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Abstract—In this paper, we present the results of short-range
path loss measurement in the microwave and millimeter wave
bands, at frequencies between 27 and 40 GHz, obtained in a
campaign inside a university campus in Rio de Janeiro, Brazil.
Existing empirical path loss prediction models, including the
alpha-beta-gamma (ABG) model and the close-in free space refer-
ence distance with frequency-dependent path loss exponent (CIF)
model, are tested against the measured data, and an improved
prediction method that includes the path loss dependence on the
height difference between transmitter and receiver is proposed.
The main contribution of this paper is the use of the Fuzzy
technique to perform path loss predictions for short links in
the millimeter wave range, from 27 to 40 GHz, providing lower
errors when compared to the traditional ABG and CIF models.
However, it should be noted that the Fuzzy technique uses a
set of equations to perform the prediction and the attenuation
coefficient is not explicit as in the classical models. Also, a non-
negligible correlation between the difference in height between
transmitter and receiver positions and the path loss in such short
links (i.e., the path inclination) has been observed and requires
further investigation. If confirmed, it could provide an additional
parameter to improve the accuracy of the traditional ABG model.

Index Terms—fuzzy-prediction, millimeter-wave, measure-
ment.

I. INTRODUCTION

THE 5th generation of cellular communication systems
is in its final stage of development and started to be

deployed in many countries. One of the most important
features of these new systems will be the use of millimeter
waves, requiring the development of radio coverage prediction
techniques for urban environments at these frequencies. It is
important to understand how this range of frequencies can be
used in outdoor communications compared to present systems,
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which work essentially in the UHF band, for better planning
of this new generation of cellular communication.

When designing cellular systems it is important to achieve
an specific coverage area from the base transceiver stations.
Consequently one of the first steps in designing these systems
is the link budget estimation and for this it is necessary to
predict the path loss. A continuous-wave (CW) measurement
campaign is of essential importance to have knowledge of the
propagation exponent to the environment and thus obtain the
predicted radio coverage.

Many empirical models have been proposed to predict
the path loss between transmitters and receivers [1]. For
cellular systems operating in the 900/1800 MHz, Okumura-
Hata, COST231, SUI and Lee models, for example, were
widely used in path loss prediction. As in the 5th generation
the systems will operate in frequency bands above 6 GHz, and
these models were not obtained considering these upper bands,
it is important to predict the radio coverage using different
prediction models. Common used propagation prediction mod-
els in the upper band predictions are the alpha-beta-gamma
(ABG) [1] and the close-in free space reference distance with
frequency dependent path loss exponent (CIF) model [1].

More recently, non-traditional artificial intelligence tech-
niques such as fuzzy clustering prediction [2], artificial neural
networks [2]–[6], deep learning [7], [8] and machine learning
[4], [9] have also been used to estimate the path loss in
different environments. These models are also been used
in angle-of-arrival estimation [10], large-scale signal fading
modeling [11], and indoor localization [12].

In this paper, we report results of path loss measurements
for short links in the frequency range from 28 to 40 GHz,
carried out in a university campus in Rio de Janeiro, Brazil.
Directional antennas, aligned to each other, were used to
maximize the measurements range. A modified version of the
ABG empirical model is proposed based on the data obtained.
This and other existing prediction models are evaluated and
compared with fuzzy clustering predictions.

The paper is organized as follows. In Section 2, both
classical RF coverage and fuzzy prediction are presented. The
measurement campaign is described in Section 3. In Section
4, the analysis and results when applying both prediction
techniques are presented. The conclusions are presented in
Section 5.
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II. METHODS

Studies using data from measurement campaigns to predict
the RF path loss in a particular environment use data analysis
to provide empirical model parameters from sets of empirical
data. In practice, system planners perform local measurement
to adjust the model parameters to the region of interest.
Empirical models commonly used to predict short-range path
losses are the ABG [1] and CIF [1] methods. Alternatively,
models based on fuzzy techniques can be used, which in some
cases outperform classic empirical prediction methods.

A. AB and ABG models

The alpha-beta (AB) model, or Floating Intercept model, is
a simple empirical method to predict the large-scale path loss
variations, using only two coefficients fitted to the measured
data. The predicted path loss PLAB is given by

PLAB(d)[dB] = 10α log10 d+ β, (1)

where α is an angular coefficient that expresses the depen-
dence of the path loss on distance, β is an optimized linear
coefficient, and d is the distance between transmitter and
receiver [m]. The coefficients are obtained from measured data
by numerical analysis.

