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Abstract— Distributed Denial of Service (DDoS) attacks impose 

a major challenge for today's security systems, given the variety of 

its implementations and the scale that the attacks can achieve. One 

approach for their early detection is the use of Machine Learning 

(ML) techniques, which create rules for classifying traffic from 

historical data. However, different types of data contribute 

unequally to the assertiveness of the trained model. The use of 

Feature Selection (FS) techniques as a pre-processing step allows 

identification of the most relevant features for the problem in 

question. This action reduces training time and can even improve 

performance when noisy variables are eliminated. The current 

work is based on a public dataset and the XGBoost algorithm to 

measure the impact of FS techniques on the DDoS attack 

classification problem. We consider both techniques independent 

of the sample labels, as well as methods that use this information 

to rank the variables in order of importance. We analyzed the 

problem from the point of view of Binary and Multiclass 

classification. We also created a benchmark of classification 

metrics and execution times. Our comparisons involved the 

Accuracy, Precision, Recall, and F1 Score metrics for different FS 

methods, in addition to training and execution time. In the results 

it is possible to verify for both the Binary (78% reduction of the 

features) and Multiclass classifiers (60% reduction of the 

features), that the ANOVA method proved to be the most 

beneficial. 

 
Index Terms— Feature Selection (FS), DDoS, XGBoost, Binary 

Classifier, Multiclass Classifier 

 

I. INTRODUCTION 

ISTRIBUTED Denial of Service (DDoS) attacks are 

increasingly frequent and voluminous on the Internet. 

Daily, thousands of attacks are triggered to the most diverse 

targets: governments, e-commerce companies, 

telecommunications service providers, multimedia content 

distributors, among others [1]. The motivations for these attacks 

are very diverse, such as economic interests, political activism, 

or even intellectual curiosity.   
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Currently it is even possible to hire DDoS attacks towards a 

specific target [2]. Attackers, who have numerous infected 

devices under their command, charge for the duration and 

volume of the shots. In addition to the direct economic and 

social damage caused by the interruption of services, the 

reputation and credibility of the attack victims are also severely 

tarnished [3]. 

Detection of DDoS attacks can be performed by Intrusion 

Detection/Prevention Systems (IDPS). IDPS have traditionally 

been divided into two areas: detection by signature and by 

anomaly [4]. Although attack signatures developed by experts 

are able to identify threats with great precision, they become 

ineffective against unprecedented attacks. In contrast, the use 

of anomaly detection is able to offer some protection even 

against zero-day attacks. One of the biggest difficulties in 

implementing DDoS detection systems via anomaly detection 

is in minimizing the occurrence of false positive or false 

negative alerts. 

There are several anomaly detection techniques. Some are 

based on the comparison of correlations and gains [5 - 6], while 

others focus on clustering methods [7]. However, it is Machine 

Learning (ML) models that have gained more relevance 

recently, thanks to advances in the availability of computational 

power, specialized software, and public datasets. The 

application of ML models for detecting DDoS attacks has been 

discussed in the literature for some decades [8 – 10]. The 

problem of anomaly detection has been attacked by both the use 

of supervised learning (such as classifiers) and unsupervised 

learning. 

However, the selection of features that serve as input to a 

model is a less explored subject within the context of attack 

detection. The use of Feature Selection (FS) can bring several 

benefits, including: (1) a more agile attack detection process; 

(2) less need for storage and memory when implementing the 

classifier; and (3) an increase in the ability to interpret the 

model generated [11]. 
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The objective of this work is, therefore, to measure the 

impact of FS techniques in the problem of classifying DDoS 

attacks using Machine Learning. The proposal is to establish a 

fixed classifier algorithm and evaluate the influence of FS 

methods on performance metrics. The use of classifiers 

presupposes a labeled dataset. In particular, in this context, the 

following are analyzed: 

• The impact of FS methods that are independent of the 

target feature; 

• The impact of FS methods that do depend on the target 

feature; 

• The execution time of the whole model (which includes 

performing FS and training the classifier). 

The rest of the article is divided as follows: Section II 

presents the related works, introducing the main types of FS, 

datasets, and classifiers found in the literature. Section III 

details the proposal of the experiments, including the 

environment used, the data architecture, and the quality metrics 

of the classification. Section IV presents and analyzes the main 

results obtained in the computer simulations. Finally, Section V 

contains the general conclusions of the work, contributions, and 

future works. 

 

II. BACKGROUND 

This section briefly describes the related works and concepts 

related to our proposal. 

 

A. Related Works 

The FS algorithms are inserted in the context of 

dimensionality reduction. The objective of these techniques is 

to find a subset of input features, so that they are closer to the 

target feature and more distant from each other [12]. In this 

case, there are several ways to define distance, such as, for 

example, Pearson's Correlation Coefficient (PCC) or Mutual 

Information (MI) [13]. An FS technique is characterized by the 

choice of a subset of features, among the original variables, 

without any transformation or creation of new variables. It 

differs, therefore, from feature extraction techniques, such as 

Principal Component Analysis (PCA), which projects input 

features in a different space to the original one. An unwanted 

consequence of methods that transform the original variables is 

the lack of interpretability of the new variables. 

FS methods are divided into: (1) filters; (2) wrappers; (3) 

embedded; and (4) hybrids [14]. In the work of Polat, Polat, and 

Cetin [8], the uses of filters, wrappers, and LASSO (Least 

Absolute Shrinkage and Selection Operator, which is an 

embedded way of executing FS) are explored as a pre-

processing step for the classification of DDoS attacks in 

Software-Defined Networks (SDN). As classifiers the authors 

employ Support Vector Machines (SVM), K-Nearest 

Neighbors (KNN), Naive Bayes (NB), and Artificial Neural 

Networks (ANN). In all cases, Accuracy improvements occur 

when the techniques are applied. 

The use of filters involves the comparison of a single variable 

with the target, without taking into account its relationship with 

the other variables. Because of this, these methods are 

computationally efficient. They involve assigning a number to 

each feature and then usually sorting them, choosing the most 

appropriate K variables. This category includes PCC, 

Information Gain (IG), and Chi-Square Test, for example. 

Pattawaro and Polprasert [15] propose a novel technique for 

classification problems, the Attribute Ratio (AR), which only 

takes into account counting ratios of the observations belonging 

to each class, thus being a type of filter. 

Wrappers are problems of exhaustive search in the space of 

variables, directly involving the use of some classifier method. 

A quality metric is chosen (such as Accuracy), a model is 

trained using a subset of the features and, depending on the 

result, new variables are added or removed, iteratively. An 

example is the work of Gupta [10] who applies Recursive 

Feature Elimination (RFE) to select the appropriate variables 

for the classification of DDoS attacks. However, wrappers are 

computationally very expensive. 

The choice of the best variables within the space of all 

possible combinations is considered an NP-Hard problem [16]. 

