. What is commonly done is to preset these
parameters in order to meet the target performance in critical
situations, for example in terms of the lowest acceptable
SNR. Thus, the increase of the SNR is indeed the most
commonly adopted alternative for improving the spectrum
sensing performance.

Still referring to Fig. 6, a random decision on the occupancy
status of the sensed band would lead to a point along the line
identified as the ‘line of no-discrimination’. A ROC curve
below this line corresponds to useless performance, except
when it is known that the ROC is there, in which case
the performance would revert to useful just by reversing the
decisions made.

C. The AUC and the decision error probability

Other spectrum sensing performance metrics are the area
under the ROC curve (AUC) and the decision error probability.
The former, as the name implies, is the area under a ROC
curve. Its useful value is in-between 0.5 (corresponding to a
ROC on the line of no-discrimination) and 1 (corresponding
to the optimal performance with 𝑃fa = 0 and 𝑃d = 1). The
decision error probability is calculated by the weighted average
of the false alarm and missed detection probabilities, that is,

𝑃error = 𝑃fa𝑃H0 + (1 − 𝑃d)𝑃H1 , (50)

where 𝑃H1 and 𝑃H0 are the probabilities that the primary
signals are active and inactive, respectively. The first term
of (50) accounts the error probability associated with false
alarm events, and the second term accounts for the error
probability associated with missed detection events.

Both the AUC and the 𝑃error are particularly useful metrics
when it is desired to combine 𝑃fa and 𝑃d in a single metric,
which is attractive, for instance: i) when a ROC curve cross
another one, a situation that makes it difficult to establish
performance comparisons; ii) when it is desired to reduce the
amount of performance measurement values reported in an
article or other equivalent scientific document, due to space
constraints; iii) when looking for easier visualization and fast
interpretation of results.

Example 3: Fig. 7 presents ROC curves obtained by Monte
Carlo computer simulation of a CSS system with data fusion,
for some of the detectors described in Section V, considering
𝑠 = 1 primary signal having independent and zero mean
complex Gaussian samples, 𝑚 = 6 cooperating secondary
receivers, 𝑛 = 50 samples gathered by each secondary receiver,
and complex AWGN sensing channel with SNR = −10 dB.
Notice that, in this situation, which does not represent a
general rule, the MED is the one that achieves the best
performance, followed by the ED, the GLRT and MMED, in
this order. Different models for the sensing channel, for the
primary signal or for the noise, as well as different signal
power and noise levels at the SU inputs, or the temporal
variation of these quantities, may change both the absolute
and the relative performance of these and any other sensing
technique [19]–[21]. In alternative terms, it is expected that
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different detectors perform unequally under a given system
setup, and it is also expected that the variation of a given
parameter produces different degrees of performance variation
in different detectors, since their test statistics operate the
received signal differently from each other. Moreover, the
intrinsic characteristics of the system hardware contribute with
such non-standard behavior of different detectors [36].

Fig. 7. ROC curves for the detectors MED, ED, GLRT (eigenvalu-based)
and MMED, for 𝑠 = 1, 𝑚 = 6, 𝑛 = 50 and SNR = −10 dB over the AWGN
sensing channel.

The Matlab code used to generate the curves presented in
Fig. 7 is available in [37]. The code is also capable of assessing
the performance of several other detectors under the system
model described in this tutorial, and is thoroughly commented
to help the reader understand each line, as well as make
modifications if desired.

It is already known that a point on a ROC curve, such as
those curves shown in Fig. 7, is associated with a pair 𝑃fa
and 𝑃d, in this case determined by each decision threshold
value in the FC (recall that this figure refers to CSS with
data fusion). Each pair of 𝑃fa and 𝑃d leads to a decision
error probability 𝑃error, which is calculated by means of (50)
as a function of the probabilities 𝑃H1 and 𝑃H0 . Although
each pair of 𝑃fa and 𝑃d on a ROC curve is equally optimal
relative to the other pairs, it is natural to conjecture that a
pair yielding the minimum value of 𝑃error for each ROC curve
may exist. If there is such a minimum 𝑃error, the pair 𝑃fa
and 𝑃d associated with it now becomes global optimal and
no longer equally optimal to the others. Note that this is a
normal situation, because the performance metric has changed
from 𝑃fa and 𝑃d to 𝑃error, hence changing the spectrum
sensing optimality analysis criterion: there are no longer two
competing objectives (minimize 𝑃fa and maximize 𝑃d), but a
single objective (minimize 𝑃 error).

