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A New O-RAN Compression Approach for
Improved Performance on Uplink Signals
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Abstract—This work evaluates the O-RAN compression meth-
ods specified for in-phase and quadrature (IQ) data compression,
which are applied to transport the frequency domain representa-
tion of the radio signals. The methods were evaluated in terms of
computational cost and quantization-noise ratio vs IQ bit-width.
It was found that the O-RAN compression algorithm with the
best performance highly depends on the signal power. Thus, one
of the contributions of this work is a compression method that
selects the best method for each physical resource block (PRB)
instead of using a single compression method for a set of PRBs
as in the current O-RAN specification. A complete description
of how to implement the proposed method meeting the O-RAN
standard is also provided in the paper. The selection of the best
method for each PRB is particularly important for the uplink
signals, where the power of the received signals can be very
different depending on the UE channel.

Index Terms—C-RAN, O-RAN, Fronthaul, Compression

I. INTRODUCTION

MOBILE operators are under constant pressure to in-
crease their capacity while constraining cost and pro-

viding competitive mobile services. Radio Access Networks
(RANs) are facing a rapid increase in traffic demand, due
to increasing number of devices connected to the network,
and higher quality of service requested by the users [1]. In
this context, Cloud Radio Access Network (C-RAN) is an
enabling technology for future mobile networks, promoting
centralized processing, resource sharing, and energy-efficient
infrastructure [2].

In C-RAN, a baseband unit (BBU) is responsible for most
of the baseband processing, and the remote radio unit (RRU)
is responsible for the radio frequency (RF) processing and
can implement some baseband processing. The radio signal is
transported between the BBU and RRU over the fronthaul [3].
The fronthaul link usually uses a high data rate to meet the
radio signal transport requirements. Many solutions have been
proposed to decrease the fronthaul data rate, such as functional
split and IQ data compression [4].
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There are different approaches in the C-RAN architecture
for fronthaul signal compression, such as: point-to-point com-
pression, distributed source coding, Compressive Sensing (CS)
based compression, and spatial filtering [5]. In addition, the
different functional splits allow new approaches to decrease
the fronthaul traffic [6], [7].

The O-RAN alliance provides an open specification for
implementing the fronthaul and IQ data compression [8],
[9]. More specifically, the O-RAN alliance conducts studies
on eight working groups (WG), each focusing on different
areas, to make the new RAN concept possible [10], [11].
For example, the "WG4 - The Open Fronthaul Interfaces
Workgroup" defines standardization for fronthaul interfaces
between BBU and radio equipment. The WG4 works on
providing specifications and standards for a secure fronthaul,
allowing interoperability between multi-vendor [2], [10], [11].

In this context, this manuscript will focus on the evaluation
of the compression methods specified in WG4 for uplink
signals: Block Floating Point (BFP), Block Scaling (BS), and
`-Law [8]. Based on that knowledge, the main contributions
of this work are the elucidation of the O-RAN compression
methods and the evaluation of their performance and compu-
tational cost.

Furthermore, we found that depending on the signal power,
the performance of the compression methods can vary sig-
nificantly. The O-RAN standard specifies that various PRBs
should be compressed with a single compression method.
Therefore, the PRBs with different power levels may have
different levels of signal-to-quantization-noise ratio (SQNR)
after compression. In this context, another contribution of
this work is a framework that allows using the compres-
sion method with the best SQNR for each PRB instead of
using a single compression method for various PRBs. The
manuscript presents how the current O-RAN specification
could apply the proposed method. This is particularly relevant
for uplink signals, where the RRU might receive signals from
user equipments (UEs) with very distinct power levels. The
studies were carried out considering a Long Term Evolution
(LTE) baseband uplink receiver chain. The performance of
the compression methods and the proposed approaches are
analyzed for different scenarios.

In summary, the main contributions of the paper are:

• We evaluate the performance of the O-RAN compression
methods: block floating point (BFP), Block Scaling (BS),
and `-law;

• We provide an overview of the computational cost for
each compression method;
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• We simulate different scenarios in an uplink LTE receiver
chain;

• We propose a new compression approach that presents
better performance when compared to each method indi-
vidually. Indeed, the proposed implementation provided
in this paper meets the O-RAN specification.

The remaining of this manuscript is structured as follows.
Section II shows some details of the O-RAN specification
and the compression methods specified for uplink signals.
Section III shows the simulation results and the computational
cost analysis of the methods. Section IV presents a new
compression approach that is compliant with the O-RAN
specification. Section V shows the performance of the pro-
posed method considering an uplink receiver chain, including
scenarios with two users that have different levels of signal
attenuation. Finally, Section VI concludes the paper.

II. O-RAN COMPRESSION METHODS FOR UPLINK
SIGNALS

The O-RAN specification defines several compression meth-
ods to transport the IQ samples over the fronthaul efficiently.
The compression methods are combined with functional split
7.2x [8], similar to 3GPP functional split 7.2 [4]. The RRU
implements a few physical baseband processing in the uplink,
such as cyclic prefix removal and fast-fourier transform (FFT).
Then, the output of the FFT can be compressed before
transporting on fronthaul.

The compression methods process each PRB individually.
A single PRB is a block composed of 12 complex samples
corresponding to 12 subcarriers in an orthogonal frequency
division multiplexing (OFDM) symbol, where the real and
imaginary parts of the IQ sample are represented with 16-
bit signed integers. For instance, an OFDM symbol with 1200
subcarriers is composed of 100 PRBs. In the current O-RAN
specification, a given number of PRBs are compressed with
the same compression method in each cell section, as specified
in its IQ data frame format [8, Section 6.3].