There is even research on ways to optimize the execution of the 

wrappers. For example, one way is to use Genetic Algorithms 

[17], that incorporate the idea of objective function (analogous 

to Natural Selection) to choose the most suitable population of 

variables. Tree-based classifiers, such as Decision Trees (DT), 

Random Forest (RF), and XGBoost, already have methods of 

quantifying the importance of each feature built into their 

training. An example is in the work of Dhaliwal, Nahid, and 

Abbas [18], in which an XGBoost model is trained for intrusion 

detection tasks, using the feature importance score generated by 

the algorithm to interpret the results. In the work of Wang et. al 

[14] a hybrid FS model is shown. More specifically, an 

ensemble of the results obtained by other methods is carried out, 

aggregating them through arithmetic and geometric means. 

Several datasets have been used over the years as a reference 

for intrusion detection research, with an emphasis on the most 

popular: KDD 99 [10] [19 - 20] and NSL-KDD [21 - 23]. These 

attack records are used in several studies, many of them with a 

focus on detecting anomalous network behaviors using ML. 

However, these datasets are out of date, since new types of 

attacks, which are not represented in these sets, have been 

introduced in the 21st century. 

Therefore, it is necessary to use a more up-to-date dataset. 

The dataset Canadian Institute for Cybersecurity DDoS 2019 

(CICDDoS2019), published by Sharafaldin et al. [24], is 

extracted from a testbed with real equipment, such as routers, 

switches, firewalls, and several servers. In their work, the 

authors generate both attacks and benign background traffic. In 

total, 86 network parameters are collected. Attack traffic is 

more represented than normal traffic in this dataset. As part of 

the paper that presents the set, the authors propose the use of 

ML to perform the classification of attacks, building models 

with the Iterative Dichotomiser 3 (ID3), RF, NB, and Logistic 

Regression (LR) algorithms. Since its publication, this dataset 

has already served as the basis for some works such as that of 

Hussain [25], which uses resampling to address class 

imbalance, and Li [26], which makes use of both traditional ML 
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and Deep Learning (DL) algorithms. 

A summary of the main related works is found in Table I. 

The datasets used are listed for reference. Table I also shows 

dataset processing techniques, such as Feature Selection and 

sampling. The methods for training a DDoS attack classifier are 

also exposed, such as the algorithm used, the type of 

classification it performs and whether Cross-Validation was 

used or not. Finally, quality metrics are also listed in Table I. In 

addition, the experiments that will be shown in this work are 

placed at the end of the table for comparison with the others. In 

general, this work seeks to apply a wide range of Feature 

Selection techniques and performance metrics to assess the 

impact of the former on the DDoS attack classification problem. 

We emphasize that this work tackles the problem from both a 

Binary and a Multiclass point of view. The ratios between 

metrics and runtimes are also introduced, here called Benefit-

Cost Ratios, and will be explained in Section III.D. 

Tree-based algorithms have been shown to be efficient as 

classifiers and regressors for tabular data. In particular, 

XGBoost [27] drew the attention of industry and academia, for 

its performance and training agility. It is a gradient boosting 

algorithm, which produces a strong predictive model through 

the combination of weak models. Its use is very popular in ML 

competition platforms, such as Kaggle [28]. In addition, it has 

been applied to the classification problem of DDoS attacks with 

good results [15][18][29]. 

 

B. Literature Review 

As described in [27], XGBoost makes its predictions through 

an ensemble of decision trees. These trees are constructed so as 

to minimize a cost function that contains regularization terms 

(to penalize very complex models). The weight that each new 

tree will contribute to the final prediction is calculated to go 

against the gradient of the cost function. As its training depends 

on the result of the previous iteration, the trees are therefore 

trained sequentially. XGBoost will be used as the classifier in 

the experiments that follow. 

Several Feature Selection methods are used in the 

simulations in the next sections. Some of them do not depend 

on the label of the samples we have in hand. For example, 

features with low variance (and, consequently, also the 

constants features, with variance  𝝈𝟐 = 𝟎) have no 

discriminatory power in a decision tree, and therefore can be 

discarded [30]. Correlated variables end up dividing among 

themselves the importance they have in a predictive model [13]. 

They can thus be represented by a single variable. 

There are variable selection methods that are label-

dependent. We can use Analysis of Variance (ANOVA), for 

example, to see if a categorical target (as in the case of DDoS 

attacks) influences the behavior of a numerical variable. 

ANOVA uses an F-test to determine whether two or more 

means come from the same distribution or not [31]. A high 

value of the F-statistic implies that the target categories 

influence the distribution of the numerical variable and the 

latter should be added to the feature set. 

The idea of Mutual Information (MI) comes from 

Information Theory and can be used to select features. It is the 

extent to which knowing a random variable reduces the 

uncertainty that one has about another random variable. It is 

usually calculated between two categorical variables, but it can 

be adapted to the case that we are dealing with a numeric 

variable and a categorical one [32]. A high MI value between a 

feature and the target suggests that the former should be 

included in the model. 

The Relief family of algorithms performs variable selection 

by assigning a weight to each feature [33]. Some samples are 

taken from the dataset and compared with their closest 

neighbors: those of the same category (nearest hits) and those 

of different categories (nearest misses). Weight is computed in 

TABLE I 

SUMMARY OF RELATED WORKS 

Work Dataset Feature Selection 
Cross- 

Validation 
Sampling Classifiers 

Type of 
Classification 

Metrics 

[8] Their testbed 
Relief, Sequential Forward 
Selection (SFS), LASSO 

10-fold 
CV 

No 
SVM, NB, 

ANN, KNN 
Multiclass 

Accuracy, 

Sensitivity, 
Specificity, 

Precision, F1-Score 

[10] KDD 99 
Information Gain, Chi-

Squared, RFE, Ensemble 
20-fold 

CV 
Undersampling 

NB, SVM, DT, 
RF 

Binary 
Accuracy, Precision, 

Recall 

[15] NSL-KDD Attribute Ratio No No XGBoost Binary 
Accuracy, Precision, 

Recall, ROC-AUC 

[20] KDD 99 

Feature grouping based on 

linear correlation coefficient 

(FGLCC), Cuttlefish 
Algorithm (CFA) 

10-fold 

CV 
Undersampling SVM Binary 

Accuracy, True 

Positive Rate (TPR), 

False Positive Rate 
(FPR) 

[25] CICDDoS2019 Feature Importance of RF 5-fold CV 

Undersampling 

with class 
rebalance 

BayesNet, 

Bagging, KNN, 
Sequential 

Minimal 

Optimization 
(SMO), LR 

Binary 

Precision, Recall, 

F1-Score, TPR, FPR, 
Runtime 

This 

Work 
CICDDoS2019 

Drop Low Variance, Drop 

High Correlation, ANOVA, 

MI, ReliefF, Gain of 
XGBoost, RFE, Ensemble 

10-fold 

CV 

Undersampling 
with class 

rebalance 

XGBoost 

Binary, Multiclass, 

Multiclass One-
Vs-One, 

Multiclass One-

Vs-Rest 

Accuracy, Precision, 

Recall, F1-Score, 

Runtime, Benefit-
Cost Ratio 
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order to favor hits and penalize misses. Features with high 

weight are selected. ReliefF is an extension of the original 

Relief algorithm to handle multiple classes. 