The ABG model improves on the AB model by including
the path loss dependence on the frequency and a log-normally
distributed random variable corresponding to the large-scale
fading. The model can be expressed as follows [13]:

PLABG(f, d)[dB] = 10α log10 d+ β + 10γ log10 f + χABGσ ,
(2)

where γ is a coefficient that expresses the relation between
path loss and frequency, f is the carrier frequency [GHz], d
is the 3D transmitter-receiver separation distance in meters,
and χABGσ represents the large-scale signal fluctuations due
to shadowing effects. These coefficients are obtained from
the measured data.

B. CIF model

The CIF model has structural characteristics similar to those
of the ABG Model. The model can be expressed as follows
[13]:

PLCIF (f, d)[dB] = FSPL(f, 1m)[dB]

+ 10n

(
1 + b

(
f − f0
f0

))
log10 d+ χCIFσ , (3)

where FSPL is the free-space path-loss model at a reference
distance of 1 meter, d ≥ 1m, n is a coefficient that describes
the path loss behavior over distance, equivalent to a path
loss exponent (PLE), b is a parameter that reflects the extent
of linear frequency dependence of the path loss over the
weighted average of all frequencies considered in the model,
and χCIFσ is the zero-mean Gaussian random variable [dB],
which describes the large-scale shadowing.

The parameter f0 (Eq. (4)) is a reference frequency com-
puted from the measurement’s data-set used for creating the
model; it serves as the balancing point for the linear frequency
dependence of the PLE and is given by

f0 =

∑K
k=1 fkNk∑K
k=1Nk

, (4)

where K is the number of frequencies considered in the
analysis and Nk corresponds to the number of data points
considered for the kth frequency fk.

C. Fuzzy clustering prediction

Fuzzy logic is a mathematical resource that is being widely
used in several areas where there is difficulty in equating a
model. Fuzzy techniques have been used in various fields,
including control, decision making, pattern recognition, pre-
diction of time series, and state estimation [14]–[20]. In this
work, Fuzzy Logic was used to predict RF signal attenuation
between 27 to 40 GHz. The Subtractive Clustering algorithm
was used as the basis for a Takagi-Sugeno Fuzzy inference
system [21], [22].

The Subtractive Clustering algorithm is widely studied
and applied. It is an interactive optimization algorithm that
minimizes the base function [21]–[23]:

J =

n∑
k=1

c∑
i=1

µnik ‖xk − vi‖
2 (5)

where n is the number of data points, c is the number of
clusters, xk is the k − th data point, vi is the i − th cluster
center, µik is the degree of membership of the k− th data in
the cluster i− th, and m is a constant greater than 1, typically
m = 2. The membership value µik is defined by [21]–[23],

µik =
1∑c

j=1

(
‖xk−vi‖2
‖xk−vj‖2

)2/(m−1) . (6)

This algorithm considers a collection of n data points
x1, x2, ..., xn in an m−dimensional space. The data is normal-
ized in each dimension so that the limits of its coordinates are
equal. Each data point is considered as a probable clustering
center and the potential of data point xi is defined as [21]–
[23],

Pi =

n∑
j=1

e−α‖xi−xj‖2 , (7)

where α = 4/r2a and ra is a positive constant. Therefore, the
measurement of the potential for a data point is a function of
the distances from all other points. A data point with many
neighboring data points will have a high potential value. The
constant ra is effectively the radius that defines a clustering.
Data points outside this radius have little influence on the
potential.

After the potentials of all data points have been computed,
the data point with the greatest potential is selected as the
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first cluster center. This first cluster center will be x∗1, and P ∗1
will be its potential value [21]–[23]. Therefore, the potential
of each point xi will be reviewed by the equation [21]–[23],

Pi ⇐ Pi − P ∗1 e−β‖xi−x∗
1‖

2

, (8)

where β = 4/r2b and rb is a positive constant. An amount
of potential will be subtracted from each data point as a
function of the distance from the first cluster center. Data
points near the first cluster center will have very reduced
potential, and therefore are unlikely to be selected as the next
cluster center. The constant rb is effectively the radius that
defines the grouping that will have a measurable reduction in
potential. To avoid obtaining sparsely spaced cluster centers,
rb = 1.5ra is considered [21]–[23].

