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Influence of a Direct-Conversion Receiver Model on
the Performance of Detectors for Spectrum Sensing

Dayan Adionel Guimarães, Elivander Judas Tadeu Pereira

Abstract—An implementation-oriented receiver model for cen-
tralized data-fusion cooperative spectrum sensing was proposed a
few years ago to assess the performances of the energy detector
and some eigenvalue-based detectors. The model is grounded
on a direct-conversion receiver whose main influences on the
sensing performance have been found to be the direct-current-
offset and the automatic gain control. In this paper we improve
the referred model and use it to assess the performances of
state-of-the-art blind detectors whose computations of the test
statistics are among the least complex known to date. These
detectors are the Gerschgorin radii and centers ratio (GRCR),
the Gini index detector (GID), the Pietra-Ricci index detector
(PRIDe), and the locally most powerful invariant test (LMPIT).
The energy detector (ED) is also included as a benchmark. It is
shown that the performances of all detectors are overestimated
if the conventional model (in the sense of signal processing
operations not oriented by receiver implementation aspects) is
adopted. The ED is the detector whose performance is the most
affected by the operations made in the implementation-oriented
model. The other detectors are affected in quite similar ways, with
an advantage of the PRIDe in most of the situations analyzed.

Keywords—Cognitive radio, DC-offset, direct-conversion re-
ceiver, spectrum sensing.

I. INTRODUCTION

THE demand for new telecommunications services has
been the main research driver of new technologies, as

can be seen, for example, in the recent advances involving
the Internet of things (IoT) and the fifth generation (5G) of
communication networks, as well as the discussions already
started on the sixth generation (6G). However, it is necessary
to overcome the obstacle of radio-frequency (RF) spectrum
scarcity to allow the deployment of new wireless communi-
cations services, as a large amount of RF bands would be
necessary to accommodate the high number of transmitters and
receivers foreseen for IoT, 5G and 6G networks. Such scarcity
is due to the fact that, in the current fixed bandwidth allocation
policy, the usage right is given only to the contracting user,
also called licensed, incumbent or primary user (PU).

It is believed that the fixed spectrum allocation policy will
not be adequate for the expansion of wireless communications
systems and services. A new and more appropriate policy for
dynamic spectrum sharing (DSS) or dynamic spectrum access
(DSA) is needed, aiming at exploiting the fact that the RF
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spectrum is actually underutilized, given that much of the time
and in certain regions there are allocated frequency bands that
are unoccupied [1], [2].

In the dynamic spectrum allocation policy, it is accepted that
an unlicensed user, also called secondary user (SU), can use a
frequency band already licensed to the primary network. The
SU transmissions can be carried out both simultaneously with
PU transmissions, as long as no harmful interference is caused
to the primary network, or in a non-overlapping manner, taking
advantage of transmission opportunities in licensed bands that
are momentarily unoccupied.

The concept of cognitive radio (CR) arose in such con-
text [3]. A CR is an intelligent transceiver device that possesses
several sophisticated attributes related to cognition, allowing it
to adapt to the environment and to the network in which it is
inserted. Among the CR attributes, we highlight the spectrum
sensing [4], [5], through which an SU transceiver device
can identify momentarily vacant frequency bands, allowing
a shared spectrum use between the primary and the secondary
networks. Thus, spectrum sensing can be considered one of
the main enablers of DSA.

The CR technology already takes place in current networks,
and is also envisaged as part of future ones. For example,
since the Release 13 of the 3rd Generation Partnership Project
(3GPP) recommendations, the unlicensed operation for mo-
bile communications implements the listen before talk (LBT)
protocol, which is in fact a realization of spectrum sensing to
protect Wireless Fidelity (WiFi) communications from Long
Term Evolution (LTE) interference [6]. Recent works on 5G
and beyond are also in ongoing development, considering
cognitive physical layers for operation in licensed bands by
means of DSA [7].

A. Reviewing spectrum sensing concepts

The spectrum sensing process is a binary hypothesis test
in which the decision upon the presence (hypothesis H1) or
absence (hypothesis H0) of the PU signal in the sensed band
is made by comparing a test statistic (also called decision
variable) with a decision threshold whose value is set ac-
cording with the desired spectrum sensing performance. Well-
known test statistics are based on energy detection, matched
filtering, cyclostationary feature detection, and eigenvalue-
based detection [4], [5].

In energy detection, which is the simplest spectrum sensing
technique known so far, the test statistic is a measure of
the energy of the signal received during the sensing interval,
which differs from the absence to the presence of the PU
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signal. Matched filtering applies a receive filter matched to the
PU signal waveform, which renders it a high implementation
complexity, but optimal performance in some cases. The
high complexity is also a characteristic of the cyclostationary
feature detection, which explores the cyclostationarity of the
PU signal to distinguish it from noise, which is not a cyclo-
stationary random process. Eigenvalue-based detection makes
use of the eigenvalues of the received signal covariance matrix
to detect the presence of the PU signal, being also complex
mainly due to the need of computing the covariance matrix
and their eigenvalues.

When spectrum sensing is made by each SU independently
of the other SUs, unreliable decisions may result, mainly
due to multipath fading, shadowing and the hidden terminal
problem. Cooperative spectrum sensing (CSS) comes as a
more reliable solution that explores the spatial diversity gain
achieved by SUs in different locations [4], [5]. The CSS is
made by a group of SUs that collaborate, jointly seeking for
vacant RF bands.

The CSS can be centralized or distributed. The centralized
CSS processes the samples collected by the SUs or the local
decisions made by them, which are forwarded to a fusion
center (FC) where the final global decision on the sensed
band occupancy state is made. When collected samples are
sent to the FC, it is referred to as a data-fusion CSS. When
the local decisions are sent to the FC, a decision-fusion CSS
takes place. In distributed CSS, the SUs in cooperation share
their decisions and the global decision is jointly made under
some form of consensus. In both approaches, when a global
decision is made in favor of a vacant band, it is broadcast
to the SUs to allow the subsequent DSA. An ordinary access
protocol can be adopted in the DSA phase.