After compression, each complex sample can be represented
with 2 to 16 bits. The number of bits used to represent each
complex sample component, real or imaginary, is denoted
as iqWidth. Thus, each complex sample is represented with
2×iqWidth. The inputs of the compression methods are the
iqWidth and the original PRB composed of 12 IQ samples. The
output is composed of the compressed IQ data and eight bits
of side information that depend on the compression method,
per the O-RAN specification [8]. Not all methods need to use
the entire side information field. In the following sections, the
operation of each method is presented in more detail.

A. Block Floating Point Compression

In the BFP compression method, each complex sample of
a PRB is converted to floating-point, with real and imaginary
components represented by a mantissa, an exponent, and a
sign. A single exponent is shared among all elements of the
PRB. In addition, the bits of the mantissa are reduced to a
target value so that the compressed data uses fewer bits than
the original PRB.

Algorithm 1 Block Floating Point Compression Algorithm
Input: PRB [1, . . . , 12], iqWidth
Output: cPRB [1, . . . , 12], exponent

1: maxValue← max(max( |Re(PRB) |),max( |Im(PRB) |))
2: mostSignificantBit←

⌊
log2 (maxValue) + 1

⌋
3: exponent← max(mostSignificantBit − iqWidth, 0)
4: for i← 1 to 12 do
5: reShiftRight← Re(PRB[i]) × 2−exponent

6: imShiftRight← Im(PRB[i]) × 2−exponent

7: Re(cPRB[i]) ← reShiftRight{iqWidth:1}
8: Im(cPRB[i]) ← imShiftRight{iqWidth:1}
9: end for

Algorithm 2 Block Floating Point Decompression Algorithm
Input: cPRB [1, . . . , 12], exponent
Output: dPRB [1, . . . , 12]

1: for i← 1 to 12 do
2: Re(dPRB[i]) ← Re(cPRB[i]) × 2exponent

3: Im(dPRB[i]) ← Im(cPRB[i]) × 2exponent

4: end for

Algorithm 1 shows a detailed description of the BFP com-
pression method [8]. The first step is to find the maximum
absolute value among all real and imaginary samples of
the PRB (line 1). Then, an exponent is calculated for this
maximum number (lines 2 and 3). Next, the same exponent is
used to represent all other numbers of the PRB as floating
point. Finally, the bits of the sign and the mantissa are
represented with the target compression number of bits. The
multiplication operations on lines 5 and 6 mean bitwise shift
right by exponent value, and lines 7 and 8 get the compression
word least significant bits (LSBs) of the processed information.

The output of the BFP method is composed of the com-
pressed PRB (cPRB) and an exponent as side information.
The cPRB is a vector containing 12 compressed IQ samples,
each formed by a sign and mantissa. Then, the cPRB and
the exponent are sent to the decoder, which performs the
reverse operations. The decompressed PRB (dPRB) can be
recovered with a bitwise shift left, as shown in lines 2 and 3
in Algorithm 2.

A remarkable feature of the BFP compression is that it can
be lossless if the exponent is zero. This happens when the
amplitude of the elements in the original PRB is relatively
low or compression word length is relatively high.

B. Block Scaling Compression

The BS compression method scales all complex samples
of a PRB and quantizes the scaled samples, as shown in
Algorithm 3. The first step is to find the maximum absolute
value among all real and imaginary components of the PRB,
which we will refer to hereinafter as maxValue. The second
step is to quantize the maxValue (line 2). A lookup table (LUT)
can efficiently implement the quantization with two outputs:
the scalerValueComp (the quantized version of 1/maxValue)
and scaler8Bits representing the scaler with 8 bits.
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Algorithm 3 Block Scaling Compression Algorithm
Input: PRB [1, . . . , 12], iqWidth
Output: cPRB [1, . . . , 12], scaler8Bits

1: maxValue← max(max( |Re(PRB) |),max( |Im(PRB) |))
2: [scalerValueComp, scaler8Bits] ← LUT(maxValue)
3: for i← 1 to 12 do
4: reScaledSamples← Re(PRB[i]) × scalerValueComp
5: imScaledSamples← Im(PRB[i]) × scalerValueComp
6: Re(cPRB[i]) ← quantize(reScaledSamples,iqWidth)
7: Im(cPRB[i]) ← quantize(imScaledSamples,iqWidth)
8: end for

Algorithm 4 Block Scaling Decompression Algorithm
Input: cPRB [1, . . . , 12], scaler8Bits
Output: dPRB [1, . . . , 12]

1: scalerValueDecomp← LUT(scaler8Bits)
2: for i← 1 to 12 do
3: Re(dPRB[i]) ← Re(cPRB[i]) × scalerValueDecomp
4: Im(dPRB[i]) ← Im(cPRB[i]) × scalerValueDecomp
5: end for

The following steps in Algorithm 3 are: to scale all IQ
symbols in the PRB (lines 4 and 5) and to quantize the scaled
version of the PRB (lines 6 and 7). Each real and imaginary
part is quantized with iqWidth bits. Since scalerValueComp ≈
1/maxValue, all scaled values are between -1 and 1. Thus
a single quantization range of [−1, 1] can be used in all
scenarios.

After the quantization, the compressed data is transported
over the fronthaul and the scaler8Bits as side information. In
the decoder, all steps are reversed, as shown in Algorithm 4.
In decompression, the first step is to recover the scaling value
that will bring back the values to the original levels. This
operation can also be performed with a look-up table, where
scalerValueDec = 1/scalerValueComp. Then, all values are
multiplied by the scaling value, and an approximation of the
original values is recovered.