D. Performance metrics for CSS with decision fusion
The probabilities 𝑃fa and 𝑃d discussed so far are global per-

formance metrics achieved at the FC when using centralized
cooperative spectrum sensing with data fusion. In the case of
centralized cooperative spectrum sensing with decision fusion,
there are also local performance metrics, which refer to the
sensing performance in each of the SUs in cooperation.

Assume, for simplicity, that the sensing performances
achieved by the SUs are equal to each other, and that the
corresponding local performance metrics are denoted by 𝑃faSU
and 𝑃dSU. Additionally, consider that transmissions through
the control channels from the SUs to the FC are subject to
bit errors that occur with probability 𝑃b. Hence, decisions
made by the SUs, when subjected to errors in these channels,
are interpreted by the FC as if they were associated with
equivalent [29] local performance metrics 𝑃′

faSU and 𝑃′
dSU,

which are given by

𝑃′
faSU = 𝑃faSU (1 − 𝑃b) + 𝑃b (1 − 𝑃faSU), (51)

𝑃′
dSU = 𝑃dSU (1 − 𝑃b) + 𝑃b (1 − 𝑃dSU). (52)

Assuming that the primary transmitter is inactive, the first of
the two terms added in (51) is the probability of maintaining
a decision made in favor of H1 (which is equivalent to
maintaining a false positive), and the second is the probability
of changing a decision made in favor of H0 (which is
equivalent to reversing a false negative). Now considering that
the primary transmitter is active, the first of the terms added
in (52) is the probability of maintaining a decision made in
favor of H1 (which is equivalent to maintaining a PU signal
detection), and the second is the probability of changing a
decision made in favor of H0 (which is equivalent to reversing
a missed detection).

The bit error probability 𝑃b present in (51) and (52) depends
on the modulation used for the transmissions over the reporting
(control) channels and on the characteristics of these channels.
For example, for binary phase-shift keying (BPSK) modulation
with coherent detection over the AWGN channel [11], it
follows that the bit error probability is

𝑃b =
1
2

erfc

(√︂
𝐸b

𝑁0

)
, (53)

where erfc(𝑥) = 2√
𝜋

∫ ∞
𝑥
𝑒−𝑧

2
𝑑𝑧 is the complementary error

function, 𝐸b is the average energy per bit, measured in joules,
at the receiver side, and 𝑁0 is the power spectral density
of the AWGN noise generated at the receiver, measured in
watts/hertz.

On the other hand, in a channel with flat and slow Rayleigh
fading and with unitary average power gain, the average bit
error probability for BPSK modulation with coherent detec-
tion [11] is given by

𝑃b =
1
2

(
1 −

√︄
𝐸b/𝑁0

1 + 𝐸b/𝑁0

)
. (54)

The global performance (at the FC) of CSS with fusion of
uncorrelated decisions, under the 𝑘-out-of-𝑚 rule, considering
the possibility of errors in the report channel, is related to the
local performances (at the SUs) by means of

𝑃fa =

𝑚∑︁
𝑖=𝑘

(
𝑚

𝑖

)
(𝑃′

faSU)
𝑖 (1 − 𝑃′

faSU)
𝑚−𝑖 , (55)

𝑃d =

𝑚∑︁
𝑖=𝑘

(
𝑚

𝑖

)
(𝑃′

dSU)
𝑖 (1 − 𝑃′

dSU)
𝑚−𝑖 , (56)
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where
(𝑚
𝑖

)
= 𝑚!

(𝑚−𝑖)!𝑖! is the binomial coefficient.
Expressions (55) and (56) can be interpreted as the proba-

bilities of occurrence of 𝑘 or more successes in 𝑚 Bernoulli
trials, taking into account that the number of successes in a
set of uncorrelated Bernoulli trials has a binomial distribution.
Thus, 𝑃fa in (55) is the probability that 𝑘 or more SUs produce
a false alarm and 𝑃d in (56) is the probability that 𝑘 or more
SUs detect the primary signal [29].