When the potential of all data points is reviewed, according
to Equation (8), the data point with the greatest remaining
potential is selected, as the second clustering center. Then the
potential of each data point will be further reduced, according
to their distance from the second cluster center. In general,
after k−th cluster centers have been obtained, the potential of
each data point is reviewed using the formula [21]–[23]

Pi ⇐ Pi − P ∗k e−β‖xi−x∗
k‖

2

, (9)

where x∗k is the location of the k−th cluster center and P ∗k
is the potential value it. The process of acquiring new cluster
centers and potential revision repeats until P ∗k < 0.15P ∗1 [21]–
[23].

The Cluster Estimation method was applied to the collection
of input/output data. Each cluster center is, in essence, a
prototype data point that exemplifies a system’s characteristic
behavior. Therefore, each cluster center was used as the basis
for a rule that describes the system’s behavior [21], [22].

A set of c cluster centers x∗1, x
∗
2, ..., x

∗
c was considered in an

M−dimensional space. The first N dimensions correspond to
the input variables and the last M−N dimensions correspond
to the output variables. Each vector x∗i is decomposed into two
vector components y∗i and z∗i , where, y∗i contains the first N
elements of x∗i (coordinates of the cluster center in the input
space). z∗i contains the last M −N elements (coordinates of
the cluster center in the exit space). Each cluster center x∗i
was considered as a Fuzzy rule that describes the behavior of
the system. Given an input vector y, the membership value in
which rule i is satisfied is defined as [22], [23]

µi = e−α‖y−y
∗
i ‖

2

, (10)

The output vector z is computed through as [21]–[24]

z =

∑c
i=1 µiz

∗
i∑c

i=1 µi
. (11)

Equations (10) and (11) provide the path to introduce the
set of cluster centres in the Fuzzy model. Takagi-Sugeno-type
rules were used, which have been shown to accurately repre-
sent complex behaviors with just a few rules. In Takagi-Sugeno
rules, the consequent of each rule is a linear equation of the
input variables. z∗i , in Equation (11), was considered to be a
linear function of the input variables [21]–[24] z∗i = Giy+hi,

where Gi is a constant matrix (M − N) × N , and hi is a
constant column vector with M −N elements [21]–[23].

Expressing z∗i as a linear function of the input allows a
significant degree of rule optimization. For a given set of
rules with fixed premises, the optimization of parameters in
the consequent equations of the training data is reduced to a
problem of Linear Least Squares Estimation [21]–[24].

To convert the problem of optimization of parameters of the
equation into a problem of Linear Least Squares Estimation,
it is defined [21]–[24]

ρi =
µi∑c
j=1 µj

. (12)

Equation (11) can be rewritten as [21]–[23]

zT =
[
ρ1y

T ρ1 ... rhocy
T ρc

]

GT1
hT1
...
GTc
hTc

 , (13)

where zT and yT are line vectors. Given a collection of n
input data points y1, y2, ..., yn, the collection resulting from
the model output is given by [21]–[23]

zT1...
zTn

 =

ρ1,1yT1 ρ1,1 ... ρc,1y
T
1 ρc,1

...
ρ1,ny

T
n ρ1,n ... ρc,ny

T
n ρc,n

 (14)

where, ρi,j denotes ρi evaluated in yj . The first matrix on
the right side of Equation (14) is constant, while the second
contains all parameters to be optimized. To minimize the
quadratic error between the model output and that of the
training data, the Linear Least Squares Estimation problem
is given by Equation (14) is solved, replacing the matrix on
the left side by the actual output of the training data.

Using standard notation the Least Squares Estimation prob-
lem in Equation (14) has the form [21]–[23] AX = B, where
B is a matrix of the output values, A is a constant matrix and
X is a matrix of the parameters to be estimated.

Recursive Least Squares Estimation, which is computation-
ally efficient and well-behaved method, was used to determine
X via the iterative Equation (15) [21]–[23],

Xi+1 = Xi + Si+1ai+1

(
bTi+1 − aTi+1Xi

)
, (15)

Si+1 = Si −
Siaia

T
i+1Si

1 + aTi+1Siai+1
, i = 0, 1, ..., n− 1, (16)

Xi is the estimate of X in the i−th iteration; Si is a co-
variance matrix c(N + 1) × c(N + 1), aTi is the i−th vector
line of A and bTi is the i−th vector line of B. The least-squares
estimation of X corresponds to the Xn value.