The spectrum sensing performance is often measured by
means of the probability of false alarm, 𝑃fa = Pr{𝑇 > 𝛾 |H0},
and the probability of detection, 𝑃d = Pr{𝑇 > 𝛾 |H1}, where
Pr{·} denotes the probability of occurrence of the underlying
event, 𝑇 is the test statistic formed according with the adopted
detection technique, and 𝛾 is the decision threshold.

It is desirable to have a low 𝑃fa to increase the chance of
opportunistic spectrum access by the SUs, which increases the
secondary network data throughput. A high 𝑃d is also targeted
so that the primary network is protected from interference
caused by the secondary network when it mistakenly detects
a vacant band and uses it.

Unfortunately, the objectives of increasing 𝑃d and reducing
𝑃fa are concurrent, which means that increasing the first
(lowering the decision threshold) also causes the second to
increase; and the reduction of the second (increasing the
decision threshold) also causes the reduction of the first. In
practice, a trade-off solution ruled by a standard is typically
adopted. For example, the IEEE 802.22 standard establishes
𝑃fa ≤ 0.1 and 𝑃d ≥ 0.9 in a worst case scenario regarding the
detection of digital television (DTV) signals [8].

B. Related research and contributions

In [9], a realistic receiver model for centralized data-fusion
CSS has been proposed. The model is grounded on a direct-

conversion architecture, claimed to be a more adequate alterna-
tive to be applied when assessing the performance of spectrum
sensing techniques. The motivation behind the proposal of
such model was the fact that there were (and still there is)
a lack of research initiatives that consider the influence of
typical receiver circuitry, adapted as a spectrum sensor, on the
performance of the sensing process. All research publications
verified by the authors consider that the samples collected by
an SU device are free from any circuit-related impairment
when they are processed by the SUs to yield local decisions (in
the case of a decision-fusion CSS) or when they are processed
in the FC (if a data-fusion CSS takes place).

It has been concluded in [9] that the spectrum sensing
performance under the conventional model might be overes-
timated when compared with the so-called implementation-
oriented model. The main process that degrades the sensing
performance is the automatic gain control. The direct-current-
offset (DC-offset), the quantization noise and filtering also
influence performance, but in a smaller amount when typical
residual DC-offset (after DC-offset compensation) is consid-
ered, when the number of quantization bits is above 3, and
when the filter bandwidth is not too small, i.e. when the sensed
channel is not too narrow.

The detection techniques analyzed in [9] were the energy
detector (ED), and the eigenvalue-based detectors: generalized
likelihood ratio test (GLRT), maximum-minimum eigenvalue
detection (MMED), also known as eigenvalue ratio detec-
tion (ERD), and maximum eigenvalue detection (MED), also
known as Roy’s largest root test (RLRT).

Recently, some low-complexity detection techniques have
been proposed. Among them, we highlight the locally most
powerful invariant test (LMPIT) [10], the Gerschgorin radii
and centers ratio (GRCR) detector [11], the Gini index detector
(GID) [12], and the Pietra-Ricci index detector (PRIDe) [13].
Due to the fact that the test statistics of these detectors are
formed via simple operations on the elements of the received
signal sample covariance matrix (SCM), the computational
cost to calculate them are slightly higher than in the case of
the ED. However, the need for estimating the noise variance
to establish the decision threshold in the ED eventually turns
its implementation complexity even higher than in the case of
the LMPIT, the GRCR, the GID, and the PRIDe.

Besides having low implementation complexity, the de-
tectors LMPIT, GRCR, GID and PRIDe are robust against
received signal and noise power variations over time, attain
the constant false alarm rate (CFAR) property, are capable of
outperforming many detectors in a variety of circumstances of
practical interest, and are blind in the sense that neither any
PU signal characteristics nor the noise variance information
are needed to form the test statistics. We stress the fact that
the ED is semi-blind, since it makes use of the noise variance
information, although it does not demand the knowledge of
the PU signal characteristics.

In this paper we improve the implementation-oriented re-
ceiver model proposed in [9], also improving the sensing
channel model with respect to the one adopted in [9]. We
then apply these models to assess the performances of the
detectors LMPIT, GRCR, GID, PRIDe and ED. The main
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receiver-related model improvements refer to modifications
in the order of signal processing operations aiming at better
matching actual receiver structures, also removing normaliza-
tion operations made on the noise and signal powers and on
the channel gain, which in [9] led to undesired changes in the
corresponding long-term statistics. The sensing channel model
improvement accounts for a morphology-dependent random
Rice factor, and time-variant noise and received signal levels.

It is worth emphasizing that this article does not explore
any circuit-level real implementation of the spectrum sensing.
Instead, it proposes a model for assessing the spectrum sensing
performance via computer simulations. The model is based
on a receiver circuit architecture that is considered the most
commonly adopted choice in modern transceiver designs, such
as software-defined radios (SDRs).

The remainder of the paper is organized as follows: Sec-
tion II presents the conventional signal model, taking into
account the improvements in the sensing channel model. The
original implementation-oriented model is briefly described in
Section III. Section IV is devoted to the improved receiver
model. The test statistics associated with the detectors LMPIT,
GRCR, GID, PRIDe and ED are addressed in Section V.
Section VI presents the computer simulation results, and
Section VII concludes the work.

II. CONVENTIONAL SIGNAL MODEL

The centralized CSS with data-fusion is accomplished by
𝑚 cognitive SUs, each one collecting 𝑛 samples of the signal
received from 𝑠 PU transmitters during each sensing interval.
At the FC, these samples form the matrix Y ∈ C𝑚×𝑛, which
is given by

Y = HX + V. (1)

Under the hypothesis H0 the primary signal is absent in
the band of interest, that is Y = V. Under the hypothesis
H1 the primary signal is present, i.e, Y = HX + V. In this
equation, the 𝑛 samples related with the signals transmitted by
the 𝑠 PUs are arranged in the matrix X ∈ C𝑠×𝑛. These samples
are zero-mean complex Gaussian random variables whose
variance is determined according to the average signal-to-noise
ratio (SNR) across the SUs. The Gaussian distribution for the
primary signals is adopted due to the fact it appropriately
describes the envelope fluctuations of typical modulated and
filtered digitally-modulated signals [14].

