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Abstract—Crypto ransomware attacks have substantially in-
creased in recent years, and owing to their highly profitable
nature, this growth will evidently escalate in the future. To better
understand this malware and help developers of ransomware
detection systems build more robust and reliable solutions, this
study investigates ransomware actions during the destruction
phase through behavioral feature analysis. We used a dataset
with 1524 samples and 30 967 features representing the actions
conducted using 582 types of ransomware and 942 good applica-
tions (goodware). Six representative and widely used classification
algorithms were applied as auxiliary tools to investigate the
behavior of these attacks: Naive Bayes (NB), K-Nearest Neighbors
(KNN), Logistic Regression (LR), Random Forest (RF), Stochas-
tic Gradient Descent (SGD), and Support Vector Machine (SVM).
We achieved an accuracy of 98.48%, balanced accuracy of
98.35%, precision of 98.17%, recall of 97.82%, F-measure of
97.98%, and ROC AUC of 99.87% by using RF for 462 features of
the resultant dataset. We propose a new criterion to determine the
feature group relevance and a method to distinguish the features
that are most related to ransomware and goodware. Our main
conclusions are as follows: Application Programming Interface
(API) calls are the most relevant feature group, achieving alone a
balanced accuracy of 96.49%; native encryption Windows APIs
are not crucial for ransomware classification; and the most
significant features of ransomware tend to involve handling the
thread/process, physical memory operation, and communication,
whereas goodware features are more likely to indicate virtual
memory, files, directories, and resource operations.

Index Terms—Ransomware detection, feature analysis, behav-
ioral analysis, machine learning, cybersecurity.

I. INTRODUCTION

DURING the COVID-19 pandemic, because working from
home has required workers to connect remotely to cor-

porate networks, attacks have significantly increased against
several companies and government institutions, making this
type of threat one of the 10 worst in the cybersecurity field [1],
[2]. The increase in the number of such attacks has led users,
organizations, and governments to protect and create backups
of critical data. However, because of their highly profitable
nature, ransomware attacks are constantly evolving to bypass
current protection mechanisms and improve the encryption
process [3]. It is possible to infer that the increase in this
type of malware will remain a reality in the cyberworld in the
coming years.

Ransomware can be divided into two groups: Locky and
Crypto. These two groups have different characteristics in
terms of malicious actions. Whereas Locky ransomware typ-
ically blocks the victim’s system by displaying a login page
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University of Pará (UFPA), Belém, Pará, Brazil (e-mail: caiomoreira@ufpa.br;
cssj@ufpa.br; davi.moreira@eletronorte.gov.br).

Digital Object Identifier: 10.14209/jcis.2022.7

to hinder the user from accessing files, it does not encrypt
the system or user data. By contrast, Crypto ransomware
encrypts the victim’s files and demands a ransom payment to
decrypt them. This second type constitutes the majority of the
cyberworld and is also the most dangerous [4]. These attacks
are composed of four phases, which can be summarized as
follows: 1) an infection, in which the ransomware is delivered
to the victim’s system; 2) communication with Command-
and-Control (C2C) servers, in which the ransomware connects
to the C2C server to exchange encryption keys and system
information with the attacker; 3) destruction, which encrypts
files or locking systems to prevent the victim’s access to their
files or system; and 4) extortion, in which a ransom note
informs the victim of the infection and specifies the mode
of payment [5].

In general, protection software solutions are capable of de-
fending systems against previously known ransomware. These
methods are comparisons based on signatures that already
exist in a database. However, in attacks hitherto unknown
(zero-day), current solutions present difficulties in the accuracy
of detection and return high rates of false positives and
false negatives [6], [7]. The majority of these approaches
use Machine Learning (ML) models that are built using a set
of analysis features. ML-based ransomware detection systems
use structural features, behavioral features, or both. Structural
features are obtained through static analysis of ransomware bi-
naries, in which the code of a suspicious program is inspected
to recognize malicious patterns in the computer system. The
major advantage of this approach is its ability to identify
harmful instructions before the program is run; however, this
approach is more susceptible to deception through obfuscation,
polymorphism, encryption, and anti-disassembler techniques.
By contrast, behavioral features are obtained through dynamic
analysis, in which a suspicious program runs in an isolated
environment and its behavior is monitored during its execution,
seeking malicious action patterns in the Operating System
(OS). The advantage of this type of analysis is that it makes
evasion techniques difficult to implement. Moreover, it allows
us to analyze and understand how these dangerous programs
operate in an OS. Nevertheless, this approach is typically
slower and more dangerous [4], [5], [8].

Protection solutions for infection and communication phases
are more suitable for Intrusion Detection System (IDS) based
on network traffic analysis [9], [10], whereas detection systems
based on the identification of a splash screen or ransom note
are suitable for the extortion phase [11].

Many studies have analyzed the ransomware destruction
phase in an attempt to distinguish it from benign applications
or the family to which it belongs. These studies used several
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techniques to achieve the best performance. However, most
of these studies looked at this malware behavior superficially
without trying to profoundly understand the reason for the re-
sults, but instead looked for only the best metric performance.

Therefore, this paper presents a behavioral feature analysis
to improve the understanding of crypto ransomware behavior
during the destruction phase in Windows OS and to support
developers of anti-malware systems to build more solid and
reliable solutions. To achieve these goals, we formulated and
answered four questions: 1) Should all groups of features
be equally considered, 2) what changes from ransomware to
goodware, 3) what are the most relevant APIs, and 4) where
are the encryption APIs?. We used a dataset containing 30
967 behavioral actions of 582 ransomware and 942 good
applications (goodware) [12]. We first observed that APIs can
be grouped based on Microsoft naming conventions, and then
eliminated features with low variance and used six traditional
classifiers as auxiliary tools to investigate the behavior of these
attacks. In addition, this study proposes a new criterion to
determine the relevance of each feature group and distinguish
the features most associated with ransomware and goodware,
which allows us to identify the behavior patterns of both
classes.

The remainder of this paper is organized as follows. Sec-
tion II presents related studies and their main results, ad-
vantages, and limitations. Section III describes the dataset,
data preprocessing, feature selection, and evaluation metrics.
In Section IV, we present our results and answer the ques-
tions formulated by investigating the main factors associated
with ransomware behavior. Finally, Section V provides the
conclusions obtained throughout the study and suggests future
research directions.

II. RELATED WORKS

Alruhaily et al. [13], [14] analyzed the general behavior of
malware to better understand the causes of misclassification.
They formulated questions about the behavior of malware
and answered them using feature selection techniques and
classification algorithms. These types of studies are essen-
tial for improving solutions for malware detection systems.
Nevertheless, Alruhaily et al. [13], [14] did not focus on a
specific type of malware, which could lead to less accurate
investigations.

In recent years, several studies have investigated the ran-
somware issues. Most of these are related to the detection and
prevention of this type of attack. Recent studies have used only
API calls in dynamic analysis to detect malicious ransomware
behavior [15]–[19]. The studies in [20], [21] suggest that API
features alone are adequate for detecting ransomwares. Kok et
al. [22] proposed a pre-encryption detection algorithm (PEDA)
that can detect Crypto ransomware in the pre-encryption stage
when no encryption has been conducted using API features.
They identified three APIs that appeared more in ransomware
and 11 that were more related to goodware. A limitation
of [22] is that feature groups other than the API were not
analyzed. Furthermore, the proposed PEDA relies on the use
of native encryption Windows APIs, as its initial analysis only

selects samples that contain APIs with the word ”crypt”; thus,
it is unable to detect ransomware that uses its own native
encryption code.