In this work, the variables used for the Fuzzy RF prediction
were distance and path loss. These data were collected during
the measurement campaign using a spectrum analyzer and a
GPS. A matrix was obtained in which each column represents
a variable and the lines the data for each measurement point.
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Initially, this matrix was used to perform the Fuzzy training
and to adjust Equation (14). After this initial calibration of the
Fuzzy model, the path loss prediction for other points, with
other distances, in the region under study was performed.

D. Measurement campaign

A path loss measurement campaign, at frequencies from 27
to 40 GHz with 1 GHz steps, was conducted in the university
campus of PUC Rio de Janeiro which contains two higher
buildings, several shorter buildings and large green areas, as
shown in Fig. 1. The measured data were collected mostly
in ALOS, with a few points in NLOS conditions. A brief
description of the measurement campaign is presented in this
section. More details can be found in [25].

A continuous-wave (CW) signal with 0 dBm output power
was transmitted from the top of a ten story buildings. The
transmitting antenna height was 50 meters above the ground.

A total of 23 reception points were selected, covering
approximately 50% of the campus area. Most reception points
were at ground level, with the antenna mounted on a 1.5 meters
tripod. Some additional points were on building windows
or roofs, with the antenna at heights of 15 and 50 meters
above the ground. All reception points were within 200 meters
from the transmitter. The antennas were aligned using Bosch
GRL 825 laser pointers. The distance d considered in our
calculations is the length of the straight-line connecting the
transmitter and receiver points, not its horizontal projections.
The measurement setup is summarized in Table I. A maximum
path loss of 140 dB could be measured with this setup.

Fig. 1. Rio de Janeiro environment and measured points (27–40) GHz

TABLE I
RIO DE JANEIRO MEASUREMENT SETUP (27–40 GHZ)

TX/RX antenna type Pyramidal horn
TX/RX antenna gain 20 dBi
TX/RX antenna HPBW 16.7 degrees (H)
Transmitter model Anritsu MG3696B
TX antenna height 1.5 m
RX antenna height 1.5 m
Receiver model Anritsu MS2668C
Receiver sensitivity -100 dBm

III. RESULTS AND DISCUSSION

A. Empirical models

The coefficients of the ABG and CIF prediction methods
were adjusted to minimize the MSE with respect to all
measured data from our experiments. The adjusted models are
given by

PLABG(f, d)[dB] = 22.1 log10 d(m) + 62.3

+ 3.6 log10 f(GHz), (17)

PLCIF (f, d)[dB] = FSPL(f, 1m)[dB]

+ 24.6

(
1− 0.15

(
f(GHz)− 33.5

33.5

))
log10 d(m). (18)

The examination of our set of data indicated that the mea-
sured attenuation, as well as having the expected dependence
on frequency and distance, also shows a trend to increased
with the difference between the heights of the transmitter and
receiver, as shown in Fig. 2. This may be due to the fact that
when the receiver antenna is near the ground, the terrain clutter
is affecting the attenuation.

To improve the prediction accuracy, the height difference
between the transmitter and receiver was included as an
additional model parameter, based on the observed behaviour
shown in Fig. 2c. The proposed model is given by

PLProposed = 52.7 + 28.2 log10 d+ 3.6 log10 f

+ 6 log10[(1 + ∆h)/d], (19)

where d is the distance [m], f is the frequency [GHz], and
∆h [m] is the relative height between transmitter and receiver.
The model parameters in Eq. (19) were obtained by least
square fitting using the ALOS sub-set of data. Fig. 3 shows
the comparison between the measured path loss and the values
predicted using this model.

A comparison between the measured data and the path loss
predictions with the CIF, ABG, and the proposed model, is
shown in Fig. 4. The mean absolute error and root mean
square error comparison between the prediction models and
the measurement are listed in Table II, for some sample
frequencies and for the whole set of data. The results show
that the proposed model can improve the prediction error in
almost all cases as well as for the whole set of data.