The channel matrix H ∈ C𝑚×𝑠 in (1) has elements ℎ𝑖 𝑗 ,
for 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑠, representing the flat
channel gains between the 𝑗-th PU and the 𝑖-th SU. These
gains are constant during the sensing interval and independent
and identically distributed (i.i.d.) between consecutive sensing
rounds. The flat fading assumption means that the PU signal
bandwidth is smaller than the coherence bandwidth of the
sensing channel. The constant gains model a slow fading,
meaning that the sensing interval is smaller than the coherence
time of the channel. The independence of successive fading re-
alizations means that the interval between consecutive sensing
rounds is larger the the coherence time of the sensing channel.
This channel matrix is given by

H = GA, (2)

where A ∈ C𝑚×𝑠 is formed by complex-valued Gaussian
random variables 𝑎𝑖 𝑗 with mean

√︁
𝜅𝑖 𝑗/(2𝜅𝑖 𝑗 + 2) and variance

1/(𝜅𝑖 𝑗 + 1), yielding E{𝑎2
𝑖 𝑗
} = 1, where 𝜅𝑖 𝑗 is the Rice

factor1 of the channel between the 𝑗-th PU and the 𝑖-th SU.
To model extremes of realistic scenarios, 𝜅𝑖 𝑗 = 10𝐾𝑖 𝑗/10,
where 𝐾𝑖 𝑗 , in dB, is Gaussian distributed with mean 𝜇𝐾
and standard deviation 𝜎𝐾 . For urban areas, 𝜇𝐾 = 1.88 dB
and 𝜎𝐾 = 4.13 dB. For rural and open areas, it follows that
𝜇𝐾 = 2.63 dB and 𝜎𝐾 = 3.82 dB [15].

Unequal (nonuniform) received signal power levels across
the SUs can be considered. This is modeled by setting the gain
matrix G ∈ R𝑚×𝑚 as

G = diag
(√︂ p

𝑝avg

)
, (3)

where the vector p = [𝑝1, 𝑝2, . . . , 𝑝𝑚] contains the received
signal powers across the SUs, and 𝑝avg = 1

𝑚

∑𝑚
𝑖=1 𝑝𝑖 is the

average signal power over all SUs. Since the average channel
power gain is unitary, without loss of generality, each PU
transmits with a constant power given by 𝑝avg/𝑠.

If unequal and time-varying received signal powers are
assumed, then 𝑝𝑖 is uniformly distributed over the interval
[(1 − 𝜌S)𝑝avg, (1 + 𝜌S)𝑝avg] in each sensing round, where
0 ≤ 𝜌S < 1 is the configurable fractional signal power
variation about the average.

In the case of unequal and time-varying noise levels, the
elements in the 𝑖-th row of the matrix V ∈ C𝑚×𝑛 in (1) are
i.i.d. Gaussian noise samples with zero mean and variance 𝜎2

𝑖
,

which is itself a random variable uniformly distributed over the
interval [(1− 𝜌N/2)𝜎2

avg, (1+ 𝜌N)𝜎2
avg] in each sensing round,

where 0 ≤ 𝜌N < 1 is the fractional noise power variation about
the average, and 𝜎2

avg = 1
𝑚

∑𝑚
𝑖=1 𝜎

2
𝑖

is the average noise power
across the SUs.

Thus, the received SNR, in dB, averaged over all SUs, is

SNR = 10 log10

(
𝑝avg

𝜎2
avg

)
. (4)

Given Y at the FC, the SCM of order 𝑚 is computed as

R =
1
𝑛

YY†, (5)

where † denotes complex conjugate and transpose.
In [9], the channel matrix represents a Rayleigh fad-

ing channel. Here, it represents a more practical-appealing
sensing channel producing Ricean fading with random Rice
factor whose mean and standard deviation are environment-
dependent. Moreover, the received signal and noise powers are
fixed in [9], whereas they may be varied in the present model
to account for different distances between the SUs and the PUs
and different thermal noise levels across the SUs receivers due
to different temperatures and inherent circuit uncalibration.

1In a multipath fading channel, the Rice factor is the ratio between the
power in the dominant (specular or line-of-sight) multipath component and the
power in the remaining ones. If 𝜅𝑖 𝑗 = 0, the Ricean fading specializes to the
Rayleigh fading. If 𝜅𝑖 𝑗 →∞, a pure additive white Gaussian noise (AWGN)
channel results. For practical purposes, an almost-pure AWGN channel is
observed if 𝜅𝑖 𝑗 > 10.
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III. THE ORIGINAL IMPLEMENTATION-ORIENTED MODEL

The receiver architecture whose the model proposed in [9]
is based is shown in Fig. 1. It suits to each SU receiver in
the decision-fusion CSS, or to the FC receiver in the data-
fusion CSS. The architecture combines a direct-conversion
receiver (also known as homodyne or zero-IF receiver) front-
end with spectrum sensing functions. The analog RF front-
end comprises a wideband antenna, a wideband band-pass
filter (BPF), a low-noise amplifier (LNA) and quadrature local
oscillators (LOs) and mixers responsible for down-conversion
of the sensed passband signal to in-phase and quadrature
(I&Q) baseband signals.

LNA

ADC
and

whitening

Wideband
BPF

Channel
LPF

Residual
DC offset

LO

VGA

Fig. 1. Receiver architecture considered in the model proposed in [9].

The direct-conversion architecture is the most adequate
choice for SDR receivers and monolithic integration, mainly
due to its flexibility, low complexity and relaxed image
rejection requirements [16], [17]. However, it is prone to
impairments such as I&Q imbalance, flicker noise and DC-
offset [17], [18].

The DC-offset is considered the most damaging impair-
ment [18], [19]. It is a direct-current (DC) signal composed
of static and dynamic parts, appearing at the mixer output
primarily due to LO self-mixing and in-band interfering sig-
nals. Without proper compensation, the DC-offset can overload
subsequent stages such as amplifiers and analog-to-digital
converters (ADCs) [17], [19]. Nonetheless, the adoption of
careful circuit design and DC-offset compensation strategies
can almost completely eliminate the static DC-offset part, but
some residual dynamic part will inevitably remain [17], [20].
The summation block following the mixer in Fig. 1 accounts
for this residual dynamic DC-offset.