C. `-Law Compression

In O-RAN, the `-Law method implements companding to
decrease the bitwidth of the compressed samples efficiently.
Companding is a nonlinear scaling method, where small input
values are more amplified than higher input values before
quantization. The ` value consists of the `-Law compression
parameter, and the O-RAN specification uses ` = 8 [8].

The O-RAN implementation of the `-Law method is shown
in Algorithm 5. The input is, again, a single PRB. The
first operation is to find the maximum absolute value for
each real and imaginary in all resource elements (line 1).
Next, a variable called compshift is calculated (line 2) with
Algorithm 7, and is then used to scale the absolute value of the
components (lines 6 and 7) before companding (lines 8 and 9).
Algorithm 8 shows how the compand operations are defined
on O-RAN, and its output is represented with iqWidth−1 bits.
Finally, the components of the compressed PRB are composed
of the sign bit and the output of the compand method, which

Algorithm 5 `-Law Compression Algorithm
Input: PRB [1, . . . , 12], iqWidth
Output: cPRB [1, . . . , 12], compShift

1: maxValue← max(max( |Re(PRB) |),max( |Im(PRB) |))
2: compshift← compshiftCalculation(maxValue)
3: for i← 1 to 12 do
4: reSignSamples← sign(Re(PRB[i]))
5: imSignSamples← sign(Im(PRB[i]))
6: reAbssll← |Re(PRB[i]) |<<compshift
7: imAbssll← |Im(PRB[i]) |<<compshift
8: reComp← compand(reAbssll,iqWidth)
9: imComp← compand(imAbssll,iqWidth)

10: Re(cPRB[i]) ← [reSignSamples,reComp]
11: Im(cPRB[i]) ← [imSignSamples,imComp]
12: end for

Algorithm 6 `-Law Decompression Algorithm
Input: cPRB [1, . . . , 12], iqWidth, compShift
Output: dPRB [1, . . . , 12]

1: for i← 1 to 12 do
2: [reSignSamples, reComp] ← Re(cPRB[i])
3: [imSignSamples, imComp] ← Im(cPRB[i])
4: reDecomp← decompand(reComp,iqWidth)
5: imDecomp← decompand(imComp,iqWidth)
6: reSignedDecomp← [reSignSamples, reDecomp]
7: imSignedDecomp← [imSignSamples, imDecomp]
8: Re(dPRB[i]) ← reSignedDecomp>>compshift
9: Im(dPRB[𝑖]) ← imSignedDecomp>>compshift

10: end for

are packed in a value of iqWidth bits. All the compressed PRB
are transported with the side-information compshift, which can
be represented using only 3 bits.

The decoder recovers an estimate of the original PRB by
performing all reverse operations, as shown in Algorithm 6.
First, the decompression core is the decompand block (lines
4 and 5) described in Algorithm 9. Then, a version of the
decompand value with sign is recovered on lines 6 and 7, and
finally, the real and imaginary numbers are shifted right by
compshift bits.

III. PERFORMANCE AND COMPUTATIONAL COST OF THE
O-RAN COMPRESSION METHODS

In this section, we evaluate the performance of each method
in terms of the SQNR (Signal-to-Quantization Noise Ratio)
and the number of bits to represent the complex samples.
The SQNR consists of the ratio between the signal power
in the input and the distortion inserted by the compression
method, i.e., SQNR= E

[
|PRB|2

]
/E

[
|dPRB − PRB|2

]
, where

PRB is the compressor input and dPRB is the output of
the decompression. Thus, the SQNR evaluates only the per-
formance of the compression methods, i.e., other distortions
such as quantization noise from analog-to-digital conversion
and thermal noise in the receiver chain are not yet taken
into account. The SQNR is calculated for different values of
iqWidth, ranging from 1 to 8 bits.
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Algorithm 7 Compshift Calculation Algorithm
Input: maxValue
Output: compshift
if 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒 ≥ 214 then

compshift← 0
else if 28 ≤ 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒 < 214 then

compshift← 15 −
⌊
log2 (maxValue) + 1

⌋
else

compshift← 7
end if

Algorithm 8 Compand Algorithm
Input: abssll,iqWidth
Output: comp

1: W← iqWidth,A← abssll
2: B← 215−W,C← 216−W,E← 217−W

3: D← 2W−3,F← 2W−2

4: if A > 32767 then ⊲ Saturation A value
5: A← 32767
6: end if
7: if A ≤ 8192 then ⊲ Companding calculation
8: comp← A/𝐵
9: else if A ≤ 16384 then

10: comp← A/𝐶 + 𝐷
11: else
12: comp← A/𝐸 + 𝐹
13: end if

Algorithm 9 Decompand Algorithm
Input: absdec,iqWidth
Output: decomp

1: W← iqWidth,A← absdec
2: B← 215−W,C← 216−W,E← 217−W

3: D← 2W−3,F← 2W−2,G← 2W−1 − 1
4: for i← 1 to 12 do
5: if A > G then ⊲ Saturation A value
6: A← G
7: end if
8: if A ≤ F then ⊲ Decompanding calculation
9: decomp← A × 𝐵

10: else if A ≤ F + D then
11: decomp← A × 𝐶 − 8192
12: else
13: decomp← A × 𝐸 − 32768
14: end if
15: end for

For the performance analysis of the methods, PRBs were
created with an LTE signal processing chain with random
data. It is worth mentioning that the uplink signals that are
compressed have not passed any channel equalization, and
therefore are under the effects of attenuation and noise. The
original real and imaginary parts are 16-bit signed integers,
i.e., they assume values in the range [−215, +215 − 1].