As a by-product of XGBoost training, rankings of feature 

importance are created. One of these rankings concerns the 

Gain of the variables [27], which is a metric that measures the 

relative contribution of each variable to each tree trained in the 

model. We can then select only the features considered most 

important by this metric, which becomes a Feature Selection 

method embedded in XGBoost. 

RFE is a wrapper Feature Selection technique. It starts from 

a complete feature set and uses a Machine Learning model to 

list the most important features. From that point on, the worst 

one is discarded and the process starts again with the remaining 

set [34], which characterizes the recursive nature of this 

method. For the experiments in this paper, XGBoost itself is 

used as the base Machine Learning model for RFE. 

 

III. METHODOLOGY 

To measure the influence of the use of FS on the DDoS attack 

classification problem, the CICDDoS2019 dataset was chosen 

[24]. This set includes labeled traffic samples from 12 modern 

DDoS attacks (NTP, DNS, LDAP, MSSQL, NetBIOS, SNMP, 

SSDP, UDP, UDP-Lag, WebDDoS, SYN, TFTP), in addition 

to benign traffic. The dataset is processed, subjected to several 

Feature Selection methods, and serves as input to a classifier 

that uses the XGBoost algorithm. No new Feature Selection 

method is being proposed in the experiments that follow. 

Instead, Feature Selection techniques known in the literature are 

used in order to compare them numerically. 

Tree-based models have been shown to be consistently 

effective for classification problems using this dataset [25][35]. 

The XGBoost classifier is fixed in the course of the 

experiments, since the objective of the study is to measure the 

influence of the FS techniques, not the chosen classification 

algorithm. 

The steps of the simulations carried out are detailed in the 

rest of this section, as well as the main concepts necessary to 

evaluate them. Fig. 1 illustrates the general data flow of the 

experiments in this work. The next subsections detail the 

implementation of the architecture proposed by this diagram. 

 

A. Resampling and Balancing  

Table II presents the distribution of the samples among the 

different traffic classes for the CICDDoS2019 dataset, 

demonstrating both the binary and multiclass representation of 

this set. 

Intuitively, we can say that it is an extremely unbalanced 

dataset, with a number of attacks that far exceeds benign traffic 

TABLE II 

CLASS DISTRIBUTION OF THE DATASET CICDDOS 2019 

Binary Multiclass 

Class Samples Class Samples 

ATTACK 50006249 

TFTP 20082580 

DrDoS_SNMP 5159870 

DrDoS_DNS 5071011 
DrDoS_MSSQL 4522492 

DrDoS_NetBIOS 4093279 

DrDoS_UDP 3134645 

DrDoS_SSDP 2610611 

DrDoS_LDAP 2179930 
Syn 1582289 

DrDoS_NTP 1202642 

UDP-lag 366461 

WebDDoS 439 

BENIGN 56863 BENIGN 56863 

 

 

 
 

 
Fig. 1.  Data flow proposed for the experiments 

  

Dataset

Target-independent

methods

Pre-

processing

Remove 

Low-

variance

Remove 

Highly-

correlated

A Resampling

and Balance
B Target-dependent

methods

C

ANOVA

Mutual 

Information

ReliefF

Embedded

RFE

Ensemble

Performance

Evalutaion

D

Accuracy

Precision

Recall

F1 Score

Fit Time

Benefit-Cost

Binary-balanced

Dataset

Multiclass-balanced

Dataset



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, No.1, 2021. 204 

and, among these attacks, the TFTP amplification is the most 

represented. We can formalize this notion of imbalance through 

the Pielou Index [36]: 

   

𝐽 =  −
1

ln 𝑆
∑

𝑛𝑖

𝑁
ln

𝑛𝑖

𝑁
=  

𝐻

ln 𝑆

𝑆

𝑖=1

              (1), 

where we have S distinct classes, each class Ci has ni elements 

and the complete data set has N samples. In equation (1), H is 

the Shannon Entropy [37]. The Pielou Index normalizes entropy 

by its maximum (ln 𝑆), so that the values are confined between 

0 and 1. In this case, 0 represents the largest possible unbalance 

(all samples are of a single class) and 1 the largest possible 

balance (the samples are divided equally between classes). Note 

that the Pielou Index is applicable to both sets with binary and 

multiclass labels. 

An unbalanced dataset tends to favor the majority class(es) 

[38]. Therefore, as illustrated in Step Ⓐ of Fig. 1, two datasets 

were generated: one balanced from a binary point of view (in 

which there is the same number of attacks and benign traffic) 

and another balanced from a multiclass point of view (with all 

classes with equal representation). These two ways of 

resampling the dataset make the new Pielou Index, for both 

cases, equal to 1. Due to hardware limitation, the resampling 

process took place by undersampling all classes, in order to 

efficiently allocate the data in the available memory. Works like 

those of Hussain [25] and Li [26] also opt for undersampling. 

Finally, the ‘WebDDoS’ class was dropped because it had a 

much smaller number of samples than the other types of attacks. 

 After the resampling process, the binary and multiclass 

datasets serve as the basis for training binary and multiclass 

classifiers, respectively. 

 

B. Label-Independent Feature Selection 

The part called “Preprocessing” in Step Ⓑ of Fig. 1 includes 

several operations that follows. All categorical variables were 

discarded based on domain knowledge: attributes such as Flow 

ID, Source IP Address, and Destination IP Address are only 

identifiers, having no predictive value. Source Port and 

Destination Port can be treated as numerical variables, but this 

work will focus on network traffic statistics, choosing not to use 

the former. All the remaining variables are numeric attributes, 

such as counters and ratios of these counters over time (such as 

Bytes/sec). The following variables, even representing counters 

and measures of packet sizes (thus positive values), had 

spurious negative values in the dataset: 'Fwd Header Length', 

'Bwd Header Length', 'Init_Win_bytes_forward', 

'Init_Win_bytes_backward', 'min_seg_size_forward'. It was 

then decided to ignore the negative sign of these samples (i.e., 

make them positive). A detailed description of the features of 

the complete dataset can be found in [26]. Infinite values were 

replaced by the maximum value of the feature in question. The 

datasets after these operations serve as input for XGBoost 

classifiers. We used a 10-fold Stratified Cross-Validation (CV), 

where the metrics illustrated by Step Ⓓ in Fig. 1 were collected. 

The second part of the Step Ⓑ performs the selection of 

variables through two operations: (1) removal of duplicate 

columns; and (2) removal of columns with low variance. These 

methods are called “Basic Methods” in subsequent sections. 

Note that determining what is a “low” variance is a 

hyperparameter of the model, which should be defined as a 

threshold at the time of training. One point of attention is that, 

in order to verify the influence of the Feature Selection 

techniques on the classification metrics, it is important that the 

first ones are performed within the Cross-Validation process. 

With the dataset reduced by the “Basic Methods”, a PCC 

Matrix is generated between all the predictor variables. The 

correlation between the predictor variables and the target labels 

is not adequate, since the former are numerical and the latter 

categorical [34]. From this operation, groups of features are 

formed that have a correlation 𝜌 greater than a threshold 

established in training. This threshold, therefore, is another 

hyperparameter of the experiment. Within these groups, only 

one variable is maintained and the others are discarded. The 

resulting set is also used to train an XGBoost model, within a 

10-fold CV. This method will be referred to as “Correlation” in 

the results of the experiments. 