It is important to call the reader’s attention to the fact that
expressions (55) and (56) assume that the local performance
metrics are the same for all SUs. In case of possibly unequal
performances [38], the global probabilities of false alarm and
detection under the 𝑘-out-of-𝑚 rule are respectively given by

𝑃fa =

𝑚∑︁
ℓ=𝑘

|Dℓ |∑︁
𝑗=1

𝑚∏
𝑖=1

𝑃′
faSU

𝐷ℓ𝑗,𝑖

𝑖
(1 − 𝑃′

faSU𝑖)
1−𝐷ℓ𝑗,𝑖 , (57)

𝑃d =

𝑚∑︁
ℓ=𝑘

|Dℓ |∑︁
𝑗=1

𝑚∏
𝑖=1

𝑃′
dSU

𝐷ℓ𝑗,𝑖

𝑖
(1 − 𝑃′

dSU𝑖)
1−𝐷ℓ𝑗,𝑖 , (58)

where |Dℓ | =
(𝑚
ℓ

)
= 𝑚!

(𝑚−ℓ)!ℓ! is the cardinality (number of
elements) of the set Dℓ . This set is defined as follows: Let
𝑑𝑖 = 1 or 𝑑𝑖 = 0 denote the decision made by the 𝑖-th SU in
favor of H1 or H0, respectively. The set Dℓ contains the binary
𝑚-uples that satisfy

∑𝑚
𝑖=1 𝑑𝑖 = ℓ. Thus, Dℓ can be interpreted

as a matrix of order
(𝑚
ℓ

)
×𝑚, and 𝐷ℓ 𝑗,𝑖 ∈ {0, 1} is the element

sitting on the 𝑗-th row and 𝑖-th column of this matrix.
Obviously, (57) and (58) specialize to (55) and (56) if the

local performance metrics are the same for all SUs, that is,
𝑃′

faSU𝑖 = 𝑃
′
faSU and 𝑃′

dSU𝑖 = 𝑃
′
dSU for all SUs.

The decision error probability defined in (50) also applies
to the decision fusion, in this case serving to calculate local
or global 𝑃error.

Example 4: A possible difficulty may arise when applying
(57) and (58), owed mainly to a misunderstanding about the
formation of the set Dℓ . This example aims at exemplifying
this formation. Assume 𝑘 = 2 and 𝑚 = 3 in the 𝑘-out-of-𝑚
rule. The set with all possible decisions of the 𝑚 = 3 SUs has
the 2𝑚 = 23 = 8 triplets

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

.

In this case, according to the leftmost summation in (57)
and (58), ℓ goes from 𝑘 = 2 to 𝑚 = 3, yielding 𝑚 − 𝑘 + 1 =

3 − 2 + 1 = 2 sets Dℓ , namely D2 and D3, which are

D2 =

[
0 1 1
1 0 1
1 1 0

]
,

D3 = [ 1 1 1 ] .

Notice that the sum of the elements in each row of D2 is
ℓ = 2, and the sum of the elements in the single row of D3 is
ℓ = 3, which is in agreement with

∑𝑚
𝑖=1 𝑑𝑖 = ℓ.

Thus, the cardinality of D2 is
(𝑚
ℓ

)
=

(3
2
)

= 3 and the
cardinality of D3 is

(𝑚
ℓ

)
=

(3
3
)
= 1. The elements 𝐷ℓ 𝑗,𝑖 of

these sets are: 𝐷21,1 = 0, 𝐷21,2 = 1, 𝐷21,3 = 1, 𝐷22,1 = 1,
𝐷22,2 = 0, 𝐷22,3 = 1, 𝐷23,1 = 1, 𝐷23,2 = 1, and 𝐷23,3 = 0 in the
case of D2. In the case of D3, the elements 𝐷ℓ 𝑗,𝑖 are 𝐷31,1 = 1,
𝐷31,2 = 1, and 𝐷31,3 = 1.

Example 5: Fig. 8 illustrates the relationship between local
and global performances of centralized CSS with fusion of
uncorrelated decisions, under the 𝑘-out-of-𝑚 rule, for 𝑚 = 5
SUs, 𝑘 = 1 (OR rule), 𝑘 = 3 (majority voting rule, MAJ)
and 𝑘 = 5 (AND rule), for 𝑃b = 0 (𝐸b/𝑁0 = ∞ dB on the
Rayleigh or AWGN channel) and 𝑃b = 0.05 (𝐸b/𝑁0 = 6.25
dB on the Rayleigh channel, 𝐸b/𝑁0 = 1.29 dB on the AWGN
channel). The ROC identified as ‘local ROC’ in this figure
has been arbitrarily placed in its position, and represents equal
performances of the SUs. The other ROCs were generated by
applying the expressions (51), (52), (55) and (56).