Sgandurra et al. [12] proposed EldeRan, an ML approach
to classifying ransomware based on behavior using the Reg-
ularized Logistic Regression (RLR) algorithm. They built
and shared a dataset representing several Windows events
such as API calls, file and directory operations, registry key
modifications, and context (embedded strings). In addition,
EldeRan used Mutual Information (MI) as feature selection
method and achieved a detection rate of 96.34% using the top-
400 features. The results were considered competitive with the
top-5 anti-virus vendors. The authors also suggested that the
most substantial group of features for classifying ransomware
was REG, that is, registry key operation events, followed by
API, STR, FILES EXT (EXT), FILES, DIR, and DROP. The
criterion used for evaluating the groups was the percentage of
features remaining after feature selection; however, this may
not be a good criterion for datasets with imbalanced feature
groups.

In addition, using the dataset provided by [12], Abbasi et
al. [23] proposed a dynamic analysis with a two-stage feature-
selection method that considers the varying importance of each
feature group in the dataset. To select an optimal number
of features from each group and achieve better classification
performance, the model applied MI for Stage I and Particle
Swarm Optimization (PSO) for Stage II. They achieved an
accuracy of 97.34% using the RLR classifier with 822 ± 59
features. They used the same criterion as in [12] to evaluate
the groups and concluded that the API group was the most
relevant, followed by REG, STR, EXT, DROP, FILES, and
DIR.

Similarly, Khan et al. [24] used the dataset of [12] to
evaluate their proposed DNAact-Ran, which is a digital
DNA sequencing engine for detecting ransomware using ML.
DNAact-Ran combines Multi-Objective Gray Wolf Optimiza-
tion (MOGWO) and Binary Cuckoo Search (BCS) algorithms
to select 26 features and then generates a vector that symbol-
izes a digital DNA sequence. This vector generates another
vector based on the k-mer frequency, which is submitted to
a linear regression model based on active learning training
data. DNAact-Ran achieved an 87.9% detection accuracy,
which is higher than the other algorithms compared; however,
converting the features into the DNA sequence makes the
features lose their meaning, making an in-depth study of them
impossible. Hence, Khan et al. [24] could not analyze the
relevance of the groups.

Table I summarizes the advantages and limitations of each
related work and compares them with this work. Alruhaily
et al. [13], [14] can improve solutions for malware detection
systems, but they did not focus on a specific type of malware.
Kok et al. [22] identified APIs related to ransomware and
goodware. Their solution, however, depended on the use of
native encryption Windows APIs, and they only analyzed
the API feature group. Sgandurra et al. [12] and Abbasi
et al. [23] achieved good performance results and evaluated
different feature groups, but they used an inaccurate criterion
for evaluating the feature groups. Although Khan et al. [24]
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TABLE I
ADVANTAGES AND LIMITATIONS OF THE RELATED WORKS.

Works Advantages Limitations
Alruhaily et al. [13], [14] Can improve solutions for malware detection systems. Does not focus on a specific type of malware.

Kok et al. [22] Identifies API features related to ransomware and goodware. Does not analyze feature groups other than API.
Relies on using native encryption Windows APIs.

Sgandurra et al. [12] Evaluates different feature groups. Inaccurate criterion for evaluating the feature groups.
Abbasi et al. [23] Achieves good performance.

Khan et al. [24] Achieves fair performance. Features lose their meaning.
Does not evaluate feature groups.

This work

Can improve solutions for malware detection systems.
Focus on a specific type of malware.
Features retain their meaning.
Evaluates different feature groups.
Accurate criterion for evaluating the feature groups.
Identifies API and other features related to ransomware and goodware.
Does not rely on using native encryption Windows APIs.
Achieves good performance.

achieved fair performance results, feature processing caused
the features to lose their meaning, rendering them unable to
analyze the relevance of feature groups. Our work fills the
gaps in related studies while maintaining their advantages.
This study can improve the development of detection solutions
for a specific type of malware by analyzing behavioral features
that maintain their meaning, evaluating different feature groups
with a more accurate criterion, and identifying not only APIs
but also other features related to ransomware and goodware.
Furthermore, our study is not limited to samples that use native
encryption Windows APIs. Finally, our work achieved the best
performance results compared to related works.

III. MATERIALS AND METHODS

This section describes the methodology, available dataset,
data preprocessing, feature selection, tools, evaluation metrics,
and experimental environment used in this study. Fig. 1
illustrates the high-level workflow of the proposed experiment.
Our work aims to answer the four questions initially formu-
lated by analyzing the available data (step 1), followed by
preprocessing of data and feature selection (step 2). We use
six representative classifiers to validate our model (step 3). We
then split the resultant dataset into seven feature groups (step
4) to analyze each group’s relevance according to our proposed
criterion (step 5), and then to answer the first question (step 6).
Subsequently, all groups of the resultant dataset are submitted
to our proposed method to distinguish the features most
associated with each class (step 7) using the highest scores
found to answer the second question (step 8). Similarly, the
API group is individually submitted to the method (step 9)
to answer the third question (step 10). Finally, we search for
native encryption Windows APIs in both the original and the
resultant datasets (step 11), compare the occurrences in each
other (step 12), and then submit the remaining features of the
resultant dataset to our method (step 13) to answer the fourth
question (step 14).

A. Data Description

The dataset used in this study contains 1524 samples: 582
ransomware and 942 goodware [12]. Each sample has 30 967

binary features, which were obtained by recording the events
and operations executed by the samples through an analysis
using the Cuckoo Sandbox1. Seven different groups of features
were categorized based on the behavior analysis of each
program: API, DROP, REG, FILES, EXT, DIR, and STR. The
API group indicates the API invocations of the executable file,
DROP is an extension of the dropped files, REG is a registry
key operation, FILES indicates file operations, EXT indicates
the extensions of the files involved in file operations, DIR
represents the directory operations, and STR is the embedded
strings in the binary. Each sample was submitted to the
analysis tool and all operations were cataloged. The dataset
features are Boolean; consequently, each operation or event
present in a given sample is represented by 1; otherwise, it is
represented by 0.

Fig. 2 shows a 30-bin histogram of the probability distri-
bution (on a logarithmic scale) of the sum of events for each
dataset feature. The first bin indicates that the vast majority
of features (98.46%) have between 0 and 50 events out of
1524 possibilities. Therefore, this dataset contains a massive
concentration of features with little information.

This dataset is intended to represent the most popular
versions of ransomware variants and typical applications de-
signed for Windows OS. The ransomware samples belonging
to different families are identified by their codes and were
collected until 2016. Ransomware has evolved primarily in
its dissemination techniques, that is, in the infection phase.
There has also been an evolution of the communication and
extortion phases; however, the destruction phase, which we
propose to investigate, exhibits similar general behaviors [5].
Cybercrime clings to old techniques as long as they work, and
thus, the data are still relevant. In [12], the authors provide a
complete description of this dataset, which is one of the few
datasets available to the public [25]. In [25], because none
of the authors of the other papers in the survey made their
datasets available to the public, it was noted that it is common
practice to not share datasets in this specific area.

1https://www.cuckoosandbox.org/
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Fig. 1. High-level workflow of the proposed experiment.
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Fig. 2. Histogram of the probability distribution (on a logarithmic scale) of
the sum of feature events in the original dataset.