The baseband I&Q signals go through a variable gain
amplifier (VGA), which is part of an automatic gain control
(AGC) mechanism responsible for maintaining the signal
within the dynamic range of the ADCs located in the I&Q
signal paths. I&Q low-pass filters (LPFs) select the desired
bandwidth to be sampled and avoids aliasing. Noise whitening
subsequently takes place to guarantee that noise samples are
kept uncorrelated.

In [9], the receiver depicted in Fig. 1 is modeled taking
into account the main operations that influence the spectrum
sensing performance, namely: the channel fading and thermal
noise, the residual DC-offset, the AGC, filtering, the quanti-
zation performed by the ADCs, and the whitening process. A
transformed received signal matrix Y is generated according
to these operations, followed by the ordinary computation of
the test statistic under analysis.

Aiming at avoiding redundancy, in this section we have
omitted the details behind the generation of the transformed
matrix Y, since these details are covered in Section IV, where

the differences regarding the proposed improved model are
highlighted.

IV. IMPROVED RECEIVER MODEL

The direct-conversion receiver architecture used as reference
to construct the proposed spectrum sensing model is shown in
Fig. 2. It is quite similar to the architecture depicted in Fig. 1,
with the difference that Fig. 2 carries more fidelity with respect
to an actual receiver structure [17]. The exchange in position
between the LNA and the wideband BPF (WBPF) aims at
a reduced noise figure. The digital signal processing (DSP)
implements noise whitening, computes the test statistic and
performs the decision, also controlling the center frequency
of the sensed channel, the DC-offset compensation algorithm,
and the VGA that is part of the AGC mechanism. The other
blocks in Fig. 2 are self-explanatory.

Fig. 2. Homodyne (or zero-IF, or direct-conversion) receiver architecture.

Taking into consideration the same main processes or im-
pairments that degrade the spectrum sensing performance as
reported in [9], the FC receiver model can be constructed ac-
cording to Fig. 3, where yT

𝑖
denotes the 𝑖-th row, 𝑖 = 1, . . . , 𝑚,

of the received signal matrix Y defined in (1).
Matrix Y is assumed perfectly delivered to the FC, meaning

that no bit errors occur during the transmissions of its digitized
rows from the SUs to the FC. The influence of such errors is
fully investigated in other research; see for instance [21], [22]
and references therein.

Fig. 3. Fusion center receiver model based on Fig. 2.

To model the effects of filtering on the transmitted and
received signals, each row of Y undergoes moving-average
(MA) filtering. Real and imaginary parts of each element in
yT
𝑖

are separately filtered. The MA filters have a configurable
discrete impulse response length, 𝐿, which controls the time
correlation in the received samples. The MA filter type was
chosen for simplicity; any other LPF could be adopted as well.

In each sensing round, the 𝐿 memory elements of the MA
filter are set to zero before filtering, which is equivalent to
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zero-padding the input sequence. Hence, out of 𝑛+𝐿−1 filtered
samples, the first 𝐿 −1 are discarded. In [9], only the samples
that form matrices X and V are filtered. Here, the samples in
HX and V are filtered, to take into account the filtering effects
on the PU signal at the receiver side as well.

The summation block following the MA filter in Fig. 3
accounts for the residual dynamic DC-offset. In [9] it is added
before the MA filter, which affects output samples in a non-
desired manner because of the transitory filtering behavior that
occurs in the last 𝐿 − 1 output samples due to emptying the
memory elements at the end of each sensing interval. The
residual DC-offset addition after filtering avoids this problem.

Likewise [9], the DC-offset is a complex-valued Gaussian
random variable with zero mean, and i.i.d. between sensing
rounds. This random variable forms the matrix D ∈ C𝑚×𝑛
that is added to the MA-filtered version of matrix Y. The
elements in D are column-wise equal to one another within
a given sensing interval, and row-wise i.i.d. to represent
independent DC-offsets among SUs. The variance of the DC-
offset samples, 𝜎2

dc, is determined according to the signal-to-
DC-offset ratio (SDCR). In dB, it follows that

SDCR = 10 log10

(
𝑝avg

𝜎2
dc

)
. (6)

The combined voltage gain of the LNA and the VGA shown
in Fig. 2 is modeled via the AGC block in Fig. 3. At the 𝑖-th
SU, 𝑖 = 1, 2, . . . , 𝑚, this gain is given by

𝑔𝑖 =
𝑓od
√

2𝑛
6‖y𝑖 ‖

, (7)

where ‖ · ‖ denotes the Euclidean norm, and the overdrive
factor 𝑓od models different levels of signal clipping caused
by actual ADCs. If 𝑓od increases above 1, clipping occurs
with severity proportional to its value. If 𝑓od < 1, the severity
of clipping is progressively reduced as its value becomes far
from 1. Clipping acts in a real sample value 𝑦 according to
𝑦 ← sign(𝑦)min( |𝑦 |, 0.5), where it is implicitly assumed that
the dynamic range of the ADCs is [−0.5, +0.5] volts.

The gains defined in (7) have the role of guaranteeing that
almost the total signal excursion (six standard deviations) fits
the dynamic range of the ADCs, going below or above this
range as determined by 𝑓od. In [9] it is also defined a system
variable for the ADC dynamic range, but it is not needed
because the gains given in (7) attain their role no matter the
value of this variable. Further details on the reasoning behind
such gain model are given in [9]; they are omitted here for
the sake of conciseness.

Whitening is the process of decorrelating the samples con-
tained in a vector such that its covariance matrix becomes
the identity matrix [23, p. 130]. Whitening is important in
spectrum sensing to decorrelate noise samples, improving the
detection performance. In [9], whitening is made after MA-
filtering and residual DC-offset addition, before the AGC and
the signal clipping plus quantization made by the ADCs.
Here, whitening is made after AGC and before quantization
(with clipping). This is done in benefit of modeling the use
of high resolution ADCs, which is the case of CSS with
decision-fusion, in order to avoid performance loss of the

SUs decisions. In CSS with data-fusion, which is the case
considered in this paper, whitening has to be made under
high resolution, since it is very sensitive to the quantization
errors, whereas the samples to be forwarded to the FC can
be quantized with lower resolution to reduce the data rate
in the control channels. Hence, in the block ‘whitening and
quantization’ shown in Fig. 3 it is subsumed that whitening
makes use of high resolution operations (for example, using
floating-point arithmetic), while the samples resulted from
whitening are quantized with a resolution as small as possible,
the smallest sufficient for not causing significant spectrum
sensing performance degradation.

