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Abstract— Phonetic alignment is the task of finding the limits 

of phones and higher units in an audio file. This has been reliably 
done in many languages such as English, French and German, 
but, so far, no available Brazilian Portuguese aligner had a 
performance comparable with the ones used for these other 
languages. Thus, the main goal of this work was to implement a 
useful tool for forced alignment for Brazilian Portuguese. The 
implementation was done in two steps, the grapheme-to-phoneme 
conversion and the alignment itself. The Converter is responsible 
for receiving the input transcription in graphemes and 
converting it to its equivalent in phonemes and allophones, and 
was implemented using computational rules derived from the 
analysis of regular grapheme-phoneme relations in Brazilian 
Portuguese and an exception dictionary, for words to which no 
regular rules could be applied. The Aligner was responsible for 
aligning the phonemes/allophones of the previous module to the 
corresponding acoustic intervals of the audio file, called 
"phones". This module was implemented using hidden Markov 
models. Results for the Converter have an accuracy of over 99%, 
where the main mistakes involved mid vowels /e/ and /ɛ/ and /o/ 
and /ɔ/. As for the Aligner, the best model has 87% of the 
alignments with errors below 25 ms. 
 

Index Terms— Phonetic Annotation, Machine Learning, 
Brazilian Portuguese. 

I. INTRODUCTION 
ORCED alignment is a category of alignment in which 

the algorithm receives as an input an audio file and a text 
containing the orthographic transcription of the audio, and 
generates as an output the times and the phonetic symbols 
aligned with the audio and corresponding to each part of the 
text that was spoken. Forced alignment has many applications 
for phonetic and speech corpora studies and can also be used 
to generate datasets for the training of speech recognition 
algorithms, for prosodic and segmental studies in 
Experimental Phonetics, Speech-based Corpus Linguistics and 
Laboratory Phonology, to cite a few applications. 

Forced aligners are toolkits that can be trained for any 
language and indeed some have been created and made 
available to the public for many languages, such as the 
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Montreal Forced Aligner [18] and webMAUS [21], both with 
models for several languages, including (European) 
Portuguese in the case of the former. Also notable is 
ProsodyLab [14], which is completely accessible via the 
GitHub platform. Even if these three toolkits allow researchers 
to develop aligners for any language, there is no freely 
available forced aligner for Brazilian Portuguese with state-of-
the-art acceptable results, so this is the main goal of this work. 

A forced aligner can be divided in two core modules, the 
grapheme-phoneme converter and the aligner itself. The first 
module is responsible for pre-processing the orthographic text 
at the input in order to obtain a sequence of phoneme or 
allophones at the output so that this representation can be used 
in the second stage as the input to the aligner, which will 
create the alignment between the phoneme/allophone 
realization (phone) in a particular audio interval attributing the 
appropriate labels delivered by the first module. 

To implement the aligner module, Hidden Markov Models 
[12] are the most used and accurate method for recognizing 
phonetic sequences with the publicly available HTK [22] and 
Kaldi toolkits [20] for implementation. These two toolkits 
were used in this work to create the aligners presented here. 

The results of an HMM tend to be more speaker-dependent, 
so that the created model performs better for speakers with 
phonetic similarities to the speakers used for training the 
model. Although deep neural networks [15] tend to work 
better in terms of generalization, it needs huge datasets, which 
is not our case. An advantage of building a forced aligner in 
the state-of-the-art with modest dataset sizes, provided they 
cover sufficient representativity of phonetic variation, is the 
gain in terms of hours dedicated to research. Thus, HMM was 
our choice for implementing Alinha-PB, the phonetic aligner 
for Brazilian Portuguese. 

In the following, the two components of Alinha-PB are 
described: the converter and the aligner, including their 
validation and a first set of tests carried out on both the 
training set and the test set. The final sections present the 
results, a general discussion and give the details about the 
availability of the tool. 