B. Data Preprocessing and Feature Selection

We noted that some API features have similar names,
differing only by certain letters at the beginning, end, or
both ends of their names. According to [26] and Microsoft’s
documentation2,3, an ’A’ at the end indicates the API version
accepting ANSI coded input strings, and ’W’ indicates a
Unicode variant. The addition of ’Ex’ at the end indicates
a new version of that function with different call pattern.
The addition of ’Nt’ and ’Zw’ at the beginning indicates a
difference in how they handle the parameter values that the

2https://docs.microsoft.com/en-us/windows/win32/intl/unicode-in-the-
windows-api

3https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/using-
nt-and-zw-versions-of-the-native-system-services-routines

caller passes to the routine. However, all of these APIs exhibit
the same behavior.

To improve the understanding regarding how ransomware
works, we merged the different API versions to add informa-
tion gain to these functions, which, if considered separately,
can be more easily removed during the feature selection
process. We found 44 matches; therefore, the number of
features (in the API group) decreased from 232 to 188, and
the total number of features decreased to 30 923. Table XI
in Appendix B lists all merged APIs. We also verified equal
samples belonging to distinct classes and several nonsignifi-
cant features.

Algorithm 1 summarizes the data preprocessing and feature
selection used in this dataset. After merging different versions
of the same APIs (M), we removed all occurrences of equal
samples belonging to both ransomware/goodware classes (P1).
We then used the scikit-learn Variance Threshold (VT) feature
selection method to eliminate non-essential features (F1).
Finally, from F1, we removed all occurrences of equal samples
belonging to both ransomware/goodware classes.

Algorithm 1 Data preprocessing and feature selection applied
to the dataset.
1: Read the Dataset D;
2: M ← Merge different versions of the same API call.
3: P1← Remove equal records present in different classes in M .
4: F1← Apply VT 97% in P1.
5: P2← Remove equal records present in different classes in F1.
6: Create new Dataset D′ using the resultant samples and selected

features;

VT is an unsupervised filter-type feature selection method
that removes all features whose variance does not meet a
certain threshold. It is based on the Bernoulli trial, which is
a probabilistic experiment that can have success (x = 1) or
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failure (x = 0). The variance is given by Eq. 1, where p is
the probability of success, also called the Bernoulli probability
parameter, that defines the VT percentage [27].

V ar[X] = p(1− p) (1)

As shown in Fig. 2, most features have 0–50 events out
of 1524 possibilities. Thus, VT is an appropriate method for
eliminating features with little information. Furthermore, in
a fair Cross-validation (CV) strategy, which we used in this
study, only the unsupervised feature selection approach can be
performed beforehand, keeping the same features selected in
all training and testing iterations. Supervised feature selection
approaches need to perform feature selection in the training
set for each fold and apply it to the test set, which can vary
the resulting features in each iteration [28]. Hence, we used
VT to obtain a fixed number of resulting features for analysis.
In addition, as an unsupervised filter-type method, VT has
the advantage of evaluating features based on the intrinsic
properties of data, unlike wrapper and hybrid unsupervised
methods that rely on clustering algorithms and have the risk
of overfitting [29].

Applying a VT of 97% (or 3%) significantly impacted the
number of features. Features with 45 or fewer occurrences of
either a 0 or 1 were discarded. These features were considered
not to be crucial. The final number of features decreased from
30 923 to 462. To visualize the effect of feature selection
on this dataset, Fig. 3 shows how the number of features is
associated with the VT percentage.
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Fig. 3. Number of features versus VT percentage.

Fig. 4 shows a 30-bin histogram of the probability dis-
tribution and a Kernel Density Estimation (KDE) line (on
a logarithmic scale) of the sum of events for each dataset
feature after the feature selection process. The probabilities
are distributed in a long-tail shape. It is worth noting the
gap around the zero value of the x-axis, which were features
eliminated by VT. The first and second bins have probabilities
of 41.11% and 11.03%, respectively. The remaining 28 bins
add up to a total of 47.86%. Therefore, the resultant dataset
has a much less concentrated set of features.

Table II shows the distribution of the seven feature groups
before and after the feature selection process. The API group
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Fig. 4. Histogram of the probability distribution and a KDE line (on a
logarithmic scale) of the sum of feature events in the resultant dataset.

was initially the smallest; however, after the feature selection,
it represented 24.89% of the dataset, meaning a 61.17% usage
of its group — the highest usage of all groups. Steps 3 and 5
of Algorithm 1 removed 40 instances, leaving 1484 samples
in the dataset.

TABLE II
DISTRIBUTION OF FEATURE GROUPS BEFORE AND AFTER FEATURE

SELECTION.

Before After
Group # Features Percentage # Features Percentage
API 188 0.61% 115 24.89%
DROP 346 1.12% 10 2.17%
REG 6622 21.41% 225 48.70%
FILES 4141 13.39% 26 5.63%
EXT 935 3.02% 34 7.36%
DIR 2424 7.84% 16 3.46%
STR 16 267 52.60% 36 7.79%
Total 30 923 100% 462 100%

Table III lists the final amounts of each ransomware family
and goodware. From this point on, the resultant dataset used
in this study contains 1484 samples and 462 features after
applying Algorithm 1.

TABLE III
RANSOMWARE FAMILIES AND GOODWARES RESULTING AFTER DATA

PREPROCESSING.

ID Family/Goodware # Removed # Resultant
1 Critroni 3 47
2 CryptLocker 2 105
3 CryptoWall 11 35
4 Kollah 2 23
5 Kovter 2 62
6 Locker 1 96
7 Matsnu 0 59
8 Pgpcoder 0 4
9 Reveton 0 90
10 TeslaCrypt 1 5
11 Trojan-Ransom 1 33
0 Goodware 17 925
- Total: 40 1484

To effectively evaluate the dataset and generalize our model,
we used six ML algorithms already evaluated for ransomware
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detection in [18]: NB, KNN, LR, RF, SGD, and SVM. These
techniques represent the most commonly used categories of
supervised learning, including Bayesian, regression, ensemble,
and instance-based learning. They are widely applied for
binary classification, and each algorithm presents a different
internal mechanism and method of handling data, as well as
their advantages and disadvantages, aiding us to comprehen-
sively explore the nature of the data [18], [30]. These ML
algorithms are also used for multiclass classification, so future
comparative studies of the multiclass domain can be based on
the same techniques [31].

The performance of modern ML methods is highly de-
pendent on their hyperparameter adjustments, which aid in
maximizing the outcomes without overfitting, underfitting, or
creating a high variance. Therefore, to obtain better results
and compare the techniques more fairly, each classifier was
tuned on hyperparameters that were frequently adjusted in the
literature [32]–[34]. We used the scikit-learn GridSearchCV
method with K = 10 and accuracy as a scoring strategy to
evaluate the performance of the cross-validated model on the
test set. Table X in Appendix A lists the final hyperparameters
(tuned and default) used for each estimator.

For every classification, we performed an average of ten
iterations of stratified K-fold CV with K = 10. To evaluate
the results, we used well-known ML metrics such as accuracy,
balanced accuracy, precision, recall, F-measure (F1), and Area
Under the Curve (AUC) of the Receiver Operating Charac-
teristic (ROC). Table IV presents the mathematical formula
of the evaluation metrics. These metrics can be interpreted as
relations based on: True Positive (TP) - number of ransomware
samples correctly classified as ransomware; True Negative
(TN) - number of goodware samples correctly classified as
goodware; False Positive (FP) - number of goodware samples
incorrectly classified as ransomware; and False Negative (FN)
- number of ransomware samples incorrectly classified as
goodware.