Fig. 8. Illustration of the relation between local and global performance
metrics when the 𝑘-out-of-𝑚 rule is applied, for 𝑚 = 5, 𝑘 = 1 (OR rule),
𝑘 = 3 (MAJ rule) and 𝑘 = 5 (AND rule), in the error-free (𝑃b = 0) situation,
and with errors (𝑃b = 0.05) caused in the report channel transmissions.

In the absence of errors in the report channel, it can be
observed in Fig. 8 that the cooperation under the OR and
MAJ rules significantly improves the sensing performance
with respect to what would be obtained with a single SU,
whereas the AND rule only produces a small improvement.

When errors in the report channel exist, with 𝑃b = 0.05,
only the MAJ rule produces cooperation gains in the whole
extension of its ROC. The OR and AND rules have their
performances strongly affected by errors in the report channel,
and the OR rule still produces cooperation gains in some
regions of its ROC, while the AND rule does not produce
cooperation gains in practically any region of its ROC.

It can be also noticed in Fig. 8 that the occurrence of errors
in the report channel produces a saturation or bounding [39]
effect in the ROCs of the OR and AND rules. This saturation
bounding to irreducible levels of 𝑃fa in the OR rule, and
insurmountable levels of 𝑃d in the AND rule. Bounding occurs
due to the fact that errors in the report channel never allow that,
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in the OR rule, the global probability of false alarm is zeroed,
even if the decisions of the SUs are always in favor of the
H0 hypothesis. Similarly, in the AND rule, the errors do not
allow the global probability of detection to be unitary even if
the SUs’ decisions are always in favor of H1. It is informative
to mention that all ROC saturation endpoints coincide with the
no-discrimination line, in which 𝑃d = 𝑃fa.

It is also important to emphasize that the relative perfor-
mances of the OR, MAJ and AND rules are not always
those shown in Fig. 8, being influenced in different ways
for different system parameters and different system models
and SNRs for the sensing and report channels. It is also
interesting to conclude from this figure that the MAJ rule
can be less sensitive to errors in the report channel, yielding
performances very close to those obtained in the error-free
reporting transmission situation, even with 𝑃b = 0.05. Observe
that the value of 𝑃b = 0.05 is much higher than those bit error
probabilities usually found in conventional digital transmission
systems, demonstrating that the decision fusion process for
spectrum sensing purposes is much less sensitive to bit errors
than the conventional digital communication process.

An important concept associated with any decision process
refers to the fact that its accuracy also depends on the way
the input information is presented to it. Basically, there is
the possibility of operating with soft information (such as the
sample values sent by the SUs in the context of spectrum
sensing) or hard information (such as the decisions sent by the
SUs). Soft information is naturally richer, since, for example,
its polarity can be associated with a hard decision and its
absolute value can in some way represent the reliability of
that hard decision. For example, the farther from the decision
threshold the value of a received sample is, the more assertive
the corresponding decision becomes. On the other hand, a
sample value close to the threshold may be associated with
a higher influence of noise or other factors that degrade the
sensing performance. From what is exposed in this paragraph,
it can be inferred that data fusion has the potential to provide
more accuracy in spectrum sensing than decision fusion.

A simple experiment can be made to demonstrate that data
fusion can outperform decision fusion in spectrum sensing,
modifying the simulation code available in [37]. The steps that
must be followed are: i) Enable only the energy detector and
set 𝑠 = 1 and 𝑚 = 1, AWGN sensing channel, and no signal
and noise power variation. ii) Adjust the simulation parameters
(for example, the SNR, the number of samples or both) so that
the ROC is located as close as possible to the local ROC shown
in Fig. 8. iii) Make 𝑚 = 5 and check the position of the global
ROC: If it sits above the best ROC with decision fusion, it is
demonstrated that data fusion can deliver better performance
than decision fusion. The implementation of this experiment
is left to the reader as an exercise.