II. CONVERTER 
The Alinha-PB grapheme-to-phoneme converter converts a 

text written orthographically to its corresponding 
phoneme/allophone representation for Brazilian Portuguese, 
and includes the possibility of grouping these segments into 
words and phonetic syllables. To do so, and following 

Alinha-PB: A Phonetic Aligner for Brazilian 
Portuguese 

João G. S. Kruse and Plínio A. Barbosa 

F 



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, No.1, 2021 193  

mainstream literature on knowledge-based converters (see 
Hunnicutt [16] for a review), we used computational 
production rules of the form A -> B/L_R (grapheme A 
rewrites to phoneme or allophone B if A is in the left context 
L and right context R) and an exceptions dictionary for the 
words for which the production rules do not apply. For the 
sake of portability and use in platforms such as Praat [8], the 
phonetic symbols generated at the output level are coded in 
ASCII, which presents the respective IPA correspondence 
given in Tab. I.  

 
TABLE I: Correspondence between IPA symbols and symbols 

used in Alinha-PB 
 

 
A. Rules for conversion 

The rules were created based on grapheme-phoneme 
correspondences found in Albano and Moreira [1] 
supplemented by a search in corpora, especially the Corpus 
Brasileiro [4] for specific pronunciation rules that would deal 
with the majority of high-frequency words in the case of the 
mid vowels /e/ vs. /ɛ/ (orelha vs. velha) and /o/ vs. /ɔ/ (poço 
vs. posso). The choice for a particular rule was guided for the 
sake of having a large coverage of word tokens with a 
particular pronunciation. To determine the rules, several 
searches in free dictionary entries in the Internet   (such as 
www.dicio.com.br) for large sets of words containing the 
grapheme sequences to be converted were analysed and a rule 
was created so that it correctly predicted the phoneme 
representation for the largest number of the words. During this 
process, we realized that certain words with very similar 
graphemic sequences have different conversions, which 
brought about the need for an exceptions dictionary. For the 
application of the rules themselves, it is first necessary to find 
the position of stress in the word. 

B. Pre-processing: finding stress position 
To determine where stress is in the word, a process similar 

to the complementary use of rules for graphic accentuation in 
Portuguese was applied, as follows. The first step is to verify 
if the word has one of the following accentuation marks the 
circumflex or the acute diacritics and, if so, this syllable was 

considered stressed. If not, we verify if the word has a tilde 
mark, and, if so, that syllable is stressed, because it is heavy 
[7]. If none of these conditions are found, we know that the 
word is either a paroxytone (stress on the second last syllable) 
or an oxytone (stress on the last syllable), so we can restrict 
our analysis to them. If a word is oxytone, we know that it is 
graphically accentuated when it ends in “a”, “as”, “o”, “os”, 
“e”, “es”, “em”, “ens”, and because of that, if the word ends in 
one of those sequences and is not marked with an accent 
diacritic, we know it must be a paroxytone. By the same rule, 
if a word does not end in one of those sequences and is not 
graphically accentuated, it must be an oxytone (the only 
exceptions to this rule, which can be easily managed, are the 
words ending with the sequence “am” or “ans”, in which case 
the word is not accentuated and is a paroxytone). 

As regards sequences of two or more connected vowels, it 
was first necessary to decide if they are on the same or 
different syllables, which is equivalent to determine if a vowel 
grapheme is a vowel or a semi-vowel. This is done by 
considering vowel precedence, that is, the fact that, in 
Portuguese, the vowel grapheme ‘a’ is always a vowel and, 
then, other vowel graphemes in the same syllable are 
semivowels. Using this reasoning, and knowing which 
diphthong sequences exist in Brazilian Portuguese, it is 
possible to differentiate the roles of the vowels and 
semivowels, which is also important to stress assignment. For 
example, in the word ‘paiol’, which we know is an oxytone, 
‘o’ is the stressed vowel and, because 'a' has precedence over 
‘i’, when converting to a phoneme, 'i' will be the semivowel 
forming a decreasing diphthong. 