 

C. Label-Dependent Feature Selection 

The methods of Step Ⓒ in Fig. 1 do take into account a 

relationship between the sample labels and the predictor 

variables to select the attributes that should be used in the 

model. In general, all of them are capable of generating 

rankings of importance of the features. With the ordered 

variables, the most relevant 𝐾 are chosen and the others are 

removed. As in the methods independent of the label, here it is 

also necessary to carry out the variable selection within the 

Cross-Validation process. 

Thus, curves are generated for each of the classification 

quality metrics according to the value of 𝐾, the number of 

selected features. This operation is repeated for each feature 

selection method considered. 

To save time and memory allocation in the Feature Selection 

task with methods that depend on the sample label, it was 

decided to use as input to this block the output of the process of 

removing highly correlated variables (as in Fig. 1). This 

procedure facilitated further processing during the experiments, 

by significantly reducing the number of input features for this 

block. 

As mentioned in section II, the chosen FS methods are 

divided into the following categories: (1) filters; (2) wrappers; 

(3) embedded, and (4) hybrid. As Filters, the F-test of ANOVA, 

MI and ReliefF methods are considered for the experiments. 

XGBoost Gain is used as an embedded FS technique. The RFE 

method is also used as a wrapper around XGBoost. All of these 

techniques are available in Scikit-Learn [39], with the exception 

of ReliefF [40], which has its own library, but is also compatible 

with NumPy Arrays. 

Finally, an ensemble of the other techniques is performed, as 

proposed by Gupta [10]. In this method, the rankings of each 
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variable for each FS technique considered are added in a new 

vector and the value of this sum is taken into account when 

ordering the variables. The experiments deal with an ensemble 

among ANOVA, MI, ReliefF, and XGBoost Gain. The RFE 

technique was not included in the ensemble due to its high 

computational cost. 

 

D. Performance Evaluation 

Both classifiers trained in Steps Ⓑ and Ⓒ are evaluated 

according to the performance metrics illustrated in Step Ⓓ from 

Fig. 1. Metrics differ between binary and multiclass cases. 

For a binary classifier, we define one of the labels as positive 

and the other as negative. This choice is arbitrary, but must be 

taken into account when interpreting the results. Choosing the 

class “Benign” as negative and “Attack” as positive, we have 

the nomenclature in Table III that follows. 

For a multiclass classifier, consider T samples in the test set 

and S distinct Ci classes. TPi is the number of elements correctly 

classified with the label of Ci. FPi are elements classified as Ci, 

but that belong to another class. FNi are the elements of Ci, but 

mistakenly classified in another class. 

 

1) Accuracy (AC): is the ratio between the correct 

classifications of the model and the total classifications made. 

For the binary case: 

 

𝐴𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
           (2) 

 

For the multiclass case:  

 

𝐴𝐶 =
1

𝑇 
∑ 𝑇𝑃𝑖

𝑆

𝑖=1

        (3) 

 

2) Precision (PR): is the ratio of the correct predictions and 

the total predictions for a given class. A high Precision value is 

linked to fewer false alarms. For the binary case: 

 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
           (4) 

 

For the multiclass case, we have some possible aggregation 

methods [41]. The Macro-Average of Precision was chosen, in 

order not to privilege any specific class. We have: 

 

𝑃𝑅𝑀 =
1

𝑆 
∑

𝑇𝑃𝑖

𝑇𝑃𝑖 +  𝐹𝑃𝑖

=
1

𝑆

𝑆

𝑖=1

  ∑ 𝑃𝑅𝑖

𝑆

𝑖=1

      (5) 

 

3) Recall (RC): is the ratio of the correct predictions and the 

total elements of a given class. A high Recall value implies that 

most samples in a class have been recognized. For the binary 

case: 

 

𝑅𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
           (6) 

 

For the multiclass case, again with the Macro-Average: 

 

𝑅𝐶𝑀 =
1

𝑆 
∑

𝑇𝑃𝑖

𝑇𝑃𝑖 +  𝐹𝑁𝑖

𝑆

𝑖=1

=
1

𝑆
  ∑ 𝑅𝐶𝑖

𝑆

𝑖=1

   (7) 

 

4) F1 Score (F1): the PR and RC metrics are conflicting 

requirements, since by increasing one of them the other is 

compromised. The F1 Score is the harmonic mean among the 

latter. For the binary case: 

 

𝐹1 =
2 ∗ 𝑃𝑅 ∗ 𝑅𝐶

𝑃𝑅 + 𝑅𝐶
           (8) 

 

For the multiclass case, the most recommended calculation [42] 

is given by: 

 

𝐹1𝑀 =
1

𝑆 
∑

2 ∗ 𝑃𝑅𝑖 ∗ 𝑅𝐶𝑖

𝑃𝑅𝑖 + 𝑅𝐶𝑖

𝑆

𝑖=1

=
1

𝑆 
∑ 𝐹1𝑖

𝑆

𝑖=1

      (9) 

 

The metrics for Accuracy, Precision, Recall, and F1 Score 

vary between 0 (worst) and 1 (best), for both binary and 

multiclass classifiers. Since we are using the Cross-Validation 

process, we can calculate the Mean and Standard Deviation for 

each of these metrics. 

 

5) Fit Time: is the sum of the time spent with the execution of 

the Feature Selection process and the training of the classifier. 

 

6) Benefit-Cost Ratio (BCR): is a family of ratios given by 

dividing one of the metrics from 1) to 4) by the required Fit 

Time. For an X metric, we have: 

 

𝐵𝐶𝑅(𝑋) =
𝑋

𝐹𝑖𝑡_𝑇𝑖𝑚𝑒
            (10) 

 

E. Multiclass Classifier Training Considerations 

XGBoost training involves building new decision trees in 

order to go against the gradient of a cost function. For a 

Multiclass classifier, this cost function is traditionally the 

Categorical Cross-Entropy. However, it is also possible to train 

a Multiclass classifier from several Binary classifiers, in meta-

learning strategies such as One-Vs-Rest (OvR) [43] and One-

Vs-One (OvO) [44]. In the latter cases, the cost function to be 

minimized is Binary Cross-Entropy. For the experiments, these 

meta-learning strategies were also considered. 

The OvR strategy consists of transforming the classification 

problem between S classes into S binary classification 

problems. Each one of them determines whether the sample 

belongs to a certain class Ci or not (and in this case it is part of 

TABLE III 

RESULTS OF A BINARY CLASSIFICATION 

TP (True Positive) Attack classified as Attack 

FP (False Positive) Benign classified as Attack 

FN (False Negative) Attack classified as Benign 

TN (True Negative) Benign classified as Benign 
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the rest) [43]. Each Binary classifier must return a probability 

and the classifier with the highest probability indicates the 

predicted class for the sample. 

The OvO strategy demands more computational power, as it 

compares all possible 2-element combinations among the S 

classes [44]. This gives a total of 𝑺(𝑺 − 𝟏)/𝟐 binary classifiers. 