As expected, the performance of the methods varies with
iqWidth as well as input power or standard deviation 𝜎 of the
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Figure 1: Performance of the methods for different values of
iqWidth and standard deviation of the real and imaginary parts
of the input signal.

signal that is being compressed. Fig. 1 shows the SQNR versus
𝜎 for different values of iqWidth. For each value of iqWidth
there are three curves, one for each compression method.

Fig. 1 shows that the SQNR increases approximately by 6
dB for each 1 bit increase in iqWidth. For instance, when
considering 𝜎 = 103, the SQNR of the BS compression
increases from 2.1 dB to 45.5 dB in steps of 6.2 dB when
iqWidth varies from 1 to 8 bits. However, when 𝜎 is low, the
performance of the BS compression decreases with 𝜎 when
iqWidth ≤ 7 bits. This is more noticeable for 𝜎 ≤ 102.

Similar behavior is obtained with the `-Law compression,
where the performance decreases with 𝜎. On the other hand,
the performance of the BFP compression does not degrade as
𝜎 decreases. In fact, for some values of iqWidth, the SQNR
of the BFP compression increases as 𝜎 decreases, as shown
in Fig. 1 for iqWidth = 6, 7, and 8 bits.

Based on the results of Fig. 1, the method with the best
SQNR for a given iqWidth depends on 𝜎. For example, when
𝜎 ≤ 40, the BFP compression consistently achieves the best
SQNR for each iqWidth, and for 𝜎 > 102, BS compression
achieves the best SQNR for iqWidth > 1 bit.

In fact, the best method depends on the elements of each
PRB. For example, it is clear that when the exponent in
Algorithm 1 is 0, BFP compression becomes lossless, and it
would be the best compression method.

SQNR is an important metric to evaluate the distortion that
the compression methods insert in the signal. However, during
the implementation of the compression methods on an RRU,
it is necessary to take into consideration their computational
complexity. Therefore, the methods were also evaluated in
terms of the computational cost by counting the number of
operations required by each compression method to encode
and decode one PRB.

The computed operations are: getting sign bit (sign), cal-
culating the magnitude of the number, conditional testing,
multiplication, addition, subtraction, bit shift, search on LUT,
and quantization. The number of operations for each method
is summarized in Tables I and II for compression and decom-
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Table I: Computational cost for compression per PRB.

Block Floating Point Block Scaling `-Law
Sign 0 0 24
Absolute Value 24 24 24
Conditional 40 23 127
Multiplication 0 24 0
Addition 1 0 24
Subtraction 1 0 5
Bit Shift 39 0 53
LUT 0 1 0
Quantization 0 24 0

Table II: Computational cost for decompression per PRB.

Block Floating Point Block Scaling `-Law
Conditional 0 0 96
Multiplication 0 24 0
Subtraction 0 0 31
Bit Shift 24 0 54
LUT 0 1 0
Dequantization 0 24 0

pression, respectively. However, it should be noted that the
exact number of operations can be different depending on the
implementation, hardware, and instruction set available.

Based on Table I, Block Floating Point and Block Scal-
ing perform similar number of operations, while `-Law has
the highest computational cost. On the decompression side,
Table II shows that the methods with the lowest number of
operations are Block Floating Point, Block Scaling, and `-
Law, respectively.

Details about the results of Tables I and II are discussed in
the following paragraphs. First, we evaluate the BFP method.
The 24 absolute value operations shown in Table I are used in
line 1 of Algorithm 1 to calculate the magnitude of the real
and imaginary components of the PRBs. Then, 23 conditional
operations are used to find the maxValue. On line 2 of
Algorithm 1, log2 and floor operations can be implemented
by evaluating where the most significant bit 1 is located, so
that it could be implemented with bit shift and conditional
operations. Thus, the worst case would lead to 15 bit shift
operations and 16 conditional bit checking, considering that
the original information is represented with 16 bits. On line 3,
the exponent is found with one addition, one subtraction, and
one conditional operation. Finally, lines 5 and 6 perform two
bit shift operations for each complex PRB, so the loop uses
a total of 24 bit shift operations. Note that the multiplication
by a power of 2 can be implemented with bit shift operations.
In the BFP decompression, only 24 bit shifts are necessary, 2
for each complex cPRB, as shown in Algorithm 2.

Next, we analyze the required operations of Block Scaling
compression. Line 1 of Algorithm 3 shows that the method
also calculates a maxValue and requires the same operations
as in the BFP method: 24 absolute values and 23 conditional
operations. After that, a table look-up 1 is done in line 2.
Finally, in the loop from line 3 to line 8 of Algorithm 3, 24
multiplications are performed, and 24 numbers are quantized.

1The LUT function can be implemented with different approaches, such as
binary search or memory read. The former requires log2 𝑁out comparisons on
average and the latter requires a memory with 𝑁in words, where 𝑁out is the
number of possible output values and 𝑁in is the number of possible inputs,
considering the integer input.

In the decompression, a LUT operation is again used to
calculate the scalerValueDecomp, followed by the loop that
executes 24 dequantization and 24 multiplications on the
cPRBs to recover estimation of the original PRB (dPRB), as
shown in Algorithm 4.

In the compression, the `-Law method also needs the
maxValue, as done in BFP and BS, which requires 24 absolute
values and 23 conditional operations. Then, in line 2 of
Algorithm 5 compshift is found with 8 conditional operations,
as shown in Algorithm 7. In the next step, 24 sign operations
are performed on lines 4 and 5, followed by 24 bit shift
operations on lines 6 and 7. The output of the bit shift left
block passes through the compand block in lines 8 and 9,
which requires 5 subtractions and 5 bit shift left to calculate
lines 2 and 3 in Algorithm 8. Additionally, the 12 real
samples and 12 imaginary samples require in the compand: 96
conditional operations, 24 additions, and 24 bit shift operations
(the division in the compand can be implemented with bit shift,
since the denominators B, C, and E are powers of two). In total,
the number of operations required in the `-Law compression
is shown in Table I.