After the phase of stress position detection, the conversion 
rules are applied. They can be divided into three main 
categories: 

C. Direct Conversions (context independent) 
These types of conversions are independent of the context 

in which the grapheme is inserted, meaning that it depends 
solely on the grapheme or graphemes being analysed. Some 
examples of this type of conversion (grapheme → phoneme in 
ASCII) are: 

 b → b 
 f →  f 
 j → zh ([ʒ], in the IPA representation). 

D. Word-Dependent Conversions 
These conversions depend on some contextual factor in the 

word (position of the grapheme, preceding or following 
grapheme). In order to make these conversions the whole 
word is needed as a context. The main factors that were taken 
into account were: 

 
Position: 
Some graphemes are pronounced differently depending on 

the position in the word, mostly the end or the beginning of 
the word or depending on their positions in the syllable. 
Syllable boundaries can be recognized easily for certain 
consonant sequences such as /lC/, /RC/, /sC/ and then, rules 
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referring to syllable boundaries can be applied, such as the 
following: 

‘l’ is converted to the symbol "U" ([ʊ] as the IPA 
equivalent) when in the end of the syllable; 

‘r’ in the end of a syllable is converted to the symbol "R" as 
an archiphoneme, without the specification of the specific 
pronunciation, which is highly variable in Brazilian 
Portuguese [9][19],  whereas in the beginning of the word it is 
converted to the symbol "r"; 

‘s’ in the beginning of the word is converted to the symbol 
"s"; 

 ‘s’ in the end of a syllable is converted to the symbol "S" 
(as in a archiphoneme) for differentiating the realization of /s/ 
in coda from that in onset position, as above. 

Furthermore, vowels before stress are represented with 
lowercase (e.g., akamadU, for "acamado" and with uppercase 
after stress (e.g., kazA, for "casa"), not only following the 
proposal by [1], but mainly for allowing direct use in Praat 
scripts for phonetic analysis. 

 
Preceding and/or Following Letter: 
Some graphemes are pronounced differently depending on 

the letter that precedes or follows them. This can be seen in 
the examples below: 

 ‘s’ when between vowels is pronounced as [z]; 
 ‘s’ when between followed by ‘s’  is pronounced as [s]; 
 ‘c’ when followed by ‘h’ is pronounced as [ʃ] ([sh] in the 

ASCII representation), whereas it is pronounced as [s] after "e, 
i" and [k] after "a, o, u"; 

 ‘u’ is not pronounced when in the sequences ‘qui’, ‘que’, 
‘gui’ and ‘gue’ (exceptions are included in the exceptions 
dictionary, like for "arguição" and "água", see below). 

E. Part-of-speech-Dependent Conversions 
These conversions depend on the part of speech of the word 

in which the grapheme is inserted (if it is a verb, adjective, 
etc). Some examples are: 

 
 jogo N (game) [o] vs. jogo V [ɔ] (I play) 
 olho N (eye) [o] vs. olho V [ɔ] (I look) 
 
Part-of-speech was obtained by using the lemmatizer 

conceived by the team of researchers of the Núcleo 
Interinstitucional de Linguística Computacional of the 
University of São Paulo and implemented  by [17]. It is based 
on the MXPOST part of speech tagger and UNITEX 
dictionaries for Portuguese delivering the lemmas and Part-Of-
Speech tags of the words of a text stored in a plain text file. 
Due to the slowing down of the AlinhaPB performance on the 
web page, the use of lemmatizer was suspended for further 
evaluation and, for the time being, the most frequent 
pronunciation of the aperture degree of the medial vowels is 
being used by the converter. 

Rules depending on the semantic value of the word, as in 
the case of "sede" (thirst) [e] vs. "sede" [ɛ] (headquarters), 
were not implemented for lack of a semantic parser. In that 
case, the most frequent conversion was chosen as a default. 

Word frequency can be checked by a simple search of the list 
of words in the Corpus Brasileiro database [4]. 