Example 6: Aiming at further exploring the concepts about
the error probabilities involved in the decision fusion scenario,
Fig. 9 presents bit error probabilities and minimum decision
error probabilities obtained by computational search, taking

the MAJ rule as an example. The figure shows five curves,
described as follows:

1) The minimum local 𝑃error is the minimum value of the
decision error probability defined in (50), associated
with the performance of the SUs. It is constant, as it
is measured in the SUs and, therefore, it is not linked
to bit errors in the report channel.

2) The equivalent minimum local 𝑃error is the minimum
value of the decision error probability of the SUs ‘from
the point of view’ of the FC, due to errors induced by the
report channel. It is influenced by the SNR of the report
channel, tending to the constant value of the previous
item as the SNR grows. This 𝑃error is just an indirect
measure, not actually occurring in the system.

3) The minimum error-free global 𝑃error is the minimum
value of the error probability of a global decision made
in the FC on the occupation state of the sensed band,
considering that there are no errors in the transmission
of the decisions from the SUs to the FC.

4) The minimum global 𝑃error with errors is the minimum
value of the global decision error probability, taking into
account the errors in the transmissions from the SUs to
the FC. Notice that it tends to the 𝑃error of the previous
item as the report channel’s SNR increases.

5) 𝑃b for BPSK over Rayleigh fading is the bit error
probability defined in (54).

Fig. 9. Bit error probability and minimum local and global decision error
probabilities under the 𝑘-out-of-𝑚 rule, for 𝑘 = 3 and 𝑚 = 5 (MAJ rule), as
functions of the SNR in the reporting Rayleigh fading channels.

In addition to exemplifying how the minimum decision
error probability is influenced by the SNR of the report
channel, Fig. 9 shows the cooperation gain seen from another
viewpoint. Note that the lowest value of local 𝑃error is not able
to reach 0.1, a value that would correspond, for example, to
the target values 𝑃d = 0.9 and 𝑃fa = 0.1, if 𝑃H1 = 𝑃H0 = 0.5
in (50). By the effect of cooperation, the global values of 𝑃error
reach values even smaller than 0.1. Also note that the global
value of 𝑃error = 0.1 is reached for an SNR around 1 dB,
for which the bit error probability of the BPSK modulation is
approximately 0.14. In other words, it is again observed that it
is possible to achieve target sensing performances even under
very high bit error rates (or very low SNRs) in the control
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channels, compared to those bit error rates typically required
in conventional digital communication systems.

VIII. DATABASE-DRIVEN INTERNET OF THINGS-ENABLED
DYNAMIC SPECTRUM ACCESS

It has been already mentioned that the opportunistic use of
temporarily free radio-frequency bands constitutes the main
driver of the dynamic spectrum access (DSA) policy, which is
undeniably crucial to solve the problem of spectrum scarcity.

To carry out the DSA, two main approaches, combined or
not, can be adopted. In the first, a spectrum sensing tech-
nique detects unused frequency bands before the opportunistic
dynamic access by the SUs. In the second approach, the
SUs access a spectrum occupation database, where a list of
available channels is stored. This list is constantly updated, for
example with the aid of spectrum sensing, coverage prediction,
or both. Regardless of the adopted approach, as soon as a
channel becomes vacant, it is desirable to promptly detect such
an event in order to increase the chances of shared spectrum
usage. On the other hand, as soon as the primary user re-
establishes the occupation of a certain band, the secondary
network must be able to detect the event and vacate the
band before harmful interference is caused to the primary
network. Hence, not only the accuracy regarding the spectrum
occupancy state is important, but also the agility in detecting
occupancy state changes.

The conventional CSS approach, the one that applies dis-
tributed detection and centralized decision, as illustrated in
Fig. 10. This approach can be improved if the secondary
network has access to a spectrum occupation database to refine
the global decision compared to the one that would be made
only using spectrum sensing.

Fig. 10. Conventional CSS, not assisted by database information.

In the conventional approach, it is noteworthy that SU
terminals, which can be as simple as sensor nodes or sophisti-
cated as smartphones, need to be equipped with the spectrum
sensing capability, which increases complexity and energy
consumption of such devices, potentially increasing their cost
and physical dimensions, and may also reduce their portability.

A DSA architecture enabled by a database fed by a support
IoT network is proposed in [40], and is illustrated in Fig. 11, in
a simplistic didactic version. In this architecture, the spectrum
sensing task is shifted from the SU terminals to special IoT
devices with spectrum sensing functions, hereafter named
spectrum sensing IoT (SSIoT) devices. An SSIoT device,
whose block diagram is depicted in Fig. 12, is formed by

connecting an ordinary IoT device to a spectrum sensing (SS)
module, through a standard wired or wireless interface. Notice
in Fig. 11 that not all IoT devices form an SSIoT.