The `-Law decompression requires fewer operations than
compression, as shown in Table II. The sign and absolute
values of the compressed samples can be obtained with bit
read from the compressed bitstream, so there is no need to
implement a math operation to recover them. The decompand
shown in Algorithm 9 and in lines 4 and 5 of Algorithm 6
requires 7 subtractions and 6 bit shift operations to calculate
B, C, D, E, F, and G. Counting for all sample components,
the decompand would require up to 96 conditional operations,
considering Algorithm 9. Additionally, the loop can use up
to 24 bit shifts left to implement the multiplications and 24
subtractions.

IV. NEW COMPRESSION APPROACH

Because SQNR is influenced by input power, the best
method for each PRB may be different, depending on its
resource elements.

In order to take advantage of the best method in most
cases, this work proposes choosing the best method in each
PRB instead of selecting a single compression method for
many PRBs as proposed in the O-RAN specification [8].
This approach can improve SQNR regardless of the signal
levels, which might not be possible when a single compression
method is used for a group of PRBs.

The proposed approach is illustrated in Fig. 2. The encoder
compresses the PRB with the best method and sends to the
decoder the following information: the compressed IQ samples
(IQ comp), the side information of the compression method,
and the method that was used to compress the IQ samples.
Thus, two new operations are necessary: i) the encoder needs
to inform the decoder which compression method was used
for each PRB, and ii) the encoder needs to select which
compression method would provide the best SQNR. Both
issues are treated in the following sections.
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Figure 2: Overview of the compression structure with the
choice of the best method.

Current O-RAN Specification
Side information udCompParam

Compression method name minimum maximum number of bits B7 B6 B5 B4 B3 B2 B1 B0
Block Floating Point exponent 0 15 4 bits reserved

Block Scaling scaler 0 255 8 bits
u-Law compshift 0 7 3 bits compBitWidth

Proposed Frame Format
Side information udCompParam

Compression method name minimum maximum number of bits B7 B6 B5 B4 B3 B2 B1 B0
Block Floating Point exponent 0 15 4 bits 0 0 0 0

Block Scaling scaler 0 127 7 bits 1
u-Law compshift 0 7 3 bits 0 1 0 0 0

Figure 3: Current udCompParam format [8] and proposed
format.

A. Frame format for each compressed PRB

The O-RAN IQ frame format has two fields related to the
compression methods: udCompHdr and udCompParam. The
former specifies the compression method to be used for a
group of PRBs and the corresponding iqWidth. The latter is
an 8-bit field that specifies the side information for each PRB,
which the decoder uses to recover the original representation
of the PRBs [8], [9].

As shown in Section II, the side-information is the exponent,
compShift, and scaler8bits for BFP, `-Law, and BS methods,
respectively. The exponent is a number between 0 and 15,
and the compShift is a value between 0 and 7, so the former
requires 4 bits and the latter needs 3 bits, respectively. The
side information for BS uses all 8 bits reserved to it.

In order to compress each PRB independently, we pro-
pose to inform the used compression method as second side
information. This can be sent along with the original side
information of each method. In this case, the scaler8bits
should be reduced to 7 bits, and no changes are required
for the exponent and compShift. The difference in the frame
format between the current specification and the proposed
frame format is shown in Fig. 3, where the filled cells represent
the bits used to inform exponent, scaler8bits, or compShift.

The proposed format bits B7 and B6 of udCompParam
represent which method was used to compress the PRB. In
this case, B7 and B6 equal to 00, 1X, and 01 correspond to
BFP, BS, and `-Law, respectively, where "X" means do not
care.

There are two differences in the new format: i) the comp-
BitWidth is not transported in the new format for `-Law
compression because it is equivalent to the iqWidth that is
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Figure 4: Accuracy and number of nodes in the decision tree
versus depth.

already informed on udCompHdr field [8]; and ii) the side
information for BS method is reduced from 8 to 7 bits. The
latter can decrease the performance of the BS method in some
cases, but it is not so significant when we select the best
method for each PRB, as will be shown later.

B. Selection of the best method

Based on the proposed implementation shown in Fig. 2,
the encoder should determine the method with the lowest
distortion. Three approaches are investigated below: minimum
mean squared error (MMSE), decision tree, and heuristic based
on Dynamic Range (DR).

The MMSE approach consists of encoding and decoding
the PRBs with all methods, calculating the mean squared
error (MSE) between PRB and dPRB for each method, and
selecting the method that produces the lowest MSE. Naturally,
this brute force method requires a high computational cost, but
it gives an upper bound for the SQNR with the three available
compression methods.

On the other hand, the decision tree consists of using param-
eters to estimate the best compression method. In this case, the
parameters considered estimating the best method are iqWidth,
maxValue, and dynamic range. The maxValue is the maximum
absolute value among all real and imaginary components of
the PRB, and the dynamic range is the difference between the
maxValue and the minimum absolute value among all real and
imaginary components of the PRB.

A predictor based on classification and regression tree
(CART) algorithm [12] is evaluated based on the following
predictor variables: iqWidth, maxValue and dynamic range. In
this case, a dataset is created with the same signals described in
Section III, where the variables are defined for each PRB, and
the best method is found with the MMSE approach described
before. Then, the dataset is used to train the tree with the
CART algorithm.