F. Interword rules (sandhi) 
These conversions are a special case when a word ends in 

an unstressed ‘a’ and the following word begins with an 
unstressed vowel, either identical or not [5]. In this case, the 
‘a’ is not pronounced. Below we can see one example in 
which it happens and one in which it does not: 

 
 ‘linda armada’ → "liNdaRmadA" 
 ‘linda árvore’ → "liNdA aRvORI" 
 'a bela irmã' → "a behliRmaN" 
  
 Because sandhi has its phonetic implementation more 

variable when the word ends with unstressed 'e', 'i', 'o 'and 'u', 
such as in "o belo irmão", where the final vowel of the first 
word being can either be realized as a semivowel or can be 
elided, no rule was implemented for these cases [6]. 

G. Exceptions 
To handle exceptions to the rules above, a dictionary was 

created so that words that are in this dictionary have their 
complete phonetic conversion ready, thus avoiding the need to 
use the rules and therefore dodging these mistakes. Only 
words to which it wasn’t possible the creation of a rule were 
added to the dictionary. Some examples of these: ‘pinguim’, 
‘linguiça’. 

If the word still has the trema over "u" (that is, "ü" like in 
"lingüística"), following the previous orthographic rules, it 
will always be converted to "U". In the other cases, where the 
grapheme "u" is followed by a vowel, the only way to 
determine in which words the ‘u’ is pronounced as a 
semivowel is by means of an exceptions dictionary. Because 
the "u" in these conditions (e.g., "quilo", kilo, "guerra", war, 
"aquele", that)  is not pronounced  in the large majority of the 
times, the cases in which it is pronounced  were added to the 
exceptions dictionary; 

 
 ‘logo’ [o] (noun) and ‘logo’ [ɔ] (verb), and other 

homographs. 
 
The pronunciation of the vowels in these words can only de 

determined by their part of speech or semantic value inferred 
from the context and these cases were explained in section E. 

H. Grouping the phonemes/allophones into words and 
syllable-sized units 

Splitting the converted text into words and single 
phonemes/allophones is straightforward, consisting of simply 
separating the text after every white space or after every 
phoneme/allophone, respectively. But assembling the 
phonemes into phonetic syllables requires some processing. 
For the purpose of this project, phonetic syllables consist of 
units of one or more segments starting with a nucleus formed 
by the vowel or a diphthong and followed by semi vowels or 
consonants to form the so-called VV unit [2]. 

 By using a simple correspondence table, we can divide 
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the converted string of phones/phonemes into vowels and 
consonants. Because a VV unit must start with a vowel, all 
following semivowels and consonants are placed at the end of 
this unit. Furthermore, a vowel grapheme can follow a stressed 
vowel in the syllable, but a stressed vowel cannot follow a 
vowel grapheme and being in the same syllable (e.g., in the 
word "saída", exit, the two first vowels are in different 
syllables, whereas in the word "sai", s/he goes out, the two 
vowel graphemes are in the same syllable and the second one 
is a semivowel). Using these rules and disregarding the spaces 
dividing the words, we can determine the VV units as either a 
vowel followed by one or more consonants or semivowels or 
with a single vowel for the case it is not followed by 
consonants (e.g., 'a árvore', the tree). The only exception that 
must be made is that, if the sentence starts with a consonant, 
this consonant will be isolated, as there is no vowel preceding 
it. An example of this is shown below: 

 
 ‘Mas que seja...’ → ‘ m aSk es ezh A...’ 

I. Workflow 
The path for finding the phoneme/allophone conversion of 

an input text is shown in the flowcharts below, where G2P 
means Grapheme-to-Phoneme conversion. Fig. 1 presents a 
macroview of the conversion procedure and Fig. 2 presents a 
detailed view of the same procedure. 

 

 
Fig. 1.  Flowchart describing the process of conversion of an input grapheme 
string to a phoneme string (output). 

 

Fig. 2.  In-depth flowchart of the grapheme-to-phoneme converter. 
 