Fig. 11. Database-driven Internet of things-enabled dynamic spectrum access
architecture.

The IoT device and the SS module have their own antennas,
as their characteristics, mainly the bandwidth and the central
operating frequency, are distinct in practice. For example, the
IoT network operates in a frequency range, while spectrum
sensing is performed in the secondary network’s operating
frequency range.

Fig. 12. SSIoT device: IoT device equipped with a spectrum sensing module.

The SSIoT devices monitor the RF spectrum and transmit
the sensing information to an IoT aggregator, which also
collects IoT-related data from a cluster of IoT devices that
are conveniently close to each other. The existence of the
aggregator is not mandatory, but it can remove specific tasks
from the terminals, mainly those related to the security of
IoT and SSIoT devices, making these devices simpler and
protecting them from malicious attacks.

The aggregators communicate with the IoT network, which
can be part of an Internet network or is simply connected to the
Internet. The spectrum occupancy database regularly accesses
this network to update the list of available channels for
DSA. This database can also process current and past primary
network activities to provide spectrum usage predictions and
other relevant information that can improve the efficacy of the
search for vacant bands.

The dynamic access to vacant bands is carried out through
constant monitoring of the spectrum occupation database, what
can be easily made during regular control communication
between the secondary terminals and their base station.

It is worth mentioning that, in the present DSA architecture,
the information from the spectrum sensing process carried out
by the network of SSIoTs is used to update the spectrum oc-
cupation database, allowing dynamic access by the secondary
network without the terminals of this network being equipped
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with spectrum sensing circuits. However, SSIoTs can also be
used to monitor the spectrum used by the IoT network itself,
helping its terminals to access bands that are less congested
or free from strong interference, for example.

IX. RESEARCH CHALLENGES AND OPPORTUNITIES
REGARDING SPECTRUM SENSING

There are numerous challenges and, therefore, many re-
search opportunities on spectrum sensing in general, and on
centralized cooperative spectrum sensing in particular, the
latter being the focus of this tutorial. Such challenges can be
classified according to the steps of the process: the sensing
itself, the fusion of the sensing information, the global decision
at the fusion center, and the subsequent access to the spectrum.
Listed in the next subsections are some of the research
challenges in the context of spectrum sensing, regarding the
physical layer aspects.

A. Sensing channel

Regarding the challenges inherent to the sensing channel,
possible research could seek to develop or adapt models that
mimic this channel as accurate as possible. The models that are
welcome are those viable from the point of view of mathemati-
cal treatment and the implementation of simulations, or at least
form the point of view of the implementation of simulations.
As an example, the sensing channel models range from the
simplest AWGN channel, passing through channels with flat,
selective, slow or fast fading, with typical distributions like
Rayleigh and Rice, or more elaborate ones like the generalized
distributions, culminating with the addition of effects like the
shadowing by obstacles, the attenuation by distance or other
propagation mechanisms, and the correlation between fading,
shadowing, or both, affecting the signals received by different
secondary terminals.

B. Detection technique

With regard to local (in CSS with decision fusion) or
centralized (in CSS with data fusion) detection technique,
the challenges become even more relevant. There are several
criteria for designing detectors for spectrum sensing purposes,
but often the mathematical treatment associated with the
design becomes an insurmountable obstacle because it is not
possible to take into account all situations in terms of the
sensing channel, the characteristics of the primary signal, the
knowledge of the noise variance, the imprecision of parameters
that must be estimated and the temporal variation of noise and
signal levels, just to name a few examples.

As they do not consider all systemic variables and are de-
veloped under different criteria, local and global sensing tech-
niques end up presenting huge variations in performance under
varied circumstances, which leaves room for the development
of new techniques that are suitable for typical applications in
more specific scenarios. In addition, the various test statistics
present different degrees of theoretical analysis complexity,
mainly in obtaining and manipulating the probability density
functions associated with them, under both test hypotheses, so

that expressions for calculating the decision threshold and the
detection and false alarm probabilities are derived.