The whitening filter [24] matrix W ∈ R𝑛×𝑛 that multiplies
the gain-controlled version of Y is given by

W = UL−1, (8)

where U is an arbitrary orthogonal matrix that can be obtained,
for instance, from the singular-value decomposition of the
covariance matrix Q ∈ R𝑛×𝑛 associated with the filter impulse
response. This matrix has elements

𝑄𝑖 𝑗 = 𝑎 |𝑖− 𝑗 | , (9)

for 𝑖, 𝑗 = 1, 2, . . . , 𝑛, with {𝑎𝑘 } denoting the discrete auto-
correlation function of the MA filter impulse response, i.e.
𝑎𝑘 = 1 − 𝑘/𝐿 for 𝑘 ≤ 𝐿, and 𝑎𝑘 = 0 otherwise, for
𝑘 = 0, 1, . . . , (𝑛 − 1). The matrix L is the lower triangular
matrix from the Cholesky decomposition of Q. As highlighted
in [9], [24], this whitening process is signal-independent
(blind), which renders it easy implementation in practice, since
W can be computed during the system design phase.

In [9], power normalizations were performed in X and V
after filtering and whitening, as well as in H, to guarantee the
desired power levels and channel gains, respectively. We do not
apply such normalizations here, since they change the long-
term statistics previously assumed for the samples in these
matrices. This happens because the normalization factor is
the square-root of a time-series average power estimated from
the corresponding samples in each sensing round, which is
a random variable itself. Here, the desired power levels are
guaranteed by just setting the MA filter impulse response as
ℎ𝑙 = 1/

√
𝐿, for 𝑙 = 1, . . . , 𝐿, recalling that the whitening result

follows normalized since the whitening filter is derived from
the MA filter impulse response.

The present model is based on a receiver (Fig. 2) whose
multiple stages in series are necessary and characteristic of
a typical direct-conversion structure. They are not peculiar to
the model. As can be concluded from the spectrum sensing
literature [4], [5], time is shared among the spectrum sensing
performed by the SUs, the report of the sensing information
to the FC, the decision on the occupation state of the sensed
band plus channel assignment, and the access to the channel
for data transmission by the secondary network. In practice,
the data transmission interval is much larger than the other
three intervals, but in any way there exists a trade-off between
these intervals so that the target spectrum sensing performance
is attained without seriously penalizing the secondary network
throughput. Thus, once spectrum sensing is used to drive
dynamic spectrum access, its negative contribution to the
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communication latency in the secondary network is expected
and it is implicit in the above-mentioned trade-off.

It is important to bear in mind that any time-consuming task
(such as whitening and test statistic computation) influences
this trade-off, thus influencing latency. The trade-off is also
influenced by the time needed to collect the necessary number
of samples for spectrum sensing, which in turn depends
on the adopted detection technique, on the bandwidth and
propagation characteristics of the sensing channel, on the
sampling method, and on the number of SUs in cooperation.
Delay is also affected by the adopted filtering type (analog
or digital) in the signal path. In case of digital filtering, the
delay depends on the sampling frequency and filter structure.
The delay produced by DSP tasks depends on the processing
power, its architecture and clock frequency.

V. THE ANALYZED DETECTORS

This section presents the test statistics of the detectors
whose performances are analyzed in Section VI, namely: the
ED, the LMPIT, the GRCR, the GID and the PRIDe. The
computational cost related with the calculation of these test
statistics are also presented and discussed.

A. Test statistics

The ED test statistic [25] in the case of centralized CSS
with data-fusion, under the conventional receiver model, is

𝑇ED =

𝑚∑︁
𝑖=1

1
𝜎2
𝑖

𝑛∑︁
𝑗=1
|𝑦𝑖 𝑗 |2, (10)

where 𝑦𝑖 𝑗 is the element on the 𝑖-th row and 𝑗-th column of
the received signal matrix Y defined in (1), and 𝜎2

𝑖
is the noise

variance at the input of the 𝑖-th SU.
In the case of the implementation-oriented model, the test

statistic of the ED becomes

𝑇EDio =

𝑚∑︁
𝑖=1

1
𝑔2
𝑖
𝜎2
𝑖

𝑛∑︁
𝑗=1
|𝑦𝑖 𝑗 |2, (11)

where 𝑔𝑖 , defined in (7), is needed to correct the noise
variance information affected by the AGC. This correction
was not taken into account in [9], yielding an extremely poor
performance of the ED when considering the implementation-
oriented receiver model.

It is worth highlighting that the ED makes use of 𝜎2
𝑖

, which
can be embedded into the test statistic, as given in (10) and
(11), or into the decision threshold. A common non-realistic
practice adopted in the literature, for instance in [9], is to
consider that the noise variances across the SUs are the same,
that is, 𝜎2

1 = 𝜎2
2 = · · · = 𝜎2

𝑚 = 𝜎2. In this case 𝑇ED assumes
its mostly known form, 𝑇ED = 1

𝜎2
∑𝑚
𝑖=1

∑𝑛
𝑗=1 |𝑦𝑖 𝑗 |2. When

the implementation-oriented model is adopted, it immediately
follows that 𝑇EDio = 1

𝜎2
∑𝑚
𝑖=1

1
𝑔2
𝑖

∑𝑛
𝑗=1 |𝑦𝑖 𝑗 |2.

In the case of the LMPIT detector [10], the test statistic is

𝑇LMPIT =

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1
|𝑐𝑖 𝑗 |2, (12)

where 𝑐𝑖 𝑗 is the element on the 𝑖-th row and 𝑗-th column of the
matrix C = E−1/2RE−1/2, for 𝑖, 𝑗 = 1, 2, . . . , 𝑚, where E is the
diagonal matrix in which the diagonal elements are 𝑑𝑖𝑖 = 𝑟𝑖𝑖 ,
with 𝑟𝑖𝑖 denoting the elements on the main diagonal of the
sample covariance matrix R defined in (5).