Accuracy is defined as the total number of samples correctly
classified, divided by the total number of samples. Balanced
accuracy is defined as the average of the proportion corrects of
each class individually, which avoids inflated performance es-
timates on imbalanced datasets. Precision indicates the ability
of the classifier to not label a positive sample as negative.

Recall, also known as True Positive Rate (TPR), evaluates
the ability of the classifier to find all the positive samples, that
is, to predict the ransomware class correctly. False Positive
Rate (FPR) indicates the proportion of the negative class
incorrectly classified by the classifier. F-measure (F1) is the
harmonic mean of precision and recall, which can be inter-
preted as the performance of the model.

ROC is a graphical approach for analyzing the performance
of a classifier and indicates the prediction algorithm’s ability
to distinguish between positive and negative outcomes. This
curve is represented by FPR versus TPR at various threshold
values. Therefore, by computing the area under the ROC curve
(ROC AUC), the curve information can be summarized in one
number where the higher the value, the better [35].

The combined interpretation of the results of these eval-
uation metrics provides better information about model per-

TABLE IV
EVALUATION METRICS AND MATHEMATICAL FORMULAS.

Metric Formula

Accuracy
TP + TN

TP + TN + FP + FN

Balanced acc.
1

2

(
TP

TP + FN
+

TN

TN + FP

)
Precision

TP

TP + FP

Recall (TPR)
TP

TP + FN

FPR
FP

FP + TN

F-measure (F1) 2

(
Precision×Recall

Precision+Recall

)

formance [36]. In this study, the results are presented as
0.95 Confidence Interval (CI). When presenting comparative
results, bold numbers indicate the best results.

IV. EXPERIMENT RESULTS AND DISCUSSION

This section compares the results obtained between this
study and related research, and then answers the four formu-
lated questions investigating the main aspects of ransomware
behavioral features and classification. The dataset was eval-
uated after data preprocessing and feature selection (Algo-
rithm 1) using six ML estimators, the results of which are
presented in Table V.

The RF algorithm outperformed all evaluation metrics,
with an accuracy of 98.48%, balanced accuracy of 98.35%,
precision of 98.17%, recall of 97.82%, F-measure of 97.98%,
and ROC AUC of 99.87%. This result is consistent with
the results of [37], in which 23 machine learning algorithms
were investigated for malware detection, and it was concluded
that RF provides optimal performance, with high accuracy and
low training and testing times. We compared our best results
with those in [12], [23], [24] using the same dataset. These
studies did not provide metrics other than accuracy, and thus
Fig. 5 shows a comparison of the results using this single
metric.

Sgandurra et al. [12] used an RLR estimator to achieve an
accuracy of 96.34% using 400 features, Abbasi et al. [23]
achieved an accuracy of 97.34% using the RLR estimator and
822±59 features, and Khan et al. [24] obtained an 87.90%
detection rate using a linear regression model based on active
learning with 26 features. Our approach achieved the highest
accuracy (98.48%) using 462 selected features; therefore, we
consider that we have a consistent model to proceed with the
assessments that will follow.

A. Should all groups of features be equally considered?

Because of their malicious nature, most ransomwares are
expected to have determinant operating characteristics, which
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TABLE V
EVALUATION OF SIX ML ALGORITHMS: METRIC (%) ± 0.95 CI (%)

.
Metric NB KNN LR RF SGD SVM
Accuracy 85.90 ± 0.13 96.23 ± 0.07 98.09 ± 0.05 98.48 ± 0.05 97.97 ± 0.06 98.32 ± 0.05
Balanced Acc. 87.78 ± 0.11 96.12 ± 0.07 97.92 ± 0.06 98.35 ± 0.06 97.83 ± 0.07 98.15 ± 0.06
Precision 74.62 ± 0.20 94.47 ± 0.14 97.74 ± 0.09 98.17 ± 0.10 97.02 ± 0.11 98.07 ± 0.09
Recall 95.40 ± 0.14 95.67 ± 0.12 97.21 ± 0.10 97.82 ± 0.09 97.50 ± 0.12 97.48 ± 0.10
F-measure 83.66 ± 0.13 95.03 ± 0.09 97.46 ± 0.07 97.98 ± 0.07 97.23 ± 0.08 97.75 ± 0.07
ROC AUC 89.78 ± 0.10 98.33 ± 0.05 99.66 ± 0.02 99.87 ± 0.01 99.59 ± 0.02 99.67 ± 0.02

85%

90%

95%

100%

Accuracy

Sgandurra et al. (2016) Abbasi et al. (2020)
Khan et al. (2020) This work

Fig. 5. Highest ransomware/goodware classification accuracy in [12], [23],
[24] and the present study.

can be analyzed by dividing them into seven feature groups
and determining their relevance. Khan et al. [24] did not
analyze the relevance of the groups. Sgandurra et al. [12] and
Abbasi et al. [23] used the percentage per group criterion in
the dataset. Other mentions to this criterion will be referenced
as Criterion 1.

Fig. 6 shows Criterion 1 applied for this and related studies.
Our results indicate that REG is the most important group.
Although Sgandurra et al. [12] concluded the same, Abbasi et
al. [23] deduced that the API group is the most significant. All
comparison studies found that API, REG, and STR are the top-
three groups using Criterion 1. However, it is important to note
that the groups in the dataset were initially imbalanced (see
Table II), thus, defining the group relevance by this criterion
may lead to inaccurate results.

To improve the criterion for evaluating these groups, we
propose that the variance in percentage of the group from
the original dataset determines its relevance. Criterion 2 will
be used for further mentions of the proposed criterion. Eq. 2
shows how to calculate the importance (%) of each group
using Criterion 2.

Crit. 2[Group] =
(

Group (%) Result. Dataset
Group (%) Orig. Dataset − 1

)
× 100 (2)

Fig. 7 shows the application of Criterion 2. The results of
our study pointed that the most substantial group of features
is the API, having a high difference from the other groups.

API

DROP

REG

FILES

EXT

DIR

STR

0% 10% 20% 30% 40% 50%

Sgandurra et al. (2016) Abbasi et al. (2020) This work

Fig. 6. Criterion 1: percentage per group in the resultant datasets.

Among the 188 API features in the original dataset (merged),
115 were considered significant. The percentage in the dataset
increased from ≈0.61% to 24.89%, indicating a variance of
+3994%. The STR usage group ranged from 52.60% to 7.79%
with a variance of -85%. The API and STR groups showed the
best and worst variance, respectively. The other groups, i.e.,
DROP, REG, and EXT, showed positive variances, whereas
DIR and FILES showed a negative variance. The results of
the related studies were also modified, showing that the most
important group to be considered is the API. This result
corresponds with that reported in the literature [20], [21].
Furthermore, the DROP, EXT, and DIR groups increased their
relevance, whereas the REG, FILES, and STR groups had the
opposite result.