Each classifier then votes for a class. The class with the highest 

number of votes is predicted by the OvO model. 

 

F. Analysis Scope 

The present work focuses on numerically characterizing the 

influence of Feature Selection techniques on the performance 

metrics of a DDoS attack classifier. As all results are obtained 

using 10-fold Cross-Validation, we potentially have 10 distinct 

feature groups for each simulated data point. This situation is 

the same for both label-independent and label-dependent 

variable selection methods. It is beyond the scope of this article 

to list which features were selected in each round of the 

experiments. 

 

G. Test environment 

For all experiments, a notebook with an Intel Core i7 

3630QM processor, 8GB DDR3 RAM, 500GB Solid State 

Drive (SSD) and Windows 10 operating system was used. 

Through the Anaconda package manager, the following 

programs (as well as their dependencies) were installed: Python 

(v3.8.5), NumPy (v1.19.5), Pandas (v1.2.0), Scikit-learn 

(v0.24.0), Seaborn (v0.11.1), ReliefF (v0.1.2), and XGBoost 

(v1.3.1). It is, therefore, a traditional environment for research 

in Machine Learning based on the Python language and its 

libraries. 

IV. RESULTS 

The results and analyses of the works described above are 

presented as follows. 

A. Resampling and Balancing  

The dataset described in Table II is unbalanced, which can 

favor the majority classes in a classification problem. From a 

binary point of view, it has a Pielou Index J = 0.012748 

(according to equation 1). From a multiclass point of view, this 

same dataset has J = 0.764539.  

TABLE IV 

UNDERSAMPLED AND BALANCED DATASETS 

New Binary New Multiclass 

Class Samples Class Samples 

ATTACK 2640 

TFTP 440 

DrDoS_SNMP 440 

DrDoS_DNS 440 

DrDoS_MSSQL 440 

DrDoS_NetBIOS 440 

DrDoS_UDP 440 

DrDoS_SSDP 440 

DrDoS_LDAP 440 

Syn 440 

DrDoS_NTP 440 

UDP-lag 440 

BENIGN 2640 BENIGN 440 

 

 

 

 
 

Fig. 2.  F1 Score for the methods of Label Independent Feature Selection 
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Two distinct datasets are generated, sub-samples of the 

original, in such a way that they become perfectly balanced data 

sets (J = 1). Sampling is performed in such a way that the final 

two datasets have the same number of elements.  

 The resulting datasets are shown in Table IV. Despite having 

different class distributions, both sets of data generated have 

5280 elements. 

B. Label-Independent Feature Selection 

 Fig. 2 shows the F1 Score result for the experiments with 

selection of variables independent of the sample labels. For the 

“Preprocessing” phase, 9 variables were eliminated, namely: 

Flow ID, Source IP, Source Port, Destination IP, Destination 

Port, Protocol, Timestamp, SimillarHTTP, and Inbound. The 

source and destination IP addresses only serve as identifiers of 

the devices in the testbed. The datasets were collected in [24] 

distributing attacks evenly across multiple victim servers. 

Works like [26] and [35] also chose to discard IP addresses in 

their predictive modeling, since the statistical behavior of the 

network parameters is being taken into account for the detection 

of attacks. For the “Basic Methods”, all features with variance 

 𝝈𝟐 < 𝟎. 𝟎𝟏 were eliminated. For “Correlation”, features with 

𝝆 > 𝟎. 𝟗 between them were grouped. The values of  𝝈𝟐 and 𝝆 

were taken based on the method developed in [30] and proved 

to be adequate for the data sets used in the experiments. 

 Analogously, Accuracy, Precision, and Recall were also 

measured. The behavior of all metrics was very similar in 

relation to the use of Feature Selection. The results of 

“Preprocessing” and “Basic Methods” were the same, proving 

that the removal of variables with low variance does not change 

the performance of a classifier (both Binary and Multiclass). 

The performance in removing the highly correlated variables 

also did not change much, with a slight increase in the standard 

deviation of the metrics when using Cross-Validation for the 

Binary, Multiclass, and Multiclass OvR classifiers. 

 The results of the classifiers subjected to label-independent 

FS methods are summarized in Table V ahead. Overall, Binary 

classifiers performed better than Multiclass classifiers. Among 

the Multiclass classifiers, those which used the meta-learning 

strategies (OvO and OvR) achieved slightly higher 

performances than the traditional Multiclass classifier. 

We can see in Table V that, even though there is stability in 

the classification metrics, the number of variables could be 

reduced considerably. There is a mean reduction of 46% in the 

number of variables for the Binary classifiers (from 77 to 41 

features), while the Multiclass classifiers have their variables 

reduced by 53% (from 77 to 36 features). Although the total 

number of samples is the same, the Binary and Multiclass 

datasets were built in different ways, with different goals (as 

already shown in Table IV). The Binary dataset has more 

elements of the benign traffic class. By having more samples of 

this type of traffic, which is closer to the normal behavior of 

users (that is unpredictable), the Binary dataset has fewer 

columns with low variance, which would be eliminated by the 

TABLE V 
CLASSIFICATION METRICS FOR THE LABEL INDEPENDENT FEATURE SELECTION 

METHODS 

Binary Classifiers 

Metric Preprocessing Basic methods Correlation 

Accuracy 99.79 ± 0.23 99.79 ± 0.23 99.75 ± 0.27 

Precision 99.85 ± 0.36 99.85 ± 0.36 99.81 ± 0.47 
Recall 99.73 ± 0.40 99.73 ± 0.40 99.7 ± 0.39 

F1 Score 99.79 ± 0.23 99.79 ± 0.23 99.75 ± 0.27 

Features 77 63 41 

Multiclass classifiers 

Metric Preprocessing Basic methods Correlation 

Accuracy 73.9 ± 1.6 73.9 ± 1.6 73.8 ± 1.8 
Precision 74.3 ± 2.0 74.3 ± 2.0 74.2 ± 2.2 

Recall 73.9 ± 1.6 73.9 ± 1.6 73.8 ± 1.8 

F1 Score 73.0 ± 1.5 73.0 ± 1.5 72.8 ± 1.7 
Features 77 61 36 

Multiclass classifiers - One vs One 

Metric Preprocessing Basic methods Correlation 

Accuracy 74.3 ± 1.8 74.3 ± 1.8 74.3 ± 1.7 

Precision 74.5 ± 2.2 74.5 ± 2.2 74.6 ± 2.1 

Recall 74.3 ± 1.8 74.3 ± 1.8 74.3 ± 1.7 
F1 Score 73.3 ± 1.7 73.3 ± 1.7 73.3 ± 1.6 

Features 77 61 36 

Multiclass classifiers - One vs Rest 

Metric Preprocessing Basic methods Correlation 

Accuracy 74.4 ± 1.7 74.4 ± 1.7 74.1 ± 1.8 

Precision 74.8 ± 2.2 74.8 ± 2.2 74.4 ± 2.3 
Recall 74.4 ± 1.7 74.4 ± 1.7 74.1 ± 1.8 

F1 Score 73.4 ± 1.6 73.4 ± 1.6 73.1 ± 1.7 

Features 77 61 36 

 

 

 
 

Fig. 3.  Fit Times: Feature Selection and Classifier Training 
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“Basic Methods” described prior. Benign traffic also lacks the 

repetitive patterns of attack traffic, which would be grouped and 

removed in a correlation analysis. 