The test statistic of the GRCR detector [11] is

𝑇GRCR =

𝑚∑
𝑖=1

𝑚∑
𝑗=1, 𝑗≠𝑖

��𝑟𝑖 𝑗 ��
𝑚∑
𝑖=1
𝑟𝑖𝑖

, (13)

where 𝑟𝑖 𝑗 is the element on the 𝑖-th row and 𝑗-th column of
the matrix R.

Finally, the test statistics of the GID [12] and the PRIDe [13]
detectors are respectively computed according to

𝑇GID =

𝑚2∑
𝑖=1
|𝑟𝑖 |

𝑚2∑
𝑖=1

𝑚2∑
𝑗=1

��𝑟𝑖 − 𝑟 𝑗 �� , (14)

𝑇PRIDe =

𝑚2∑
𝑖=1
|𝑟𝑖 |

𝑚2∑
𝑖=1
|𝑟𝑖 − 𝑟 |

, (15)

where 𝑟𝑖 , for 𝑖 = 1, 2, . . . , 𝑚2, is the 𝑖-th element of the vector r
formed by stacking all columns of R, and 𝑟 = (1/𝑚2)∑𝑚2

𝑖=1 𝑟𝑖 .
As presented in the next subsection, the detectors LMPIT,

GRCR, GID and PRIDe are the blind detectors of less compu-
tational complexity known to date, to the best of the authors
knowledge.

B. Computational complexities

The ED test statistic (10) is the less complex detector known
so far. Its computational cost is dominated by the 𝑛𝑚 multipli-
cations, thus yielding a complexity of O(𝑛𝑚). However, one
must be aware that the final computational burden related to
the ED will also depend on the method used to estimate the
noise variance, which is a known parameter in (10), but known
within the estimation error range in practice.

The complexities of the test statistics LMPIT (12), GRCR
(13), GID (14), and PRIDe (15) are dominated by the complex-
ity associated with the computation of the sample covariance
matrix R, which is O(𝑛𝑚2) [26], [27]. In the case of the
LMPIT, it deserves emphasis the fact that the matrix C is
formed by a matrix multiplication, being the operation E−1/2

quite simple, given that E is diagonal. Hence, most of the
computational complexity associated with the LMPIT indeed
resides in the computation of R.

Since the number 𝑚 of SUs in cooperation is small in
practice, it can be concluded that the computational cost to cal-
culate the test statistics of the detectors LMPIT, GRCR, GID
and PRIDe is slightly higher than in the case of the ED, when
the ED uses prior information on the noise variance. If the ED
estimates the noise variance on-the-fly, the computational cost
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of doing such estimation must be added, eventually making
the ED more complex than the other detectors in analysis.

The noise whitening, which is not considered in the con-
ventional model, is a necessary operation in the proposed
implementation-oriented model, since it is responsible for
decorrelating the noise samples present in the signal due
to filtering effects in the signal path. The computational
complexity related to the whitening approach adopted in this
work costs O(𝑛2𝑚), which is from the matrix multiplication
between W ∈ R𝑛×𝑛 and YT ∈ C𝑛×𝑚.

The blocks preceding whitening are common in SDR
receivers, namely: filtering, down-conversion and analog-to-
digital conversion. Their implementation complexities are not
related to the computational burden of the proposed model.
Instead, they are related with the actual implementation com-
plexity of the receiver architecture depicted in Fig. 2.

The computations of the test statistic and the noise whiten-
ing contribute with the delay of the spectrum sensing process,
as discussed in the last two paragraphs of Section IV.

VI. NUMERICAL RESULTS

The numerical results presented in this section show graphs
of 𝑃d versus the most relevant system parameters, assuming a
constant 𝑃fa = 0.1 [8]. Each point on all curves has been de-
termined from 50000 Monte Carlo computer simulation runs,
which corresponds to the generation of the same number of
each test statistic under H0 and H1. The MATLAB simulation
code used to generate the results is available at [28].

The 95% confidence intervals (CIs) achieved using the
above number of runs are shown in Fig. 4, which clearly
unveils accurate estimates of 𝑃d. These CIs were computed
using the binomial proportion confidence interval for single
proportion, a method that is based on the number of successes
in independent Bernoulli trials. Since the noise and fading
channel gains are independent between sensing events, and
the SUs decisions are independent from each other, the spec-
trum sensing results are Bernoulli random variables and the
number of detection events during the Monte Carlo runs has a
Binomial distribution. Hence, the above method is adequate for
CI calculation. The Matlab function ‘binofit’ has been used to
compute the CIs. It adopts the Clopper-Pearson method, also
called ‘exact binomial’ method [29].

Fig. 4. Confidence interval of the Monte Carlo simulations.

Unless otherwise stated, the system parameters, when fixed,
are 𝑠 = 1, 𝑚 = 6, 𝑛 = 140, SNR = −10 dB, SDCR = 5 dB,

𝑁q = 8 (3 bits), 𝑓od = 1.2, 𝐿 = 𝑛/10, 𝜌S = 0.9, 𝜌N = 0.2,
𝜇𝐾 = 1.88 dB, 𝜎𝐾 = 4.13 dB, and 𝑃fa = 0.1. The SNR or 𝑛
has been set to yield the standardized [8] value of 𝑃d ≈ 0.9
around the mid-range of the parameter under test, for the best
detector under the conventional model. Using this procedure,
the influence of higher and lower values of the parameter under
test can be easily seen in the graphs.