We also split the dataset into seven groups of features
(according to Table II) for evaluation. Table VI presents the
balanced accuracies of the six ML estimators for each group.
This metric was chosen because it avoids inflated performance
estimates on imbalanced datasets. Table VI shows that the API
is the best individual feature group. With 115 API features,
it was possible to achieve a balanced accuracy of 96.49%
with RF; however, to assess the significance of a group more
accurately, we must use the mean of the estimators to avoid
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Fig. 7. Criterion 2: Percentage of variance per group in the resultant datasets.

favoring a single technique. The mean of the API group was
3.38%, which was still the highest. The worst group was
FILES, presenting a mean of 82.28%, whereas the other five
groups achieved similar results between ≈84% and 87%.

Table VII provides the ranking of the group features using
Criterion 1, Criterion 2, and the classification mean. We can
observe a better correlation between the classification mean
with Criterion 2 than with Criterion 1. The results of our study
indicate that the API group is the best individual group for
ransomware/goodware classification.

The EXT group, despite using only 34 features, was shown
to be the second best group based on both the classification as
well as Criterion 2. The DROP group achieved third place in
mean classification and fourth place in Criterion 2. The REG
group was ranked fourth in terms of classification and third
based on Criterion 2. The STR group was considered the least
relevant when using Criterion 2, which was fifth when using
the mean calculation.

DROP, REG, and STR had similar classification results,
which can make the significance of the results less represen-
tative. The DIR group diverged from sixth when considering
the mean classification to fifth after applying Criterion 2. The
FILES group was the worst in terms of classification and sixth
when using Criterion 2, and this group was considered the least
relevant.

TABLE VII
RANKING OF GROUPS BY CRITERIA 1 AND 2 AND MEAN CLASSIFICATION.

Criterion 1 Criterion 2 Classif. Mean
# [12] [23] This work [12] [23] This work This work

1st REG API REG API API API API
2nd API REG API EXT DROP EXT EXT
3rd STR STR STR REG EXT REG DROP
4th EXT EXT EXT DROP DIR DROP REG
5th FILES DROP FILES DIR REG DIR STR
6th DIR FILES DIR FILES FILES FILES DIR
7th DROP DIR DROP STR STR STR FILES

We found that all groups of features should not be consid-
ered equally. Although the API group has a major importance,
an appropriate combination of groups of features can provide
a better detection performance. However, it is crucial to
emphasize that the results found are pointers to the binary
classification of ransomware and goodware; thus, to better
understand the behavior of ransomware, we can investigate
individual features associated with ransomware and goodware.

B. What changes from Ransomware to Goodware?

The feature selection methods used in this study and the
related research aim to achieve the best performance; however,
they consider the two targets equally, and thus the resulting
features are correlated to both ransomware and goodware
in an indistinguishable manner. Hence, we proposed Eq. 3
to distinguish the features most related to ransomware and
goodware for this specific dataset. First, the ransomware and
goodware samples were separated into two sets. Subsequently,
for each feature, the mean of each set was calculated. Finally,
the mean of each feature for each set was subtracted.

Score[X] =
1

n

n∑
i=1

X(i)− 1

m

m∑
k=1

X(k) (3)

In Eq. 3, X is a feature, X(i) is the value of feature X
in the ransomware sample i, and n is the total number of
ransomware samples. Similarly, X(k) denotes the value of
feature X in the goodware sample k, and m is the total number
of goodware samples. The results can vary within the range
of -1.0 and 1.0. A feature calculated at -1.0 means a feature
correlated to goodware. The opposite is also true, i.e., a feature
calculated at 1.0, which is wholly associated with ransomware.
For classification algorithms, the most relevant features are at

TABLE VI
EVALUATION OF THE SEVEN GROUPS OF FEATURES: BALANCED ACCURACY (%) ± 0.95 CI (%)

.
Group # Features NB KNN LR RF SGD SVM Mean
API 115 83.07 ± 0.16 94.95 ± 0.11 95.07 ± 0.08 96.49 ± 0.08 95.34 ± 0.09 95.35 ± 0.10 93.38 ± 0.10
DROP 10 86.76 ± 0.12 84.15 ± 0.48 86.58 ± 0.11 87.35 ± 0.12 86.81 ± 0.14 86.92 ± 0.13 86.43 ± 0.18
REG 225 80.58 ± 0.12 85.38 ± 0.21 87.90 ± 0.13 88.69 ± 0.14 86.28 ± 0.20 88.24 ± 0.13 86.18 ± 0.16
FILES 26 75.06 ± 0.27 81.78 ± 0.30 83.25 ± 0.16 86.32 ± 0.12 83.35 ± 0.21 83.94 ± 0.15 82.28 ± 0.20
EXT 34 86.00 ± 0.12 84.61 ± 0.28 87.22 ± 0.13 87.93 ± 0.11 86.86 ± 0.14 87.35 ± 0.13 86.66 ± 0.15
DIR 16 82.03 ± 0.18 76.92 ± 0.70 86.88 ± 0.11 87.82 ± 0.12 86.94 ± 0.16 86.75 ± 0.11 84.56 ± 0.23
STR 36 82.08 ± 0.14 88.27 ± 0.14 85.31 ± 0.16 88.86 ± 0.13 84.80 ± 0.15 84.34 ± 0.17 85.61 ± 0.15
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the ends of the range. However, for a better understanding of
ransomware behavior, the most substantial features are those
close to 1.0, which can be interpreted as a higher occurrence
of ransomware events and a lower occurrence of goodware
events.

Our proposal for distinguishing features is purely statistical
and independent of algorithms. Eq. 3 emphasizes the more
significant presence or absence of a certain feature individ-
ually, without relating features to each other, which makes
the experiment reproduction always obtain the same results,
even when the dataset is split. Hence, it is appropriate to
distinguish features between the analyzed ransomware and
goodware classes.

Applying Eq. 3 to the dataset with 462 features showed
that 154 features obtained scores higher than 0, that is, these
features are more likely to be observed in ransomware events.
By contrast, 308 of the remaining features with scores lower
than 0 were more likely to be seen in goodware events.
Table VIII lists the top-15 features most frequently found in
ransomware and goodware.

The results in Table VIII represent the typical behavior
of ransomware and goodware in an OS. We can see much
higher scores on goodware than on ransomware; in addition,
the highest ransomware feature score is lower than the lowest
goodware feature score, which means that the features in this
dataset are more capable of being associated with goodware
than with ransomware. Analyzing all of these features, we
can note the predominance of the API group with 10 out of
15 occurrences in ransomware and 7 out of 15 in goodware,
which corroborates the results of the relevance of groups found
thus far.

We observed a behavior change from ransomware to good-
ware because the API features of the former are generally
related to the execution of a process in the OS (see Table XII
in Appendix C). Also related to the execution of a process,
the OPENED:Manifest feature of the EXT group indicates an
opened file containing settings that inform Windows how to
handle a program when it is started; the string KERNEL32.dll
is associated with an essential Dynamic-link Library (DLL)
that handles memory management, input/output operations,
and system interrupts; similarly, the MSVCRT.dll contains
program code that enables applications written in Microsoft
Visual C++ to run properly; and the mscoree.dll is a Mi-
crosoft Runtime Execution Engine, which contains fundamen-
tal functions of the Microsoft.NET framework, providing the
possibility to connect information, systems, people and devices
through software. The OPENED:Device\ of feature the FILES
group may indicate an attempt to search the user files on other
devices such as a pen drive or external hard drive.