The three Multiclass classifiers have the same number of end 

features (36 on average). The experiments were coded using the 

same random seed to divide the dataset into 10 folds, to make 

them reproducible. In this way, as the dataset is the same for the 

three Multiclass classifiers, it is divided in the same way within 

the Cross-Validation and goes through variable selection 

processes using the same hyperparameters, the Multiclass 

classifiers end up being trained with the same number of 

features. 

The difference in the number of variables is reflected in the 

Fit Time, as shown in Fig. 3. The Fit Time was defined as the 

time to execute both the Feature Selection and the training of 

the classifier. Fig. 3 shows two different situations: for the 

Binary classifiers, the Fit Time has increased with the use of 

variable selection methods, even though the number of features 

has decreased. As for the Multiclass classifiers, we can observe 

a sharp decrease in the Fit Time. For the Multiclass OvO and 

Multiclass OvR classifiers, the results are similar to those of 

traditional Multiclass classifiers, and thus omitted in Fig. 3. 

By separating the time for the selection of variables from the 

training time of the Machine Learning model, we can verify the 

influence of each step of the process. Table VI shows that the 

training time for Binary classifiers is already low in the initial 

models. When we remove variables using the other methods, 

the training time for Binary classifiers drops only 20%. For 

Multiclass classifiers, this drop is 37%. 

However, the runtimes to execute Feature Selection steps are 

about the same order of magnitude of the training times of the 

Binary classifiers, but significantly less than the Multiclass 

classifiers training times. This makes the Fit Time of the Binary 

classifiers more sensitive to the increase in complexity between 

the "Basic Methods" (which remove low variance features) and 

the removal of highly correlated variables, which requires more 

arithmetic operations to be performed. Note that, because they 

are target-independent Feature Selection methods, their 

execution time depends only on the number of predictor 

variables. 

 

C. Label-Dependent Feature Selection 

The methods of selecting variables dependent on the label of 

the samples produce rankings of attributes according to a well-

established statistic. From this, it is possible to choose the best 

K variables according to this criterion. Figures 4 to 11 illustrate 

the change in classification metrics as a function of the K value. 

 

1) Binary Classifiers: Accuracy, Precision, Recall and F1 

Score curves were constructed for the Feature Selection 

methods considered. Fig. 4 illustrates the Cross-Validation 

Mean curves for the F1 Score. The other metrics have curves 

with similar behavior and therefore omitted. 

For Binary classifiers, quality metrics remain stable up to 

approximately 17 features, for all variable selection techniques. 

This represents a 78% reduction in the number of features, 

compared to the first trainings, where only “Preprocessing” had 

been carried out and 77 features had been used. When choosing 

less than 17 features, we noticed a performance degradation in 

almost all methods, in particular for ReliefF. As we reduce the 

multi-dimensional space by removing features, the points in this 

space become closer, that is, the distance measurements 

decrease. In this way, the particular choice of points that ReliefF 

makes is more sensitive to fluctuations in the data, which can 

cause errors that are reflected in the F1 Score. For less than 5 

TABLE VI 
FIT TIMES (IN SECONDS) FOR THE LABEL INDEPENDENT FEATURE 

SELECTION METHODS 

Binary Classifiers 

Method Feature Selection Classifier Training 

Preprocessing 0.0 ± 0.0 0.3594 ± 0.0092 

Basic Methods 0.0319 ± 0.0037 0.3368 ± 0.0097 
Correlation 0.130 ± 0.022 0.285 ± 0.040 

Multiclass Classifiers 

Method Feature Selection Classifier Training 

Preprocessing 0.0 ± 0.0 5.08 ± 0.28 

Basic Methods 0.0368 ± 0.0073 4.57 ± 0.32 

Correlation 0.127 ± 0.018 3.21 ± 0.11 

 

 
 

Fig. 4.  Mean of F1 Score as a function of number of variables for Binary 

Classifiers. 

 
 

Fig. 5.  Standard Deviation of F1 Score as a function of the number of 

variables for Binary Classifiers. 
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features, RFE suffers an abrupt worsening in metrics, which 

remains high when using more variables. The preparation of the 

RFE selector is done considering the features individually. It is 

possible that a variable has a greater predictive power when it 

is used together with another in the training of a Machine 

Learning model. However, in RFE, if this other variable is 

prematurely discarded, the classification result will be worse 

when we choose a small number of features. 

 Fig. 5 shows the F1 Score Standard Deviation for all Feature 

Selection techniques. The graph was plotted on a logarithmic 

scale on the vertical axis. Lower values for the Standard 

Deviation indicate less fluctuations for the metric in question. 

Again, when choosing more than 17 features, all techniques 

produce results with low variance. Below this value, MI and 

ReliefF have greater variance. In the case of MI and its 

adaptation to numerical variables, its calculation is influenced 

by the data binning process. This process, in turn, is influenced 

by the Cross-Validation steps. As it is not possible to guarantee 

homogeneity in the sets generated in Cross-Validation, the 

features with more information also differ, which ends up 

increasing the variance of the performance metrics. For ReliefF, 

we must take into account that the choice of points that will 

have its neighbor checked is random, contributing to the 

increase in variance. 

The Fit Time for each of the Feature Selection methods is 

shown in Fig. 6. There are few intersections in this graph, since 

most variable selection techniques take a fixed time to choose 

K attributes. The exception is the RFE method, which, given its 

recursive nature, takes more time when it needs to eliminate 

more variables. In the worst cases, it takes up to 4 times longer 

than the other methods. We can also highlight the Ensemble 

method, which is executed, approximately, in the sum of the 4 

times of the methods that compose it. The ANOVA method has 

the fastest execution of all the considered methods. This is 

because ANOVA performs fewer arithmetic operations, in 

addition to not performing iterative or binning processes, like 

the other variable selection methods considered. 

The benefit-cost ratio graph for the mean of the F1 Score is 

plotted on a logarithmic scale in Fig. 7. Since the F1 Score (and 

similarly the other metrics) remains approximately constant 

when removing attributes, it is more efficient to choose Feature 

Selection methods that will be executed more quickly to 

achieve this result. For Binary classifiers, ANOVA is the one 

that best meets this criterion, regardless of the value of K. The 

XGBoost Gain as a variable selector appears as a second option, 

since the Binary classification has a low training time. As we 

remove variables, the RFE is progressively degrading its 

Benefit-Cost Ratio because, although it does not suffer such a 

sharp drop in Accuracy, Precision, Recall, and F1 Score, its cost 

in execution time grows rapidly. 

 

2) Multiclass Classifiers: Accuracy, Precision, Recall and F1 

Score curves were also generated for the Feature Selection 

methods used before Multiclass classifiers. Fig. 8 shows the 

Cross-Validation Mean for the F1 Score. The other metrics 

have similar graphs with similar results.  