J. Conversion results 
The converter was tested with a selection of texts in order to 

have as many possible variations for each phoneme/allophone 
and validated against hand-made conversions. In total, a set of 
1,500 phonemes were used. The converter had an error of less 
than 0.1% for this set, only making four mistakes. The main 
source of mistakes was in the differentiation of the open and 
closed sound for the vowels ‘o’ and ‘e’, as no rule that 
adequately describes the differentiation was found. On the 
other hand, all these errors in specific words can be added to 
the exception dictionary, so that they are corrected in the next 
conversion. 

III. ALIGNER 
The aligner was responsible for receiving an audio file and 

a phoneme-converted text at the input and generate the 

corresponding time values in the audio that correspond to the 
boundaries of each phoneme/allophone (phonetic syllable or 
word) obtained from the previous analysis. Three approaches 
were used for training, one using HTK directly, one using 
Prosodylab-Aligner (which also uses HTK) and the last one 
using Montreal Forced Aligner (which uses the Kaldi 
technique). For each one of these approaches, a model was 
trained for each phoneme/allophone (and silence) in both the 
training and decoding phases.  

A. Data 
For the first training, annotated audio files for six different 

speakers were used, where the audios were delimited in 
phonetic syllables (VV units) and labeled using the ASCII 
symbols of Tab. I. The speakers were all from the State of São 
Paulo, aged from 20 to 35 years, being five men and one 
woman studying at the University of Campinas at the 
undergraduate or Graduate levels. Three additional male 
speakers were spared for the validation of the model on 
speakers that were not used in training, to see how well it 
would perform. In total, 363 audios and 4,117 phonetic 
syllables (circa 8,900 phonemes) were used for training the 
models. The audio files, of high acoustic quality, were formed 
by excerpts of reading and storytelling from the Belém corpus, 
which consists of the reading of a 1,600-word story of the 
origin of the Belém pastries in Portugal and subsequent telling 
of the story, Belém dataset (see [3] for the use of this corpus to 
compare the rhythm of Brazilian and European Portuguese). 
Two other datasets with no environment control were added in 
order to evaluate the impact of noisy audio files on model 
performance. They were Vox dataset with at least 89 speakers 
with a total of 73,025 phonemes, and LapsBM dataset with 35 
speakers (10 women), each one with 20 single utterances, 
totaling 700 utterances. This also allowed including more 
female speakers to modeling.  Both datasets are available at 
<https://github.com/igormq/asr-study/tree/master/datasets>. 
They do not have the corresponding phoneme alignment, 
which was supplied by the output of the models trained with 
the high acoustic quality dataset. 

B. Training 
Due to restrictions inherent to the Belém dataset, originally 

segmented into phonetic syllables, the first task was to split 
these syllables into their constituent segments for at least two 
reasons: (1) because the aligner can only align phonetic 
material for which it has a correspondent model and the 
number of possible phonetic syllables is far higher than the 
number of phonemes/allophones (exponentially larger), the 
creation of an appropriate model for each syllable is 
impracticable, as the training dataset would not have all the 
possible phonetic syllables in a sufficient number for an 
accurate training, due to the lack of enough examples for each 
phonetic syllable type; (2) by training the model on 
phonemes/allophones, the number of training tokens for each 
phoneme is much larger than the number we would have for 
each phonetic syllable. Those are the reasons why the training 
was made using phonemes/allophones. For that, a 
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correspondence table was used, so that each syllable was 
divided in its constituent phonemes/allophones. The following 
models were built based on the available toolkits. 

 The first training used HTK directly and converged in 
seven iterations with the insertion of models for a silence 
interval, so that each syllable would have a silent acoustic 
model attached to it (in the case the syllable is nor preceded or 
followed by a silent pause, silence duration was set to 0). It is 
also worth pointing out that each phoneme was represented by 
a five-state model states (three emission states and the 
input/output states) including silence. By using this, it was 
possible to obtain a model that considered the spectral changes 
through time for each acoustic segment. Models with both 
monophones and triphones were used. 