One critical parameter for the performance of a decision
tree is the tree depth, i.e., the maximum distance between the
root and a leaf node. Based on empirical data, the performance
of the decision tree has a strong correlation to its depth. The
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Figure 5: Binary decision tree with depth equal to 8, after using
CART algorithm and applying pruning. The numbers 1,2, and
3 on the leafs indicate that the predicted best compression
method is BFP, BS and `-Law, respectively.

decision network generated for the data evaluation showed a
maximum depth equal to 76. However, Fig. 4 shows that, for
the same network, the best results in terms of accuracy were
achieved around the depth values of 25 to 35. The interval
between 25 and 35 showed better performance because, for
low values, the tree does not have enough parameters to be
well trained, and, for high values, overfitting occurs in the
network.

The method used to decrease the tree depth is known
as pruning. This tool allows a decrease in the number of
operations used on the network, contributing to or hindering
the decision tree’s performance depending on the generated
network. Fig. 5 shows the result of the decision tree generated
for the respective dataset with a depth equal to 8.

The heuristic DR consists of a decision tree method based
on dynamic range. To elaborate this method, we verify that
all O-RAN compression methods use the maxValue, and it is
a natural choice to estimate the best compression method with
low complexity. For instance, depending on its value, the BFP
method can compress the PRB without losses, as described
in Section II-A. Then, inspired by the behavior of the BFP
method, the same signals used in Section III were simulated
with all compression methods for iqWidth=6 bits, and the
probability of the methods show the lowest MSE was evaluated
for a dynamic range between maxValue and minimum absolute
value. In this case, the BS method was simulated with a side-
information of 7 bits to use a compression method for each
PRB, as described in Section IV-A. Then, the heuristic DR
method was developed based on the calculated probabilities.
Fig. 6 shows the probability results, and Fig. 7 shows the
flowchart tree, which represents the heuristic method designed
with few nodes to keep the complexity low. The 𝑇 in Fig. 7
corresponds to the difference between maxValue and minValue.
The values used in the decision nodes correspond to the limits
at which a method is most likely to be the best, as shown in
Fig. 6.

In Fig. 6, the BFP shows a probability of almost 1 when the
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Figure 7: Heuristic tree based on the dynamic range to estimate
the best compression method for each PRB.

dynamic range is lower than 120. Then, for a dynamic range
between 120 and 363, there are many points where the `-
Law method shows high probabilities (> 0.6). Another range
that presents a predominant best method is between 363 and
759, where the BS method has a probability higher than 0.6
of being the best method, and the range between 759 and
983, where the BFP method has a higher probability of being
the best method. However, there are many values of dynamic
range where there is no predominant best method, for example,
when the dynamic range is between 1800 and 2000.

The computational cost for the MMSE method consists of
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Figure 8: Baseband LTE receiver chain processing.

the total operations in compression and decompression of all
three methods plus the mean squared error of each output
in relation to the input for each compression method, where
the mean squared error is calculated over 12 elements of the
PRB. Then, the minimum is found, which corresponds to the
best method. However, the cost of the other two methods are
much lower, since they are based on conditional operations,
where the binary decision tree based on CART algorithm uses
8 conditional operations in the worst case, and the heuristic
tree uses 4 conditions in the worst case.

V. PERFORMANCE OF THE PROPOSED COMPRESSION
APPROACH

The proposed compression approach was evaluated consid-
ering an LTE baseband receiver chain with additive thermal
noise, a programmable gain amplifier, and an analog-digital
converter (ADC). Then, in the digital domain, the frequency
representation of the signal is recovered, and the compression
and decompression are performed, as shown in Fig. 8. We
assume a lossless fronthaul link.

Thermal noise, ADC quantization, and compression distor-
tions were the main parameters taken into account to simulate
the distortions in the uplink signal. Fig. 8 shows the complete
chain of the LTE signal processing up to the output of
the decompression unit. The RX signal corresponds to the
attenuated signal in receiver input, added to the thermal noise,
and amplified by the programmable-gain amplifier (PGA).
The PGA gain 𝐺 can be adjusted to change the dynamic
range of the receiver. The ADC quantizes the amplified signal
originating digital samples represented with 16 bits. Then, the
PRBs are recovered based on the digital signal by removing the
cyclic prefix (CP) and implementing the fast Fourier transform
(FFT). The standard deviation of the PRBs is represented with
𝜎. Finally, the PRBs are compressed and decompressed. In
Fig. 8, the aPRB and dPRB correspond to the representation
of the attenuated PRB on the input of the receiver chain and
the decompressed PRB, respectively.

Based on the above receiver chain, the effective signal-to-
noise ratio (SNReff) is defined as the ratio between the power
of aPRB and the power of the overall noise (aPRB-dPRB), i.e.,
SNReff= E

[
|aPRB|2

]
/E

[
|dPRB − aPRB|2

]
. This metric was

used to calculate the performance of the MMSE method in the
LTE processing chain. It allows evaluating the performance of
the entire receiver chain, including uplink signal compression.

The PGA gain directly influences the digital signal power.
A higher gain provides improved resolution above the ADC
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quantization noise but results in lower maximum power values
allowed in the receiver. In contrast, a lower gain allows higher
power in the receiver but lower resolution.

As shown in Fig. 1, the performance of the compression
methods (especially for BS and `-Law) depends on 𝜎. The
greater 𝜎, the higher is the SQNR of the BS and `-Law
compression methods. Thus, the PGA gain and the power
of aPRB influence the performance of each compression
method because 𝜎 is proportional to them. Therefore, the
effective SNR was evaluated for different configurations of
the PGA gain and for different signal power levels to verify
the performance for several cases on the receiver chain.