 There is more variety of Multiclass results compared to that 

in Binary case. For Multiclass classifiers with less than 31 

features, the chosen variable selection method has more 

influence. Note that this represents a 60% decrease in the 

number of features used in the original model. Mutual 

Information is the method that obtains the best results for the 

F1 Score Mean. The use of Mutual Information is particularly 

beneficial for multiclass classification, since the greater number 

of classes decreases the probability of occurrence of each one 

of them individually. The logarithm in the Mutual Information 

calculation formula highlights these small differences, making 

the values obtained for each class farther apart and more 

suitable for ranking. We can also note that the performance of 

XGBoost Gain is degraded quickly when we choose less than 

10 features. These gains are calculated with the widest dataset 

(result of filtering it by label-independent methods). The 

individual contribution of each feature may not be as 

determinant for the final prediction of a sample class as its 

contribution combined with the others, resulting in worse 

performance with fewer features. Finally, RFE again suffers a 

sharp drop in performance with less than 5 features. This 

happens because of the premature elimination of features (as in 

the case of binary classifiers) and also because it incorporates 

the gain of XGBoost in the calculation of importance of 

 
 

Fig. 6.  Fit Time as a function of the number of variables for Binary 

Classifiers. 

 
 

Fig. 7.  F1 Score Benefit-Cost Ratio as a function of the number of variables 

for Binary Classifiers. 
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features, with the latter having a poor performance with few 

variables. 

Fig. 9 presents the F1 Score Standard Deviation for all 

variable selection techniques, on a logarithmic scale. As there 

are more classes than in the Binary case, the random cuts of 

samples and columns performed by XGBoost [27] have more 

influence on the methods of selecting variables that are based 

on it. RFE and XGBoost Gain, which have this characteristic, 

end up presenting a higher Standard Deviation (of all metrics) 

when selecting less than 15 variables. 

The training time for a Multiclass classifier also directly 

influences the increase in the RFE Fit Time, as can be seen in 

Fig. 10. When used to choose less than 5 features, this method 

takes up to 11 times longer to be executed than the others. The 

computational complexity of the Multiclass classifier also 

makes XGBoost Gain have a higher execution time than all 

Filter methods. 

The difference in Fit Times between the Binary and 

Multiclass classifiers directly influences the Benefit-Cost Ratio 

curve. In Fig. 11, we see this ratio for the F1 Score of the 

Multiclass classifiers, on a logarithmic scale. RFE requires a 

much longer execution time than the others, being below all 

other methods (in terms of the Benefit-Cost Ratio) for almost 

all K values. The XGBoost Gain and, consequently, the 

Ensemble that contains it, ends up worse than all Filters 

according to this measure. The best performances are, in this 

order, ANOVA, ReliefF, and Mutual Information, since they do 

not use the training of a classifier to select variables. The 

relative order between the Filters is the same as the Binary 

classification. 

 

3) Multiclass OvO and Multiclass OvR Classifiers: again, 

Accuracy, Precision, Recall, and F1 Score curves were 

constructed for the methods of selection of Multiclass classifier 

variables. However, this time the training of the classifiers was 

performed according to the OvO and OvR strategies. The 

metrics, in general, came close to those obtained with 

traditional Multiclass classifiers (whose cost function is the 

Categorical Cross-Entropy). 

As an example, Table VII presents the results of Accuracy, 

F1 Score, and Fit Times for all variable selection methods, 

 
 

Fig. 8.  Mean of F1 Score as a function of the number of variables for 
Multiclass Classifiers. 

 
 

Fig. 9.  Standard Deviation of F1 Score as a function of the number of 
variables for Multiclass Classifiers. 

 
 

Fig. 10. Fit Time as a function of the number of variables for Multiclass 

Classifiers. 

 
 

Fig. 11.  F1 Score Benefit-Cost Ratio as a function of the number of variables 

for Multiclass Classifiers. 
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focusing on the analysis for K = 15 selected variables (quantity 

arbitrarily chosen). In the table we can compare the 

performance of the traditional Multiclass classifiers, Multiclass 

OvO, and Multiclass OvR, in addition to Binary classifiers. In 

general, a Feature Selection method provides close 

classification results for the three types of Multiclass classifiers. 

However, the Fit Time can differ significantly between them. 

Given the large number of classes (S = 12), the OvO and OvR 

strategies become computationally more costly than traditional 

Multiclass training, even though they only perform binary 

XGBoost training. In several methods of Feature Selection 

(such as ANOVA and Mutual Information), twice the Fit Time 

was spent to train an OvO Multiclass classifier in relation to a 

traditional Multiclass classifier. Similar results were obtained 

for the other K values. 

 

4) Comparison of ANOVA and Label-Independent Feature 

Selection Methods: ANOVA was above all other label-

dependent methods in the benefit-cost ratio curves that were 

constructed. For this reason, in this section it is compared with 

label-independent methods in terms of the number of features 

selected, F1 Score and Fit Time.  

Three K values (K=30, K=20, K=10) were arbitrarily chosen 

to illustrate the variation in F1 Score and Fit Time as a more 

restricted number of features is selected. The results are shown 

in Table VIII. By the way the experiment is designed, the input 

of the ANOVA block corresponds to the output of the step of 

removing highly correlated variables. With this in mind, it is 

possible to comment on the general process of removing 

variables performed. 

 The decrease from 77 to 10 variables (87% reduction) 

brought with it a subtle performance degradation in all cases. 

For Binary, Multiclass, Multiclass OvO and Multiclass OvR 

classifiers, there was a reduction in the F1 Score of, 

respectively, 1.06%, 2.05%, 2.86% and 2.31%. However, the 

reduction in Fit Times is significantly more expressive. Binary, 

Multiclass, Multiclass OvO and Multiclass OvR classifiers had 

their times reduced by 19.86%, 57.30%, 35.39% and 59.84%, 

respectively. It is reasonable, therefore, to eliminate some 

variables to obtain such runtime gains, especially on large 

datasets. 

V. CONCLUSION 

In this work, the CICDDoS2019 dataset was used as a basis 

for verifying the impact of FS on the DDoS attack classification 

quality metrics. The reference classifier was XGBoost. FS 

techniques that are independent of the label of the samples were 

considered, such as the use of domain knowledge, and removal 

of attributes with low variance and high correlation. Methods 

that used the information contained in the sample label were 

also used, such as ANOVA, Mutual Information, ReliefF, 

XGBoost Gain, and RFE, in addition to an Ensemble technique 

involving the rankings of variables generated by other methods. 