The quantities of PUs and SUs (𝑠 = 1, 𝑚 = 6) were
chosen to match situations that are likely to occur in practice,
namely a single PU transmitter per coverage area and a
small number os SUs in cooperation to save control channel
resources. Moreover, the cooperation diversity grows in a
diminishing-return fashion, meaning that the spectrum sensing
performance does not improve linearly on 𝑚. The amount of
140 samples was chosen for being enough to yield the typical
standardized target performances (𝑃fa = 0.1 and 𝑃d = 0.9)
at a significantly small SNR regime of −10 dB in most
of the situations analyzed. The conservative SDCR = 5 dB
has been chosen because the residual SDCR can be as high
as 15 to 30 dB when the DC-offset compensation circuit
is properly designed [30]. The number of 8 quantization
levels is almost as good as infinite quantization, which can
be observed in the results hereafter. An overdrive factor of
1.2 and an MA filter impulse response length of 𝑛/10 are
adequate choices for yielding close-to-the-best performances
for all detectors, as also observed in the results ahead. The
fractions of noise and received signal level variations were
arbitrarily chosen, with the fraction of noise variation smaller
than the one related to the signal, aiming at mimicking a more
likely situation in practice (received signal powers vary more
due to variable distances between transmitters and spectrum
sensors; thermal noise fluctuations are considerably smaller
due to smaller variations in the ambient temperature and small
circuit uncalibration or interfering signals). The Rice factor
parameters were chosen to represent the spectrum sensing
scenario of more practical appeal, which corresponds to a
urban environment.

Fig. 5 shows 𝑃d versus the average SNR across the SUs. As
expected, all detectors attain performance improvement as the
SNR increases. The ED has a slightly superior performance,
followed by the PRIDe. The LMPIT and the GRCR attain
comparable performances, which are superior to the GID at
higher SNR regimes, whereas at lower SNRs the GID wins.
The performances follow approximately equal patterns from
the conventional to the implementation-oriented model, but
an overall decrease can be observed in the latter due to the
impairments not present in the former.

The results shown in Fig. 5 are representative of an outcome
also observed in the other figures shown hereafter, which is
the different behaviors among the detectors when a system
parameter (the SNR in the case of Fig. 5) is varied. It may
happen that no explicit cause for such different behaviors can
be highlighted. In other words, it is expected that different
detectors perform unequally under a given system setup, and
it is also expected that the variation of a given parameter will
produce different degrees of performance variation in different
detectors, since their test statistics operate the received signal
differently from each other.
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Fig. 5. 𝑃d versus average SNR: conventional model (left), implementation-
oriented model (right).

Fig. 6 shows 𝑃d versus the number of samples 𝑛 collected
by each SU. All detectors attain performance improvement
as 𝑛 increases, which is an expected outcome since a larger
𝑛 can be translated into a larger sensing interval if the
sampling rate is unaltered. All but the ED yield performances
following approximately equal patterns from the conventional
to the implementation-oriented model, with an overall decrease
observed in the latter. For larger values of 𝑛, the ED unveiled
a more prominent performance penalty from the conventional
to the implementation-oriented model. The LMPIT and the
GRCR attain performances close to each other and superior
to the GID at higher values of 𝑛, whereas at the GID wins for
smaller values of 𝑛.

Fig. 6. 𝑃d versus the number of samples, 𝑛: conventional model (left),
implementation-oriented model (right). SNR = −12.5 dB.

The variation in 𝑃d according to the number of SUs in
cooperation, 𝑚, is demonstrated in Fig. 7. As happens with
the SNR and 𝑛, the performances of all detectors improve
when 𝑚 increases, but not linearly. This improvement is
mainly a consequence of an increased spatial diversity gain
achieved when more SUs cooperate. The improvement of

the ED is less pronounced than the others. All performances
follow approximately equal patterns from the conventional to
the implementation-oriented model, with an overall penalty
observed in the latter. The penalty for the ED is larger.

Fig. 7. 𝑃d versus the number of SUs, 𝑚: conventional model (left),
implementation-oriented model (right).

The influence of the number of PUs, 𝑠, on 𝑃d is shown in
Fig. 8. The detectors in analysis unveil quite similar patterns
from the conventional to the implementation-oriented model,
once again showing an overall performance penalty in the
latter case. Though the ED is quite insensitive to the number
of PUs, its performance penalty is more pronounced from the
former to the latter model. The small sensitivity of the ED
to the number os PUs relates to the fact that the detection
performance is based on the overall energy of the received
signals, which does not change with 𝑠 for a fixed SNR.
Due to unknown reasons, the small sensitivity to 𝑠 is also a
characteristic of the GID. The PRIDe is slightly more sensitive,
whereas the LMPIT and the GRCR have their performances
considerably more affected by variations in 𝑠. Nonetheless, the
unequal behaviors of the detectors is an expected outcome due
to the different ways in which the received signal is processed
by each test statistic, as already explained.

Fig. 9 presents how the impulse response length 𝐿 of the
MA filters affects 𝑃d. In the graph on the left it can be
noticed that the performance does not change with 𝐿 (small
fluctuations can be observed due to the normal randomness
of the Monte Carlo simulation), since this graph refers to
the conventional receiver model, which does not consider any
filtering effect. When the implementation-oriented model is
adopted, an overall performance loss is observed, which is
more pronounced in the case of the ED for larger values of
𝐿. The other detectors are affected in a similar way, but in
all detectors it is observed that larger values of 𝐿 tend to
produce higher performance losses. This is a consequence of
the higher time correlation (lower bandwidth) of the filtered
signal, given that uncorrelatedness is not completely restored
through whitening. When 𝐿 = 1 there is no filtering and, as a
consequence, there is no whitening. However, in this situation
the performance loss can be higher than for other values of
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Fig. 8. 𝑃d versus the number of PUs, 𝑠: conventional model (left),
implementation-oriented model (right). 𝑛 = 120.

𝐿 due to the influence of the DC-offset that, besides possible
overload of subsequent stages, also increases time correlation.
In other words, if the SDCR were smaller, the performance
would have been more penalized for 𝐿 = 1, improving for
values of 𝐿 a little larger, then worsening again for even larger
𝐿. Results such as this have been observed, but were omitted
for conciseness.

Fig. 9. 𝑃d versus the length of the MA filter impulse response, 𝐿:
conventional model (left), implementation-oriented model (right).

The effects on 𝑃d caused by different values of SDCR are
shown in Fig. 10. The graph on the left is equal to the one
shown in Fig. 9, and the same comments apply. In the right-
side graph it can be observed an expected behavior, which is a
performance loss for all detectors at lower SDCRs. Above an
SDCR of −5 dB, the loss variation becomes negligible. Once
again, an overall performance penalty is observed from the
conventional to the implementation-oriented model, since the
former does not take the DC-offset into account.