Meanwhile, the features of goodware are related to file
and directory operations: the APIs CreateDirectoryW, SetFile-
Pointer, SearchPathW, and GetFileAttributes (see Table XIII
in Appendix C); the temporary files in DROP tmp, EXT
OPENED:tmp, and EXT WRITTEN:tmp; and the enumeration
of a standard directory in DIR. The high score obtained
by API CreateDirectoryW, the handling of temporary files,
and the two REG features in goodware might indicate that
many of the samples collected were software installers, which
needed to build their directory structure, obtain system and
user information for the installation process, and then remove
unnecessary files.

TABLE VIII
TOP-15 FEATURES THAT APPEAR THE MOST IN RANSOMWARE (LEFT) AND GOODWARE (RIGHT).

Ransomware Goodware
# Score Group Name Score Group Name
1 0.402 API NtTerminateProcess -0.748 API CreateDirectoryW
2 0.351 STR KERNEL32.dll -0.712 DIR ENUMERATED:C:\Documents and Settings\

MyUser\Desktop\test-personal-files\img\
3 0.331 API SetUnhandledExceptionFilter -0.645 EXT OPENED:tmp
4 0.234 API WSAStartup -0.642 DROP tmp
5 0.207 EXT OPENED:Manifest -0.591 API CoInitializeEx
6 0.194 API WriteProcessMemory -0.567 API SetFilePointer
7 0.191 API NtGetContextThread -0.555 API NtReadVirtualMemory
8 0.190 API NtSetContextThread -0.548 EXT WRITTEN:tmp
9 0.175 API exception -0.538 API SearchPathW
10 0.166 API NtResumeThread -0.481 API GetFileAttributesW
11 0.165 API GetComputerNameW -0.455 API SizeofResource
12 0.162 STR mscoree.dll -0.454 EXT WRITTEN:dll
13 0.154 API NtDeviceIoControlFile -0.459 DROP dll
14 0.142 FILES OPENED:Device\ -0.444 REG OPENED:HKEY CURRENT USER\Software\

Microsoft\Windows\CurrentVersion\
15 0.132 STR MSVCRT.dll -0.439 REG OPENED:HKEY LOCAL MACHINE\Software\

Microsoft\Windows\CurrentVersion\Uninstall\
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C. What are the most relevant APIs?

To find the behavior patterns in ransomware during the
destruction phase, we applied Eq. 3 for the most relevant
group of features. Among the 115 API features, 40 were
mostly associated with ransomware and 75 with goodware.
Figs. 8 and 9 show the comparative presence of the 20 API
features that appear the most in ransomware and goodware,
respectively. The scores obtained and the descriptions of these
APIs are provided in Appendix C.

Analyzing Fig. 8, it is possible to identify a feature pattern
in ransomware, in which 11 out of 20 features involve the
thread/process. In addition, the presence of WriteProcess-
Memory and ReadProcessMemory shows that ransomware is
more likely to use physical memory than virtual memory.
The WSAStartup feature represents a function that opens
a communication socket on the system, which can be in-
terpreted as an attempt to connect with the C2C server.
GetComputerName(A, W) can help cybercriminals identify
their targets after communication and even customize the
ransom note shown to the user. GetFileType, the only API
related to file operation, is an essential function used to
discover what type of file is important to the user, and thus
the malware will likely not encrypt system files non-relevant
to the ransom (e.g., a .BAT or .COM file), but will encrypt
valuable personal files instead (e.g., a .DOC or .JPG file). We

also noticed that WriteProcessMemory, NtGetContextThread,
NtSetContextThread, and NtDeviceIoControlFile appear fairly
well in ransomware, but only a few appear in goodware. These
features are determinant in ransomware actions and must be
carefully inspected by anti-malware systems.

By contrast, the main patterns linked to goodware are
the operations of files, directories, and resources, which are
present in 12 of the 20 features in Fig. 9. An overwhelming
difference in the CreateDirectoryW feature indicates that good-
ware tends to create new directories whereas ransomware does
not. We suppose that the only directory created by ransomware
is for installing itself in the system and placing a ransom note
file. NtReadVirtualMemory shows that goodware tends to use
more virtual memory than ransomware does. CoInitializeEx is
the only thread-related feature, while the other features have a
broad general meaning. These findings corroborate the answers
to the title question in Section IV-B.

D. Where are the encryption APIs?
Of the 232 API features in the entire original dataset

(not merged), only eight were directly associated with en-
cryption. We searched for the word ”crypt” in the feature
description file containing the name of each variable and
found CryptAcquireContextA, CryptAcquireContextW, Cryp-
tExportKey, CryptDecodeObjectEx, CryptEncrypt, CryptCre-
ateHash, CryptGenKey, and CryptHashData. All of these API

NtTerminateProcess

SetUnhandledExceptionFil
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NtGetContextThread

NtSetContextThread

__exception__

NtResumeThread
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NtOpenProcess
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UnhookWindowsHookEx

NtProtectVirtualMemory

GetFileType
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Fig. 8. Comparative top-20 features that appear the most in ransomware.
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Fig. 9. Comparative top-20 features that appear the most in goodware.

features belong to Wincrypt.h4, a native API of Windows OS.
We also found five API features linked to asymmetrical
encryption and present in Wincrypt.h: CertCreateCertificate-
Contex, CertControlStore, CertOpenStore, CertOpenSystem-
StoreA, and CertOpenSystemStoreW. As discussed in Sec-
tion III-B, we merged CryptAcquireContextA with CryptAc-
quireContextW and CertOpenSystemStoreA with CertOpen-
SystemStoreW.

Table IX provides a summary of the occurrence of those
features found in ransomware and goodware. Because the
primary goal of ransomware is to encrypt the user files as
much as possible, this type of feature was expected to appear
quite often in the ransomware samples. However, only 48
(out of 582) of the ransomware cases called at least one of
those encryption APIs, thus, most of the ransomware did not
use native Windows encryption code. Goodware samples that
used those APIs numbered 66 (out of 942). Ransomware and
goodware samples that called at least one of those APIs totaled
114, or approximately 7.48% of the entire original dataset
(merged) — the resultant dataset from step 2 of Algorithm 1.

Some of the APIs in Table IX are perfectly correlated,
that is, they appear precisely in the same samples. This is
the case for CryptExportKey with CryptEncrypt and Crypt-
GenKey; and CryptCreateHash with CryptHashData. After
applying Algorithm 1, CryptExportKey, CryptEncrypt, Crypt-
GenKey, CertCreateCertificateContex, CertControlStore, Cer-
tOpenStore, and CertOpenSystemStore(A,W) features were
removed because they have low variance. Algorithm 1 did not

4https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/

TABLE IX
OCCURRENCE OF NATIVE ENCRYPTION WINDOWS APIS IN ORIGINAL

DATASET (MERGED).

API Ransomware Goodware
CryptAcquireContext(A,W) 45 66
CryptDecodeObjectEx 21 38
CryptCreateHash 28 42
CryptHashData 28 42
CryptExportKey 11 0
CryptEncrypt 11 0
CryptGenKey 11 0
CertCreateCertificateContex 0 1
CertControlStore 0 35
CertOpenStore 0 37
CertOpenSystemStore(A,W) 3 0

remove any of the 114 samples that used native encryption
Windows API.