 For the Prosodylab-Aligner (PL) training, ten iterations 
were used per round with all the default configurations. These 
configurations include three rounds of training and 16 kHz for 
the sample rate (which is the recommended sample rate 
because of the fact that it is the default one in this case). This 
default required that the entire dataset was resampled to 16 
kHz, because the original sampling rate was 22,05 kHz. 

 Finally, for the Montreal Forced Aligner (MFA), the 
default configurations were used, that is, 39 iterations for the 
phoneme/allophone models (where each phoneme/allophone is 
modeled in the same way, regardless of phonological context) 
followed by 40 iterations for the triphone training (where the 
immediate context on either side of a phone is taken into 
account for the acoustic models) and a third and forth passes 
that find a transform that makes the phonemes/allophones 
maximally different and enhance the triphone models taking 
the speakers into account, respectively. It is worth noting that 
the triphone pass is different than training over phonetic 
syllables in the sense that it takes the monophone models 
trained in the previous step and now considers the context of 
the monophones in each side for a more robust and context-
dependent training. Only the MFA acoustic models considered 
triphones, because PL does not offer this option, and, for both 
the PL and MFA models the audios were resampled to 16 
kHz. As the training algorithm is not guaranteed to achieve a 
global maximum, several iterations were made of the models 
in all the training options and the best one, that is, the one with 
the least average error, was chosen as the final result. It must 
be said that, even with the additional triphone training for 
MFA, it did not perform better than PL.  

Training was also done with the Vox and LapsBM datasets, 
which are, depending on the file, very noisy.  

C. Alignment 
For the alignment as a whole, the orthographic text and the 

corresponding audio file represent the input. The text is then 
converted to its phoneme/phone representation. Finally, the 
phoneme/allophone labels are then organized in the desired 
alignment structure (phonemes/allophones, phonetic syllables 
or words). The alignment is then made using the Viterbi 
decoder in HTK using the single phoneme models and a 
dictionary that relates the desired alignment structure and the 
phonemes/allophones of the acoustic models. 

D. Validation 
For the validation, the absolute difference between the 

aligned interval duration and the manually annotated interval 
duration was used for probing the models. As aforementioned, 
the validation data was split between training and test sets 
with different speakers. 

IV. RESULTS 
Comparing the results between aligners for the Belém 

training set and in Tab. II, we can see that both the PL and the 
model trained with HTK toolkit, monophones, performed very 
similarly for the speakers present in the dataset, obtaining over 
85% of the alignments with less than 25 ms and mean errors 
of 19 ms and 21 ms, respectively. These results are exactly of 
the same size of the recently developed Kaldi-based aligner 
for Brazilian Portuguese by [11], which required much more 
costly training phase with more than 170 hours of audio data. 
See also those developed by [10][13]. 

 
TABLE II: Aligner absolute errors for speakers present in the 

training dataset (Belém dataset) 

Cumulative 
Error 

HTK Prosodylab 
Aligner 

Montreal 
Forced 
Aligner 

< 10 ms 47.1% 38.5% 44.6% 

< 25 ms 85.5% 85.2% 73.51% 

< 50 ms 93.5% 94.1% 85.4% 

< 100 ms 96.5% 98.3% 92.6% 

< 200 ms 98.8% 99.8% 97.7% 

Mean 21 ms 19 ms 33 ms 

Median 11 ms 13 ms 12 ms 

Standard 
Deviation 

50 ms 41 ms 95 ms 

 
We can see in Fig. 3 that the predicted and manual 

alignments matched very well for one example of the 
alignment of an audio of a speaker in the training set 
performed with the PL toolkit. Observe that both labels and 
time alignment match almost perfectly, with very small 
displacements. The MFA also managed to perform fairly well, 
achieving over 73% of the alignments with less than 25 ms of 
error and over 97% with less than 200 ms. As we can see, it 
did not perform quite as well as the previous aligners, with a 
mean error more than 10 ms higher than the others. Even so, 
its median only differed by 1 ms from the other aligners, 
which is due to the fact that the MFA error distribution was 
more spread out, as can be seen in the histogram in Fig. 4, 
which can be compared with the one in Fig. 5, for speakers not 
present in the training set, where one can see that the 
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distributions are quite similar, confirming the relative speaker 
independence of this toolkit. 