There are also opportunities for developing detectors based
on some existing discrepancy metric adopted in a context
different of the spectrum sensing, an alternative that has been
proved to work properly, for instance in the design of the
detectors GRCR [19], GID [20] and PRIDe [21].

C. Report channel

It is very common in research efforts dealing with central-
ized CSS to consider that the sensing information, whether de-
cisions, samples or quantities derived from these samples, are
sent to the fusion center through orthogonal and degradation-
free report channel, so that such information is available there
as it was generated at the SUs in cooperation.

The main challenges concerning the report channels con-
sist of considering them as not perfect and non-orthogonal,
allowing the impact on the global sensing performance to be
investigated, at the same time seeking to increase the efficiency
in the use of the small available bandwidth, preferably with
high energy efficiency.

The influence of correlated decisions or correlated channel
imperfections is also an important scenario to consider in
the report channel. The imperfections of the report channel
are similar to those associated with the sensing channel and,
therefore, the models of both may be similar. However, it is
important to remember that the roles of these channels in
the spectrum sensing process as a whole are very different,
allowing to conclude that the impacts of similar imperfections
in both may be very different. Hence, the need of treating them
with equal importance in research is of paramount relevance.

Added to the effects of channel imperfections are those
caused by imperfections and signal processing tasks performed
in the receivers, especially in the case of data fusion, before
the samples are sent to the fusion center. Nonlinearities,
quantization errors and automatic gain control effects, noise
figure and filtering are examples [41].

Also with regard to errors induced by the report channel, an
important and challenging topic of investigation that has been
little explored in the technical literature is the development
of error-correcting codes or the simple application of existing
codes to protect the transmissions to the fusion center. Such
transmissions differ significantly from those carried out in
conventional communication systems, as the bit error rates
supported in the report channel are considerably higher than
those typically aimed at in conventional systems. Furthermore,
transmissions under extremely low SNR are expected, aiming
at energy savings. Such regimes direct the use of error-
correcting codes with high correction capability, which, in
general, have long codewords. However, it is important to
recall that the interval reserved for reporting transmissions
is significantly limited, preventing long codes from being
applied. On the other hand, the way in which transmissions
are carried out in the report channel prevents the use of error
control techniques via retransmissions, or at least significantly
limits the degree of freedom in the design of such techniques,
mainly due to the aforementioned time restrictions.
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Digital communication over report channels under ex-
tremely low signal-to-noise ratios also motivates another topic
of research associated with the one discussed in the previous
paragraph, which is the study of the Information Theory
applied to the reporting transmissions scenario, not only to
address the limits of communication, but also to support the
design of appropriate error-correcting codes.

X. SUMMARY AND FINAL REMARKS

This tutorial presented basic concepts, fundamentals and
state-of-the-art techniques related to spectrum sensing. The
topics covered included concepts regarding the forms of
spectrum sensing and basic fundamentals on detection theory,
modern cooperative spectrum sensing techniques and research
challenges, mathematical models for the signal and the sensing
channel, the signal-to-noise ratio wall, practical issues regard-
ing signal processing tasks and performance metrics. Several
examples were also given throughout the text to illustrate
some theoretical content and help the reader to understand
more complex concepts. It has been also addressed a dynamic
spectrum access framework that makes use of Internet of
things devices equipped with spectrum sensing modules as
a means to feed spectrum occupation databases to drive the
dynamic spectrum access.

An attempt has been made to confer to this tutorial a signif-
icant difference from existing tutorials or surveys on spectrum
sensing, thinking its content as a short course material capable
of giving to the reader a first contact with the subject without
the need of complex mathematical background. It is the
author’s hope that the material presented in this tutorial, along
with the list of references, will be able to prepare the reader
for further studies in this exciting area.

APPENDIX A

This appendix demonstrates that the total normalized (with
respect to a 1 Ω load) power of the signal received at the
fusion center is the sum of the eigenvalues of the received
signal covariance matrix, and that it is possible to carry out
the primary signal detection by comparing eigenvalues or
quantities obtained from them.