Applying Eq. 3 to calculate the scores of the remaining
features, CryptAcquireContext(A,W), CryptDecodeObjectEx,
CryptCreateHash, and CryptHashData returned scores close to
zero: 0.0091, 0.0047, 0.0047, and -0.0035, respectively. Hence,
native encryption Windows API features are not significant
for binary ransomware/goodware classification. Perhaps, for
family ransomware classification, these features could add
some information gain to the model. In addition, it should
be noted that this dataset represents executed or non-executed
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events, but does not indicate the frequencies of such events;
therefore, because of the essence of ransomware actions, some
of these features can be frequently called by the executable
binary, which can add valuable information to distinguish
ransomware from goodware.

V. CONCLUSIONS

In this study, we analyzed Crypto ransomware behavioral
features to better understand its actions during the destruction
phase. In this analysis, we merged different API versions
with similar names, resulting in information gain during the
investigation. Likewise, we proposed an improvement in the
criterion for evaluating groups in datasets with imbalanced
feature groups. Four questions were formulated: Should all
groups of features be equally considered, what changes from
ransomware to goodware, what are the most relevant APIs,
and where are the encryption APIs?. The answers to these
questions are as follows:

• The API is the best individual feature group to dis-
tinguish ransomware from goodware; however, an anti-
ransomware system should inspect some key features
from other groups to improve the detection rate, such
as the manifested files, strings mentioning DLLs, and the
attempts to access other storage devices.

• Changes to the pattern behavior between ransomware and
goodware were identified. Whereas the first tends to in-
volve thread/process manipulation, context strings and file
operations related to process execution, physical memory
operations, a socket connection, computer identification,
and file type discovery operations, the second is more
likely to present virtual memory, directories, and resource
operations, including temporary files and DLLs.

• The 10-most relevant APIs identified for
ransomware events were NtTerminateProcess,
SetUnhandledExceptionFilter, WSAStartup,
WriteProcessMemory, NtGetContextThread,
NtSetContextThread, exception , NtResumeThread,
GetComputerName(A,W), and NtDeviceIoControlFile.
These API calls must be carefully monitored through
protection systems.

• As much as cryptographic APIs are expected to be
decisive for identifying ransomware, native encryption
Windows API have proven to be less crucial for binary
classification, with approximately equivalent amounts of
samples from both classes using them.

All of these findings are relevant to improving the un-
derstanding of ransomware behavior for the design of more
robust and reliable protection systems against such malware.
However, this study focused on binary ransomware/goodware
classification using the presence or absence of certain events.
Thus, future research can analyze the frequencies of such
events during process execution and use not only a dynamic
but also static analysis. Researchers can also use other metrics
of system behavior during ransomware execution, such as
CPU, memory, and input/output devices.

APPENDIX A

TABLE X
HYPERPARAMETERS USED FOR EACH CLASSIFIER. TUNED IN ‘BOLD’ AND

DEFAULT IN ‘REGULAR’ TEXT.

Classifier Hyperparameters and values

NB alpha=0.0, fit prior=True, binarize=0.0, class prior=None

KNN
n neighbors=5, weights=’distance’, metric=’manhattan’,
algorithm=’auto’, leaf size=30, p=2, metric params=None,
n jobs=None

LR

penalty=’l2’, C=1.0, solver=’lbfgs’, max iter=100,
dual=False, tol=0.0001, fit intercept=True, inter-
cept scaling=1, class weight=None, random state=None,
multi class=’auto’, verbose=0, warm start=False,
n jobs=None, l1 ratio=None

RF

n estimators=150, criterion=’gini’, max depth=150,
min samples split=2, min samples leaf=1,
min weight fraction leaf=0.0, max features=’auto’,
max leaf nodes=None, min impurity decrease=0.0,
bootstrap=True, oob score=False, n jobs=None,
random state=None, verbose=0, warm start=False,
class weight=None, ccp alpha=0.0, max samples=None

SGD

loss=’hinge’, penalty=’l1’, tol=0.001, alpha=0.0001,
l1 ratio=0.15, fit intercept=True, max iter=1000,
shuffle=True, verbose=0, epsilon=0.1, n jobs=None,
random state=None, learning rate=’optimal’, eta0=0.0,
power t=0.5, early stopping=False, validation fraction=0.1,
n iter no change=5, class weight=None, warm start=False,
average=False

SVM

C=15, kernel=’rbf’, gamma=0.01, degree=3,
coef0=0.0, shrinking=True, probability=False, tol=0.001,
cache size=200, class weight=None, verbose=False,
max iter=- 1, decision function shape=’ovr’,
break ties=False, random state=None

APPENDIX B
MERGED APIS

Table XI lists all 44 API versions that we found with similar
functions, but with different nomenclature. The API on the left
side is the one that remained with the final label (position) after
the merge. Labels and names according to the description text
file VariableNames.txt of the original dataset.

TABLE XI
LIST OF ALL MERGED APIS.

Label Name Label Name

4 GetSystemDirectoryA 25 GetSystemDirectoryW
5 WriteConsoleA 9 WriteConsoleW
11 RemoveDirectoryA 49 RemoveDirectoryW
13 FindFirstFileExA 105 FindFirstFileExW
15 OpenServiceW 40 OpenServiceA
19 HttpOpenRequestA 23 HttpOpenRequestW
20 HttpSendRequestA 24 HttpSendRequestW
21 GetUserNameA 54 GetUserNameExW
21 GetUserNameA 56 GetUserNameExA
21 GetUserNameA 88 GetUserNameW
30 GetDiskFreeSpaceExW 233 GetDiskFreeSpaceW
34 FindWindowExW 46 FindWindowExA
34 FindWindowExW 182 FindWindowA
34 FindWindowExW 235 FindWindowW

Continued on the next column
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Continued from the previous column

Label Name Label Name

37 RegQueryInfoKeyW 38 RegQueryInfoKeyA
41 InternetOpenA 53 InternetOpenW
48 RegEnumValueA 59 RegEnumValueW
50 RegDeleteKeyA 60 RegDeleteKeyW
52 WSASocketA 58 WSASocketW
67 SetFilePointer 153 SetFilePointerEx
69 FindResourceA 87 FindResourceW
69 FindResourceA 146 FindResourceExA
69 FindResourceA 160 FindResourceExW
71 DeleteFileW 125 NtDeleteFile
73 CryptAcquireContextA 95 CryptAcquireContextW
74 CreateServiceA 83 CreateServiceW
91 GetSystemWindowsDirectoryA 107 GetSystemWindowsDirectoryW
94 MessageBoxTimeoutA 96 MessageBoxTimeoutW
99 RegEnumKeyExW 100 RegEnumKeyExA
99 RegEnumKeyExW 149 RegEnumKeyW
121 OpenSCManagerW 135 OpenSCManagerA
124 GetComputerNameW 141 GetComputerNameA
128 SetWindowsHookExW 148 SetWindowsHookExA
130 RegSetValueExW 143 RegSetValueExA
138 RegCreateKeyExW 155 RegCreateKeyExA
147 InternetConnectW 168 InternetConnectA
151 GetFileAttributesW 161 GetFileAttributesExW
152 RegDeleteValueA 163 RegDeleteValueW
181 GetFileSize 213 GetFileSizeEx
184 CertOpenSystemStoreW 201 CertOpenSystemStoreA
198 InternetCrackUrlW 216 InternetCrackUrlA
206 RegQueryValueExA 228 RegQueryValueExW
217 RegOpenKeyExW 230 RegOpenKeyExA
219 SendNotifyMessageW 229 SendNotifyMessageA

Concluded
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[12] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu,
“Automated dynamic analysis of ransomware: Benefits, limitations and
use for detection,” 2016. [Online]. Available: https://arxiv.org/abs/1609.
03020

[13] N. Alruhaily, B. Bordbar, and T. Chothia, “Towards an understand-
ing of the misclassification rates of machine learning-based mal-
ware detection systems,” in Proc. 3rd Int. Conf. Inf. Syst. Security
Privacy, vol. 2017-January. SciTePress, 2017, pp. 101–112, doi:
10.5220/0006174301010112.