We first analyzed the performance of the proposed methods
for a single UE, whose uplink signal was created with Refer-
ence Measurement Channel (RMC) A3-5 defined in [13] with
a bandwidth of 10 MHz (50 PRBs) and Quadrature Phase
Shift Keying (QPSK) modulation. The power range of the
received signal was -100 dBm (-117 dBm/PRB) to -20 dBm
(-37 dBm/PRB), and the power of the thermal noise in the
receiver is assumed to be 𝑃𝑛 = −174+NF (dB)+10×log10 (𝐹𝑠),
where -174 is the PSD in dBm per Hz, NF= 3 dB is the
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noise figure and 𝐹𝑠 = 15.36 × 106 is the sampling frequency
adopted in the simulation. The parameters of the ADC are the
resolution of 𝑏 = 16 bits to quantize a range of [−1, 1[, which
results in a quantization step size of Δ = 2/2𝑏 .

Fig. 9 and Fig. 10 show the performance of the compression
methods for PGA gain 𝐺 = 40 and 60 dB, respectively. Both
figures show the performance for one UE in terms of SNReff
versus standard deviation of the real and imaginary input (𝜎)
and SNReff versus the power of the received signal in dBm.
Depending on the adopted gain, the receiver’s dynamic range
can vary and influence the values of SNReff. For example, with
𝐺 = 40 dB, the range of the power is approximately from -100
dBm to -20 dBm, and for 𝐺 = 60 dB, the range is about from
-120 dBm to -40 dBm. In Fig. 10, SNReff drops quickly when
the input power becomes higher than -40.3 dBm (𝜎 > 104)
due to saturation on the ADC.

Furthermore, the same 𝜎 can be obtained with different
received power, depending on 𝐺; for instance, 𝜎 = 102 is
obtained with received power equal to -60.3 dBm and -80.3
dBm gain of 40 and 60 dB, respectively. Recall from Fig. 1
that the performance of the compression methods depends on
𝜎, the gain of the analog part influences 𝜎 and, consequently,
the performance of the compression methods.

The simulation was conducted for different iqWidth values:
from 2 to 7 bits. In Fig. 9 and 10, there are seven curves for
each iqWidth. Three curves represent the proposed compres-
sion approach, where the best compression algorithm is chosen
for each PRB based on MMSE, CART, or heuristic, as shown
in Section IV. The other four curves represent the compression
of all PRBs using a single compression algorithm: Block
Scaling with 8 bits of side information (BS 8 bits), Block
Scaling with 7 bits of side information (BS 7 bits), Block
Floating Point (BFP) and `-Law.

Fig. 9 shows that the MMSE method presents a higher SNR
for all cases when compared to each method individually, and
the other two proposed methods present higher SNR for most
cases. For low values of 𝜎, these methods can present SNR
about 10 dB higher than the BS or `-law, for instance, when
𝜎 = 10 and iqWidth = 4 or 3 bits. Also, for higher values of
𝜎, the methods can present improved SNR, 3 dB higher when
compared to the BFP and the `-Law methods. Similarly, in
Fig. 10, the proposed methods also have a better performance
than the other methods in the most intervals analyzed.

To clarify the improvement of the proposed methods, we use
as reference the SNReff achieved with the MMSE to select the
best compression algorithm for each PRB. Then, Fig. 11 and
Fig. 12 show the average differences between the reference and
each compression method for 𝐺 = 40 and 60 dB, respectively.
The average is taken over the iqWidth values shown in Fig. 9
and Fig. 10, and is given versus 𝜎 and the power of the
attenuated signal.

In Fig. 11, the improvement of using the proposed approach
based on MMSE can be as significant as 8 dB around 𝜎 = 101

when compared to BS 8 bits and `-Law. When 𝜎 becomes
higher, the performance of block scaling increases, and the
SNReff of BFP decreases. At 𝜎 = 104, the MMSE approach
shows an average SNReff ≈ 3 dB higher than the BFP. In
higher 𝜎 values, the performance of the MMSE method and
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Figure 11: Average SNReff difference between the proposed
method and each O-RAN compression method, when 𝐺 =
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Figure 12: Average SNReff difference between the proposed
method and each O-RAN compression method, when 𝐺 =

60 dB.

BS 8 bits are similar. Actually, for 𝜎 = 2×102, the performance
of the BS 8 bits is slightly higher than the MMSE method.
This happens because the MMSE approach uses the version
of Block Scaling with 7 bits of side information (BS 7 bits),
which is worse than BS 8 bits. The CART and heuristic
methods have performance similar to the MMSE approach.
The difference between CART/heuristic methods and MMSE
is small throughout the analyzed 𝜎 range in Fig. 11, where
the most significant difference is around 1.5 dB in 𝜎 = 102 for
the heuristic method and 1 dB in 𝜎 = 5 × 102 for the CART
method.

In Fig. 12, where 𝐺 = 60 dB, the improvements of
using the MMSE method are decreased when compared to
𝐺 = 40 dB. For example, compared to BS 8 bits, the maximum
improvement of using the proposed compression approaches
is about 1 dB when 𝜎 = 2 × 101. This happens because most
of the distortion is dominated by thermal noise since input
power is lower for the higher gain 𝐺 = 60 dB. For higher
values of 𝜎, the behavior is similar to when 𝐺 = 40 dB, where
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Figure 13: Power spectral density of the uplink received signal
with 2 UEs with parameters of the Scenario 3 in Table III.

the improvement of choosing the best method for each PRB
achieves a SNReff ≈ 3 dB higher at 𝜎 = 104. The difference
remains low compared to the other two methods proposed
during all analyzed intervals with a maximum difference
around 1 dB to 𝜎 between 2 × 101 and 5 × 101.