Fig. 11 illustrates the effect of the ADC overdrive factor,
𝑓od, on 𝑃d. The graph on the left is equal to the ones shown
in Figs. 9 and 10, the same comments applying again. It

Fig. 10. 𝑃d versus average SDCR: conventional model (left), implementation-
oriented model (right).

can be noticed that the performance variations with 𝑓od are
quite small, except in the case of the ED. For all detectors
there are concave curve shapes. Smaller values of 𝑓od make
the signal excursion smaller than the dynamic range of the
ADC, meaning that such signal crosses a smaller number of
quantization levels, which reduces performance. High values
of 𝑓od make the signal excursion larger than the dynamic
range of the ADC, causing clipping and, thus, also reducing
performance. The larger influence of the 𝑓od on the ED
is due to the fact that quantization also affects the noise
variance information that is used in the ED test statistic, which
represents another source of performance loss in addition to
insufficient quantization (when 𝑓od is small) or severe clipping
(when 𝑓od is large).

Fig. 11. 𝑃d versus the overdrive factor, 𝑓od: conventional model (left),
implementation-oriented model (right).

Lastly, the influence of the number of quantization levels,
𝑁q, on 𝑃d is shown in Fig. 12. The number of quantization
levels is expressed in terms of the corresponding number of
bits, which is log2 𝑁q. Once again, the graph on the left is
equal to the ones shown in Figs. 9, 10 and 11, the same
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comments applying. A performance loss is again observed
from the conventional to the implementation-oriented model,
since the former implicitly uses infinity quantization. As
awaited, the spectrum sensing performances of all detectors
improve if 𝑁q increases, as shown in the right-side graph.
The improvement regarding the ED is more pronounced than
in the case of the other detectors, with the ED yielding the
poorest performance for 1-bit resolution, outperforming the
other detectors when a 3-bit resolution or more is used. It can
be seen that the performance improvement is marginal beyond
3 bits (8 quantization levels), a result also verified in [9].
Recall that we are considering the quantization of the samples
transmitted from the SUs to the FC, not the one associated
with other digital signal processing operations made by each
SU, such as digital filtering and whitening. Also recall that a
small number of bits representing the samples forwarded to
the FC is beneficial to the reduction of the control channel
bandwidth usage.

Fig. 12. 𝑃d versus the number of quantization bits, log2 𝑁q: conventional
model (left), implementation-oriented model (right).

VII. CONCLUSIONS

The research documented in this paper has improved the
implementation-oriented model proposed in [9], applying it
to assess the performances of state-of-the-art detectors whose
computations of the test statistics are among the less complex
known to date, which are the GRCR, the GID, the PRIDe and
the LMPIT. The ED has been also included as a benchmark.
The sensing channel model has been also improved with
respect to the one adopted in [9], taking into account a
morphology-dependent random Rice factor, as well as time-
variant noise and received signal levels.

It has been shown that the performances of all detectors
are overestimated if the conventional model is adopted. The
ED is the one whose performance is more penalized by
the operations made in the implementation-oriented model.
Moreover, under this model, the ED needs to apply the exact
AGC gain in the composition of its test statistic, besides the
exact noise variance information. If any of these data are
inaccurate, the ED may become useless.

Regarding the performances of the detectors GRCR, GID,
PRIDe and LMPIT, it has been observed that all of them
follow approximately the same pattern in terms of the influ-
ence of the implementation-oriented model operations, with
an advantage (or at least approximate equality) in performance
of the PRIDe in the majority of the situations analyzed, for
example as shown in Fig. 5 above SNR ≈ −14 dB, in Fig. 6
above 𝑛 ≈ 70, in Fig. 7 for all 𝑚, in Fig. 8 below 𝑠 = 3, and
in Figs. 9-12 for all varied parameter values. The GRCR and
the LMPIT have performances close to each other, beating
the GID in some circumstances, but being beaten by the
GID in others. For example, in Fig. 5 the GRCR and the
LMPIT outperform the GID for SNR values above ≈ −12 dB,
whereas the GID wins below this SNR. Similar behaviors can
be identified in Fig. 6 for the crossing point around 𝑛 = 200,
in Fig. 8 for the crossing point between 𝑠 = 1 and 𝑠 = 2, in
Fig. 10 (right) for the crossing point around SDCR = −8 dB,
and in Fig. 12 (right) for the crossing point around 2 bits.

Besides the system parameters that obviously influence the
spectrum sensing performance when they are varied, namely
the SNR, the number of SUs, the number of PUs (in less
extent) and the number of samples, it has been verified that
the SDCR and 𝑁q also produce large performance varia-
tions. However, the use of common DC-offset compensation
strategies can increase the SDCR to values in which the
performance degradation caused by this impairment becomes
negligible. In regard to 𝑁q, it has been shown that 3 bits
are enough to represent the samples transmitted from the
SUs to the FC, which represents considerable control channel
bandwidth savings.

The sensed signal bandwidth, indirectly modeled by the
impulse response length 𝐿 of the filters used in the
implementation-oriented model, has a small influence on the
spectrum sensing performance, since this influence is almost
removed by means of whitening. The ED, however, is more
sensitive to the variation of this length. The higher sensitivity
to the variation of the overdrive factor 𝑓od is also a character-
istic of the ED.

It has been also observed different behaviors among the
detectors when a system parameter is varied. Sometimes, no
explicit cause for such different behaviors can be highlighted.
Put in another way, it is expected that different detectors
perform unequally under a given system setup, and it is
also expected that the variation of a given parameter will
produce different degrees of performance variation in different
detectors, since their test statistics operate the received signal
differently from each other.

Some of the conclusions reported here were also ob-
served in [9]; others have not. But even the conclusions that
match are supported by different numerical values, since the
implementation-oriented model considered in this paper is an
improved and modified version of the one described in [9]. It
must be taken into account that the detectors considered in [9]
are different from those assessed here, with the exception of
the ED, which has been considered in both research, but under
different test statistics.

A natural continuity of this research is the implementation
of the detectors addressed in this paper using a real hardware,
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for example the universal software radio peripheral (USRP)
device, aiming at the verification and validation of the present
implementation-oriented model.
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