[14] N. Alruhaily, T. Chothia, and B. Bordbar, “A better understanding of
machine learning malware misclassifcation,” in Commun. Comput. Inf.
Sci., vol. 867. Springer Verlag, 2018, pp. 35–58, doi: 10.1007/978-3-
319-93354-2 3.

[15] Y. Liu and Y. Wang, “A robust malware detection system using deep
learning on api calls,” in Proc. 2019 IEEE 3rd Inf. Technol. Netw.
Electron. Autom. Control Conf. IEEE, 3 2019, pp. 1456–1460, doi:
10.1109/ITNEC.2019.8728992.

[16] J. Zhou, M. Hirose, Y. Kakizaki, and A. Inomata, “Evaluation to classify
ransomware variants based on correlations between apis,” in Proc. 6th
Int. Conf. Inf. Syst. Security Privacy. SciTePress, 2020, pp. 465–472,
doi: 10.5220/0008959904650472.

[17] F. Ullah, Q. Javaid, A. Salam, M. Ahmad, N. Sarwar, D. Shah, and
M. Abrar, “Modified decision tree technique for ransomware detection
at runtime through api calls,” Sci. Program., vol. 2020, 2020, doi:
10.1155/2020/8845833.

[18] S. I. Bae, G. B. Lee, and E. G. Im, “Ransomware detection using ma-
chine learning algorithms,” Concurrency Comput.: Practice Experience,
vol. 32, p. e5422, 4 2020, doi: 10.1002/cpe.5422.

[19] P. Black, A. Sohail, I. Gondal, J. Kamruzzaman, P. Vamplew, and P. Wat-
ters, “Api based discrimination of ransomware and benign cryptographic
programs,” in Neural Inf. Process., H. Yang, K. Pasupa, A. C.-S. Leung,
J. T. Kwok, J. H. Chan, and I. King, Eds. Cham: Springer, 2020, pp.
177–188, doi: 10.1007/978-3-030-63833-7 15.

[20] S. Kok, A. Abdullah, N. Jhanjhi, and M. Supramaniam, “Prevention of
crypto-ransomware using a pre-encryption detection algorithm,” Com-
put., vol. 8, p. 79, 11 2019, doi: 10.3390/computers8040079.

[21] M. Scalas, D. Maiorca, F. Mercaldo, C. A. Visaggio, F. Martinelli, and
G. Giacinto, “On the effectiveness of system api-related information for
android ransomware detection,” Comput. Security, vol. 86, pp. 168–182,
4 2019, doi: 10.1016/j.cose.2019.06.004.

[22] S. H. Kok, A. Abdullah, and N. Z. Jhanjhi, “Early detection of crypto-
ransomware using pre-encryption detection algorithm,” J. King Saud
University - Comput. Inf. Sci., 7 2020, doi: 10.1016/j.jksuci.2020.06.012.

[23] M. S. Abbasi, H. Al-Sahaf, and I. Welch, “Particle swarm optimization:
A wrapper-based feature selection method for ransomware detection
and classification,” in Appl. Evol. Comput., vol. 12104 LNCS. Cham:
Springer, 4 2020, pp. 181–196, doi: 10.1007/978-3-030-43722-0 12.

[24] F. Khan, C. Ncube, L. K. Ramasamy, S. Kadry, and Y. Nam, “A
digital dna sequencing engine for ransomware detection using ma-
chine learning,” IEEE Access, vol. 8, pp. 119 710–119 719, 2020, doi:
10.1109/ACCESS.2020.3003785.

[25] D. W. Fernando, N. Komninos, and T. Chen, “A study on the evolution
of ransomware detection using machine learning and deep learning tech-
niques,” IoT, vol. 1, no. 2, pp. 551–604, 2020, doi: 10.3390/iot1020030.

[26] N. Hampton, Z. Baig, and S. Zeadally, “Ransomware behavioural
analysis on windows platforms,” J. Inf. Security Appl., vol. 40, pp. 44–
51, 6 2018, doi: 10.1016/j.jisa.2018.02.008.

[27] C. Forbes, M. Evans, N. Hastings, and B. Peacock, Statistical Dis-
tributions. John Wiley & Sons, Inc., 12 2010, pp. 53–54, doi:
10.1002/9780470627242.ch7.

[28] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: data mining, inference, and prediction, 2nd ed. New York:
Springer, 2009, pp. 245–247, isbn: 978-0-387-84858-7.

[29] S. Solorio-Fernández, J. A. Carrasco-Ochoa, and J. F. Martı́nez-Trinidad,
“A review of unsupervised feature selection methods,” Artif. Intell. Rev.,
vol. 53, no. 2, pp. 907–948, Feb 2020, doi:10.1007/s10462-019-09682-y.

[30] S. Ray, “A quick review of machine learning algorithms,” in 2019 Int.
Conf. Mach. Learn., Big Data, Cloud Parallel Comput. (COMITCon),
2019, pp. 35–39, doi: 10.1109/COMITCon.2019.8862451.

[31] P. Chaitra and D. R. S. Kumar, “A review of multi-class classification
algorithms,” Int. J. Pure Appl. Math, vol. 118, no. 14, pp. 17–26, 2018.
[Online]. Available: https://acadpubl.eu/jsi/2018-118-14-15/articles/14/
3.pdf

[32] J. N. van Rijn and F. Hutter, “Hyperparameter importance across
datasets,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, ser. KDD ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 2367–2376, doi: 10.1145/3219819.3220058.

[33] J. Singh and J. Singh, “Assessment of supervised machine learn-
ing algorithms using dynamic api calls for malware detection,”
Int. J. Comput. App., vol. 0, no. 0, pp. 1–8, 2020, doi:
10.1080/1206212X.2020.1732641.

[34] D. Paper, Hands-on Scikit-Learn for Machine Learning Applications:
Data Science Fundamentals with Python. Berkeley, CA: Apress, 2020,
pp. 165–188, doi: 10.1007/978-1-4842-5373-1 6.

[35] M. Hossin and S. M.N, “A review on evaluation metrics for data
classification evaluations,” Int. J. Data Mining Knowl. Manag. Process,
vol. 5, pp. 01–11, 03 2015, doi: 10.5121/ijdkp.2015.5201.

[36] D. M. W. Powers, “Evaluation: from precision, recall and f-
measure to roc, informedness, markedness and correlation,” Int.
J. Mach. Learn. Technol., pp. 37–63, 2011. [Online]. Available:
https://arxiv.org/abs/2010.16061

[37] D. Carlin, P. O’Kane, and S. Sezer, “A cost analysis of machine learn-
ing using dynamic runtime opcodes for malware detection,” Comput.
Security, vol. 85, pp. 138–155, 2019, doi: 10.1016/j.cose.2019.04.018.

Caio Carvalho Moreira received the M.Sc. degree
in electrical engineering from the Federal University
of Pará (UFPA), Belém, Pará, Brazil, in 2013. He
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2005, he has been with the Electrical Center of North
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