In summary, the proposed compression approach that selects
the best compression algorithm for each PRB based on MMSE
shows the best SQNR, regardless of 𝜎. The CART tree has
a lower computational cost but provides a similar SQNR to
the MMSE case. Also, the proposed heuristic tree has lower
complexity and shows similar performance for most cases.
Fig. 9, 10, 11, and 12 show that the effective SNR can be
impacted by the receiver chain and the compression method.
The proposed approaches for selecting the best method for
each PRB bring improvements on SNReff compared to the O-
RAN specification that uses a single compression method for
a set of PRBs. This is particularly important when the RRU
receives signals from multiple UEs simultaneously multiplexed
in frequency with distinct attenuation levels.

The simulations were also conducted with two users (UE1
and UE2) to show the advantage of using the proposed
methods when there are signals with different power levels in
the uplink receiver. The thermal noise and ADC parameters
are the same as those previously described for simulation
with a single UE. UE1 and UE2 transmit LTE uplink signals
simultaneously in different subcarriers, following RMC A3-
4 and A4-5, respectively. Then, the SNReff was analyzed for
each compression method, considering distinct scenarios with
different power levels per UE and the number of PRBs per
UE, as shown in Table III.

For example, Fig. 13 shows the power spectral density
(PSD) of the uplink signal in Scenario 3 of Table III. The
subcarrier spacing is 15 kHz; UE1 uses the subcarriers from
indexes -160 to 30 (15 PRBs) and presents -81.8 dBm/PRB
at the uplink receiver. In contrast, UE2 uses the subcarriers
from indexes 31 to 160 (10 PRBs) and presents -65 dBm/PRB.
Furthermore, Fig. 13 also shows the PSD of thermal and ADC
noise.

In Scenario 1 of Table III, each IQ sample was compressed

Table III: Performance analysis of the LTE processing chain
for the BS, BFP and `-Law compression methods and the
proposed method for two UEs in different scenarios.

Scenario 1 Scenario 2 Scenario 3
UE UE1 UE2 UE1 UE2 UE1 UE2

IQ Width 4 6 7
PGA gain 60 dB 40 dB 40 dB

RX signal power (dBm) -90 -75 -80 -65 -70 -55
Number of PRBs 15 10 15 10 15 10

𝜎 29.7 46.3 19.5 36.3 29.5 46.3
SNR (dB)

without compression 13.7 30.4 21.7 38.5 31.8 48.5

SNReff (dB)
with BS 10.5 20.1 14.1 29.8 27.5 37.9

SNReff (dB)
with BFP 12.3 18.4 21.7 29.8 31.4 36.3

SNReff (dB)
with `-Law 10.3 18.9 13.9 29.4 27.5 36.7

SNReff (dB)
with MMSE 12.4 19.8 21.7 30.5 31.4 37.7

SNReff (dB)
with CART prune 12.3 19.1 21.7 30.5 31.4 36.7

SNReff (dB)
with heuristic DR 12.3 18.7 21.7 30.4 31.4 36.6

with iqWidth equal to 4 bits, the power signal of UE1 and
UE2 are -90 and -75 dBm, resulting in 𝜎 = 29.7 and 46.3, re-
spectively. The SNReff is shown for each O-RAN compression
method and also for the proposed approaches. In Scenario 1,
when we compare only the O-RAN compression methods, the
BFP is the best method for UE1, while BS is the best method
for UE2. If the current O-RAN specification were applied,
only one compression method could be used for both UEs,
which would not simultaneously provide the best performance
for both UEs. On the other hand, when the proposed methods
are applied, the best performance of both UEs are achieved
simultaneously.

Similar behavior can be observed for other configurations of
IQ width, PGA gains, and power levels, as shown in Scenarios
2 and 3. In these cases, the MMSE method guarantees the best
SNReff for both UEs, except for UE2 of scenario 3 where BS
presents a gain of ≈ 0.2 dB above the MMSE. The other two
proposed methods (CART and Heuristic DR) also present the
best performance, except also for UE2 of Scenario 3, where
BS presents a gain of ≈ 1 dB above the two methods. In
contrast, each O-RAN compression method (BFP, BS, and `-
Law) individually does not provide the best SNReff for both
UEs.

More specifically, in Scenario 2, the BFP is the best O-RAN
compression method for both UEs, but the implementation of
the proposed methods (MMSE, CART or Heuristic DR) brings
improvements on the SNReff of UE2, in about 0.7 dB. On the
other hand, in Scenario 3, among the O-RAN compression
methods, the BFP provides the best SNReff for UE1 and BS
provides the best SNReff for UE2, while the MMSE method
provides almost the same performance for both UE1 and UE2.

Therefore, the proposed methods provide better perfor-
mance than the current O-RAN specification in terms of
SNReff, specially for cases where the power of the PRBs are
very different.
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VI. CONCLUSION

This article presented the compression methods of the O-
RAN specification to transport IQ samples through the fron-
thaul efficiently. The performance and computational cost of
the methods were verified. It was found that BFP compression
presents the best SQNR for low values of 𝜎, and the BS
compression has the best SQNR for high values of 𝜎. This
distinction is important because the uplink signals might have
very different power levels on RRU, depending on the channel
experienced by each UE. In terms of computational cost, it was
identified that BFP compression has the lowest complexity,
followed by BS and `-Law compressor. Finally, we propose
compressing each PRB with the best compression algorithm,
regardless of the power levels. This approach achieves im-
proved performance than what is possible with O-RAN, which
applies the same compression method on all PRBs on a given
cell sector.
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