The removal of attributes with low variance did not alter the 

classification metrics. It was possible to verify the robustness 

TABLE VII 
CLASSIFICATION METRICS FOR THE LABEL DEPENDENT FEATURE 

SELECTION METHODS (WITH K=15 FEATURES SELECTED) 

Binary Classifiers 

Method Accuracy F1 Score Fit Times (s) 

ANOVA 99.73 ± 0.22 99.73 ± 0.22 0.195 ± 0.018 

MI 97.44 ± 0.69 97.48 ± 0.68 1.70 ± 0.11 

ReliefF 99.43 ± 0.28 99.43 ± 0.28 1.48 ± 0.14 
Gain  99.77 ± 0.23 99.77 ± 0.23 0.635 ± 0.018 

RFE 99.77 ± 0.23 99.77 ± 0.23 9.93 ± 0.29 

Ensemble 99.77 ± 0.23 99.77 ± 0.23 3.26 ± 0.12 

Multiclass Classifiers 

Method Accuracy F1 Score Fit Times (s) 

ANOVA 73.0 ± 1.7 71.6 ± 1.8 2.167 ± 0.020 
MI 73.7 ± 1.8 72.7 ± 1.5 4.434 ± 0.027 

ReliefF 72.3 ± 1.8 70.6 ± 1.9 3.154 ± 0.028 

Gain  73.1 ± 1.7 71.7 ± 1.8 7.303 ± 0.094 
RFE 72.5 ± 2.0 70.9 ± 2.4 89.34 ± 0.72 

Ensemble 72.9 ± 1.7 71.5 ± 1.8 9.443 ± 0.059 

Multiclass Classifiers - One vs One 

Method Accuracy F1 Score Fit Times (s) 

ANOVA 72.8 ± 1.8 71.3 ± 1.9 5.730 ± 0.028 

MI 73.9 ± 1.9 72.9 ± 1.8 7.647 ± 0.035 

ReliefF 72.1 ± 1.5 70.3 ± 1.6 6.726 ± 0.024 
Gain  73.0 ± 1.7 71.5 ± 1.8 10.938 ± 0.079 

RFE 72.6 ± 1.9 70.9 ± 2.3 94.6 ± 1.1 
Ensemble 72.9 ± 1.9 71.4 ± 2.0 12.752 ± 0.045 

Multiclass Classifiers - One vs Rest 

Method Accuracy F1 Score Fit Times (s) 

ANOVA 73.3 ± 1.7 71.9 ± 1.8 2.94 ± 0.13 
MI 73.9 ± 1.8 72.9 ± 1.6 5.136 ± 0.025 

ReliefF 72.3 ± 1.6 70.5 ± 1.6 3.925 ± 0.051 

Gain  73.2 ± 1.5 71.7 ± 1.6 8.22 ± 0.23 
RFE 73.0 ± 1.8 71.3 ± 2.2 92.2 ± 1.8 

Ensemble 73.4 ± 1.9 71.9 ± 2.1 10.40 ± 0.23 

 

 

TABLE VIII 
COMPARISON OF ANOVA AND LABEL-INDEPENDENT FEATURE SELECTION 

METHODS 

Binary Classifiers 

Method Features F1 Score Fit Times (s) 

Preprocessing 77 99.79 ± 0.23 0.3594 ± 0.0092 

Basic methods 63 99.79 ± 0.23 0.3686 ± 0.0090 

Correlation 41 99.75 ± 0.27 0.415 ± 0.059 
ANOVA (K=30)  30 99.70 ± 0.27 0.3528 ± 0.0096 

ANOVA (K=20) 20 99.73 ± 0.22 0.240 ± 0.030 

ANOVA (K=10) 10 98.73 ± 0.27 0.288 ± 0.038 

Multiclass Classifiers 

Method Features F1 Score Fit Times (s) 

Preprocessing 77 73.0 ± 1.5 5.08 ± 0.28 
Basic methods 61 73.0 ± 1.5 4.60 ± 0.32 

Correlation 36 72.8 ± 1.7 3.34 ± 0.11 

ANOVA (K=30)  30 71.6 ± 1.8 3.273 ± 0.033 
ANOVA (K=20) 20 71.5 ± 1.8 2.56 ± 0.026 

ANOVA (K=10) 10 71.5 ± 1.7 2.169 ± 0.022 

Multiclass Classifiers - One vs One 

Method Features F1 Score Fit Times (s) 

Preprocessing 77 73.3 ± 1.7 8.371 ± 0.083 

Basic methods 61 73.3 ± 1.7 7.66 ± 0.38 

Correlation 36 73.3 ± 1.6 6.716 ± 0.045 
ANOVA (K=30)  30 71.2 ± 1.8 6.633 ± 0.064 

ANOVA (K=20) 20 71.2 ± 1.5 6.133 ± 0.052 
ANOVA (K=10) 10 71.2 ± 1.9 5.408 ± 0.029 

Multiclass Classifiers - One vs Rest 

Method Features F1 Score Fit Times (s) 

Preprocessing 77 73.4 ± 1.6 7.005 ± 0.046 
Basic methods 61 73.4 ± 1.6 6.34 ± 0.34 

Correlation 36 73.1 ± 1.7 4.412 ± 0.056 

ANOVA (K=30)  30 71.4 ± 1.8 4.22 ± 0.025 
ANOVA (K=20) 20 71.5 ± 1.6 3.393 ± 0.019 

ANOVA (K=10) 10 71.7 ± 1.7 2.813 ± 0.014 
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of the XGBoost, which maintains stable performance results 

even without 78% of the original variables, for the Binary 

classifier, and 60%, in the Multiclass case. The training of a 

Multiclass classifier takes considerably more time than a 

Binary, for the same number of samples and attributes. Methods 

of selecting variables that incorporate a classifier in their 

execution, such as wrapper (RFE) and embedded methods 

(XGBoost Gain), need more time to be executed in the 

Multiclass case. Due to its fast execution time, ANOVA proved 

to be the most advantageous label-dependent FS technique, 

both for Binary and Multiclass classifiers. 

As main contributions made in this work, we can highlight: 

• The formalization of the notion of dataset unbalance, 

using the Pielou Index; 

• Addressing the DDoS attack classification problem 

from both a Binary and Multiclass standpoint; 

• The use of meta-learning strategies such as One-Vs-

One and One-Vs-Rest; 

• The use of a wide range of Feature Selection 

techniques and the creation of a benchmark of 

classification metrics according to them. 

This study does not exhaust the FS theme in the classification 

of DDoS attacks, but brings a perspective that can serve as a 

basis for future work. A limitation of the work was the use of 

only one dataset (CICDDoS2019), artificially generated in a 

testbed by the authors of [24]. A dataset extracted from a 

production environment or one that is more balanced could 

have generated different results. All experiments were 

performed via CPU, but the parallelization of several GPU 

operations can bring several gains in execution time [45]. An 

interesting point would be to list which variables were selected 

in each Cross-Validation round, list which were the most 

frequent and whether the choice depends on the Feature 

Selection method used. 

Most of the Feature Selection algorithms considered were 

available in Scikit-Learn, but there are other interesting 

techniques described in the literature such as mRMR [46], 

BORUTA [47], or even the use of SHAP values [48] to rank the 

attributes. To verify the ability to generalize the results 

described here, the use of the same methodology is proposed 

with other base classifiers, such as KNN and SVM, or non-

linear models, such as Neural Networks. 

The programs and graphs created for this article, as well as 

the additional results mentioned in the text and not illustrated 

for the sake of brevity are fully available at the site 

https://github.com/pedrohauy/ddos_feature_selection. 
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