TABLE II
ERROR ANALYSIS (RF MODELS [DB])

ABG CIF Proposed
Frequency [GHz] MAE RMSE MAE RMSE MAE RMSE

28 2.4 2.6 2.4 2.6 2.5 2.9
32 1.7 2.1 1.7 2.2 1.4 1.9
36 1.9 2.3 1.7 2.3 1.8 2.3
40 1.3 1.7 1.4 1.8 1.3 1.6

All (27-40 GHz) 1.9 2.4 2.1 2.5 1.7 2.2
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Fig. 2. Path loss dependence on: (a) distance (m); (b) frequency (GHz) and
(c) transmitter-receiver height difference.

There are a total number of 266 predictions for each model.
Although the maximum absolute errors are about 6.8 dB for
the proposed model, 7.6 dB for the ABG model, and 7.3 dB
for the CIF model, in more than 2/3 of the cases the absolute
error for all models is smaller than 2 dB.

B. Fuzzy clustering analysis
The results of the RF fuzzy clustering prediction method

were also compared with the results of the conventional CIF
and ABG prediction methods. For the fuzzy prediction, the
path loss and distance were used as input parameters, for each
frequency considered.

The results for all predictions can be seen in Figs. 5-8, in
comparison with the measured data. It can be seen that the
fuzzy clustering prediction does a better job than the empirical
methods in following the variations of the measured path loss
with distance. The mean absolute error (MAE) and the root
mean square error (RMSE) of the prediction models, when
compared to the measurement are shown in Table III.
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Fig. 3. Observed and predicted path Loss values - Rio de Janeiro.

60 80 100 120 140 160
Distance [m]

100

105

110

115

120

125

P
at

h
 L

o
ss

 [
d

B
]

Measurement
ALOS Proposed
ABG
CIF

Fig. 4. Path loss comparison - Rio de Janeiro.
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Fig. 5. Path loss prediction at 28 GHz
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Fig. 6. Path loss prediction at 32 GHz
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Fig. 7. Path loss prediction at 36 GHz
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Fig. 8. Path loss prediction at 40 GHz

From this analysis, we can conclude that the fuzzy cluster-
ing method leads to a smaller prediction error than the classical
empirical methods. Although it requires measurements in the
region of interest to be applied, it should not be a serious

TABLE III
ERROR ANALYSIS (FUZZY/PROPOSED MODELS [DB]).

Fuzzy Proposed
Frequency [GHz] MAE RMSE MAE RMSE

28 1.2 1.5 2.5 2.9
32 1.5 1.9 1.4 1.9
36 1.5 2.0 1.8 2.3
40 0.7 0.9 1.3 1.6

All (27-40 GHz) 1.6 2.1 1.7 2.2

limitation as it is common practice for system planners to
conduct drive tests for prediction model refinement.

IV. CONCLUSIONS

We presented the results of short-range path loss measure-
ment performed on a university campus. The path loss values,
measured with a transmitter to receiver distances between 50
and 180 m, were used to adjust the coefficients of the ABG
and CIF empirical path loss prediction methods.

We observed that besides the dependence on frequency and
distance, the measured path loss increased with the difference
in height (∆h given in meters) between transmitter and re-
ceiver. A modified ABG prediction method that includes this
dependence is proposed and produces results with an overall
smaller RMS error when compared with the measurement.

We next predicted the path loss using a fuzzy clustering
algorithm. The frequency, distance, and the measured RF
path loss levels were used as inputs for the fuzzy prediction.
The results showed that fuzzy clustering is an effective RF
prediction technique, which can be used to provide more
accurate path loss results for specific areas. It requires the
measurement to be made in the region where the prediction is
desired, but the same occurs with the empirical methods that
need its coefficients to be adjusted for the local environment.

The main contribution of this paper is the use of the Fuzzy
technique to perform path loss predictions for short links in the
millimeter wave range, from 27 to 40 GHz, providing lower
errors when compared to the traditional ABG and CIF models.
However, it should be noted that the Fuzzy technique uses a
set of equations to perform the prediction and the attenuation
coefficient is not explicit as in the classical models. Also, a
non-negligible effect of the height difference between trans-
mitter and receiver sites on the path loss has been observed and
requires further investigation, with additional measurements
with varying antenna heights and in different scenarios. If
confirmed, it could provide an additional parameter to improve
the accuracy of the traditional ABG model.

Future work on this subject will explore the use of additional
bio-inspired algorithms and machine learning techniques, such
as Artificial Neural Networks [9], Random Forest [26] and
Gradient Boosting [27] algorithms to test and improve the
path loss predictions. Also,additional measured data, including
outdoor scenarios, will be considered.
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