 

 
Fig. 3.  Broadband spectrogram (above) and corresponding original (bottom) 
and predicted (medial) VV labels and boundaries for a speaker in the training 
set for the excerpt "(quant)o mais zangado estivesse, mais b(aixava a voz)". 
 

 
Fig. 4.  Percentage of time errors in milliseconds for speakers present in the 
training set plotted in a log scale for the models trained directly with Montreal 
Forced Aligner 
 

 
 
Fig. 5.  Percentage of time errors in milliseconds for speakers not present in 
the training set plotted in a log scale for the models trained directly with 
Montreal Forced Aligner 
 

Although the models performed well for the tests in the 
Belém training dataset, another validation with speakers who 
were not in the training dataset was made for the other two 

toolkits as Hidden Markov Models are known to be speaker-
dependent. In this other validation, we can see in Tab. III that 
the model trained directly with HTK had a large decrease in 
performance, having only 30.4% of the errors below 25 ms (a 
drop of 55.1% in comparison to speakers in the training 
dataset). The MFA and PL toolkits, on the other hand, 
maintain the error rates in the test dataset, obtaining 72.2% 
and 87.8% respectively for their errors below 25 ms and mean 
errors of 16 ms and 29 ms. PL performed slightly better than 
MFA for speakers not seen during training may be due to the 
fact that the audios being used were not phonetically balanced, 
and the particularities of both the training and test sets and the 
training process itself may end up resulting in this difference. 
The PL toolkit ended up having results comparable to the 
MFA-LA model trained on the Buckeye dataset presented here 
[18], which had a mean error of 17 ms and a median of 11.2 
ms (although it is worth pointing out that the MFA-LA model 
aligned phonemes and not phonetic syllables). 
 

TABLE III: Aligner errors for speakers present in the test 
dataset (Belém dataset) 

Cumulative 
Error 

HTK Prosodylab 
Aligner 

Montreal 
Forced 
Aligner 

< 10 ms 12.8% 41.4% 35.6% 

< 25 ms 30.4% 87.8% 72.2% 

< 50 ms 53.5% 97.5% 90.3% 

< 100 ms 88.9% 99.3% 96.8% 

< 200 ms 96.6% 99.6% 99.1% 

Mean 63 ms 16 ms 29 ms 

Median 46 ms 12 ms 15 ms 

Standard 
Deviation 

93 ms 34 ms 101 ms 

 
 
Fig. 6.  Broadband spectrogram (above) and corresponding original (bottom) 
and predicted (medial) VV labels and boundaries for a speaker not in the 
training set for the excerpt "e principiou a recitar uma longa poes(ia)". 

As can be seen in the example of Fig. 6 for the PL model, 
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the predicted alignments match the manual annotation quite 
faithfully with the main differences being the incorrect 
attribution of (1) the VV label "Al" to a silent pause, (2) the 
VV label "um" to the end of the [a] of "recitar", and (3) the 
silent pause label (sp) to the "m" of the word "uma", where 
segment /u/ was not pronounced. Note that the VV unit [a] of 
the final vowel of "recitar", pronounced as "recitá", a common 
pronunciation for the verbal infinitive, includes the silence 
pause, as required from the definition of this unit. 

Figs. 7 to 10 compare the distribution of errors for HTK and 
PA aligners, for both the Belém training and test datasets. As 
it is shown in the in Fig. 7 vs. 8, and Fig. 9 vs. 10, the errors 
for PA were less spread out, being more centered around their 
mean than the ones for the model trained directly with HTK. 
We can also see that, especially for the PA alignments, the 
curve is left skewed, as over 90% of the errors are below 50 
ms in both tests. In the HTK model, on the other hand, the 
histograms are more symmetrical, particularly for the speakers 
in the test dataset (50% of the errors below 50 ms). 