In the CSS model considered in this tutorial, the sample
matrix received by the FC is Y = HX + V. The received
signal covariance matrix is R𝑌 = E

[
YY†] = HR𝑋H† + R𝑉 ,

where R𝑋 is the covariance matrix of the transmitted signal.
Using the property tr(A + B) = tr(A) + tr(B), it follows
that tr(R𝑌 ) = tr(HR𝑋H†) + tr(R𝑉 ). Using the property
tr(A) =

∑
𝑗 𝜆A 𝑗 , being {𝜆A 𝑗

} the eigenvalues of A, then
tr(R𝑌 ) =

∑𝑚
𝑗=1 𝜆Ry 𝑗

, where {𝜆Ry 𝑗
} are the eigenvalues of R𝑌 .

Let y 𝑗 be the 𝑗-th row of the matrix Y. Thus,
tr(R𝑌 ) =

∑𝑚
𝑗=1 E[y 𝑗y

†
𝑗
] =

∑𝑚
𝑗=1 E[

∑𝑛
𝑖=1 |𝑦 𝑗 ,𝑖 |

2] =∑𝑚
𝑗=1 lim

𝑛 →∞
[ 1
𝑛

∑𝑛
𝑖=1 |𝑦 𝑗 ,𝑖 |

2], which is the total average power
of the signal received by the FC, which can be denoted by
𝑃RX. Since tr(R𝑌 ) =

∑𝑚
𝑗=1 𝜆Ry 𝑗

, it can be concluded that∑𝑚
𝑗=1 𝜆Ry 𝑗

= 𝑃RX, that is, the sum of the eigenvalues of
the received signal covariance matrix is equal to the average
normalized power of this signal.

Since
∑𝑚
𝑗=1 𝜆V 𝑗 = tr(R𝑉 ) = 𝑚𝜎2, with 𝑚𝜎2 being the total

noise power at the SUs, it follows that
∑𝑚
𝑗=1 𝜆V 𝑗 = 𝑃noise.

Taking into account that 𝑃RX = 𝑃signal + 𝑃noise and that
tr(R𝑌 ) = tr(HR𝑋H†) + tr(R𝑉 ), additionally it can be con-
cluded that tr(HR𝑋H†) is the power 𝑃signal associated with
the signal part present in Y.

Now the analysis turns to what happens in terms of the sum
of the eigenvalues. For square matrices A and B, it is known
that, with exceptions, eig(A+B) ≠ eig(A) + eig(B). However,
in the present context it is true that eig(R𝑌 ) = eig(HR𝑋H† +
R𝑉 ) = eig(HR𝑋H†) + eig(R𝑉 ), as demonstrated below.

The set of eigenvalues 𝜆Ry is the solution of
the characteristic equation det(R𝑌 − 𝜆RyI) = 0. But
det(HR𝑋H† + R𝑉 − 𝜆RyI) = det(HR𝑋H† + 𝜎2I − 𝜆RyI)
= det[HR𝑋H† − (𝜆Ry − 𝜎2)I], that is, (𝜆Ry − 𝜎2)
are the eigenvalues of HR𝑋H†. Then, it follows that
eig(HR𝑋H† + R𝑉 ) = eig(HR𝑋H†) + eig(R𝑉 ), since the
following equality must hold:

𝜆Ry︸︷︷︸
eig(HR𝑋H†+R𝑉 )

= (𝜆Ry − 𝜎2)︸       ︷︷       ︸
eig(HR𝑋H†)

+ 𝜎2︸︷︷︸
eig(R𝑉 )

.

Observe that, in the absence of the PU signal, the eigen-
values of R𝑌 are equal to one another and, for example,
𝜆1/𝜆𝑚 = 1. When the PU signal is present, then 𝜆1/𝜆𝑚 > 1.
With this simple example, it can be seen that it is possible to
use the eigenvalues of the received signal covariance matrix as
a means to detect the presence of the PU in the sensed band.

Complementarily, the eigenvalues of R𝑌 also contain infor-
mation about the number of transmitters (whose most general
and usual term is number of sources), as the number of
nonzero eigenvalues in eig(HR𝑋H†) is equal to the number
of transmitters. This fact is used to estimate the number
of signal sources from the eigenvalues of R𝑌 : the smallest
(𝑚 − 𝑠) eigenvalues are equal to 𝜎2, where 𝑠 is the number
of sources [42]. However, in practice, such an estimate is
performed through R̂𝑌 and not through R𝑌 . As a consequence,
the classification of the eigenvalues of R̂𝑌 into two groups with
the largest 𝑠 and the smallest (𝑚 − 𝑠) is therefore not simple,
constituting the hardest difficulty for estimating the number of
signal sources in practice.
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