 
Fig. 7.  Percentage of time errors in milliseconds for speakers present in the 
training set plotted in a log scale for the models trained directly with HTK. 

 
Fig. 8.  Percentage of time errors in milliseconds for speakers not present in 
the training set plotted in a log scale for the models trained directly with HTK. 
 

Even though the means and medians of the time errors in 
the models are close for the training and test datasets, 
particularly for the PA toolkit, the plots show that the three 
toolkits have some alignments with particularly high errors 
(on the order of 100 ms for the Prosodylab and 1000 ms for 
the HTK), which could be extremely harmful if their 
frequency were not so small (well below 0.5%). 

 
 
Fig. 9.  Percentage of time errors in milliseconds for speakers present in the 
training set plotted in a log scale for the models trained directly with 
Prosodylab-Aligner. 

 
Fig. 10.  Percentage of time errors in milliseconds for speakers not present in 
the training set plotted in a log scale for the models trained directly with 
Prosodylab-Aligner. 
 

The difference between MFA and PL could be due to the 
fact that the MFA training involved triphone models, while the 
PL did not, and perhaps the dataset was not large enough to 
allow any reliable training of the models with enough 
variations of triphones. The training with the (much larger) 
LapsBM dataset slightly improved the results for MFA, but 
not PA. Another option that could be explored was to use new 
data to adapt the trained models, which might be possible both 
in the MFA and HTK cases for example. 

Training with the three datasets for the MFA toolkit 
revealed results very close to the ones in Table II. They 
improved to 80% of errors below 25 ms, and 91% below 50 
ms when the Vox dataset, the noisier one, is excluded. Using 
triphones with the HTK toolkit did not produced results better 
than with monophones: 74% of errors below 25 ms, and 85% 
below 50 ms (Belém dataset only), and 78% of errors below 
25 ms, and 85% below 50 ms (Belém and LapsBM datasets). 

V. CONCLUSION 
Alinha-PB offers a base ground so that phoneticians do not 

have to align everything by hand, but just correct the mistakes 
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of the forced aligner, which can drastically speed up the 
process. As described below, Alinha-PB offers a tool to align 
Brazilian Portuguese audios without the need to have a huge 
dataset to train your own models (even though it is still 
possible). The website allows making the alignment on site 
without the hassle to download and install new packages and 
software for it. Lastly, as the code is open source, it can still 
be improved and adapted for specific use cases by the end 
user, although this is not necessary for the basic use. 

 Compared with the recently developed aligner for BP by 
Dias and colleagues (2020), ours has the advantage of as faster 
training phase based on much less audio material, and an 
immediate availability in the Internet. 

To make easier the use of the developed aligner and 
converter, a website was created 
(<https://conversoralinhador.herokuapp.com/>), so that the 
user wouldn’t have to download anything to use them. For the 
converter, the user has the options of converting the grapheme 
text and tuning the exceptions. The latter is offered so that if a 
word is incorrectly translated, you can add or remove the 
exceptions in the exception dictionary so that the conversion 
will be corrected. For the aligner, the user has to upload a wav 
audio file and provide the corresponding text (it can be given 
in phonemes or graphemes, in which case the converter would 
be responsible for converting the text to phonemes/allophones) 
and can choose the alignment (between phonemes, phonetic 
syllables and words or the three altogether). As was shown 
above that the aligner works better for speakers that were used 
in the training dataset, an option to train a new model with 
pairs of audio and the corresponding text files with the correct 
transcriptions is provided. These trained models can be created 
using tools such as Prosodylab-Aligner, which are free to use 
and only require the audios and their respective transcriptions 
in phonemes (the transcription does not need to be time-
aligned). All the trained models and a local version of the 
website are also available here 
<https://github.com/jkruse27/Alinha-PB>. 
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