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A Semi-Distributed Approach for Uplink Max-Min Energy Efficiency
Optimization with Minimum User Satisfaction and Adjacency Constraints
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Abstract—Maximizing energy efficiency is one of the pillars
of modern networks. In this context, we consider in this letter
a nonlinear max-min energy efficiency problem in the uplink of
wireless networks. Due to the problem nonlinearity we resort to
epigraph form so as to obtain an integer linear problem and to
propose a centralized optimal solution for it using a branch-and-
bound algorithm. Also because distributed solutions are useful to
deal with high computational processing and scalability problems,
we propose a low-complexity semi-distributed solution for the
problem using a specific signaling scheme. Simulations show
that the proposed semi-distributed solution performs closely to
the centralized optimal scheme and outperforms state-of-the-art
algorithms in terms of energy efficiency and outage rate.

Index Terms—Energy Efficiency, SC-FDMA, QoS.

I. INTRODUCTION

Single carrier - frequency division multiple access (SC-
FDMA) has been adopted in the uplink of Long Term Evolu-
tion (LTE) systems motivated by its attractive peak-to-average
power ratio (PAPR) characteristics. SC-FDMA often requires
that the resource blocks assigned on uplink should be adjacent
to each other in the frequency domain. Allocation of contigu-
ous resource blocks, is also specified in the 5th generation (5G)
new radio (NR) in [1]. However, as shown in [2], the adjacency
constraints of SC-FDMA is sufficient to turn radio resource
allocation (RRA) problems non-polynomial time (NP)-hard.

In the last years, some works have focused on RRA solu-
tions to SC-FDMA networks. In [3] three resource and user
scheduling algorithms with contiguous frequency resource al-
location were proposed. However, the authors focused on mod-
ified largest weighted delay first as scheduling criterion. Driven
by the increase in energy consumption in wireless networks,
studies on energy efficiency (EE) have been considered in [4]–
[7]. In [4] the sum-power minimization problem was studied as
an integer binary optimization problem, and a low-complexity
solution was proposed by assuming canonical duality theory.
In [5] the problem of minimizing the energy consumption per
transmitted bit in uplink SC-FDMA was proposed. In [6] the
authors proposed a maximum-power decrease-first (MPDF)
greedy algorithm based on round robin for minimizing the
energy consumption per transmit bit. Finally, in [7] the optimal
solution and a heuristic suboptimal energy-efficient (HSO-EE)
algorithm with low computational complexity were proposed
to maximize the sum of individual EE.
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Although these works have considered the adjacency con-
straint as well as quality of service (QoS) aspects, the mul-
tiservice scenario was ignored. In addition, the authors also
ignored the per-service minimum satisfaction guarantees. We
define per-service satisfaction as a minimum percentage (or
number) of user equipments (UEs) of each service that should
have their QoS fulfilled. The per-service satisfaction concept
was considered in [8] and [9]. In [8] the constrained power
minimization (CPM) problem was considered to minimize the
total power consumption while in [9] the constrained energy
efficiency maximization (CEEM) problem was studied in order
to maximize the overall EE. However, works [8] and [9] only
considered centralized solutions. Indeed, centralized solutions
require global channel state information (CSI) availability at
a central controlling unit, which may be difficult to acquire
in modern networks due to the amount of involved network
nodes. A distributed approach was proposed in [10], but the
per-service satisfaction was ignored.

In this work, we study the max-min EE problem subject
to minimum user satisfaction and adjacency constraints in the
uplink of wireless networks. In summary, the main contribu-
tions of this letter are: (1) Formulation and modeling of a
new EE optimization problem with minimum user satisfac-
tion and adjacency constraints; (2) Proposal of a centralized
optimal solution using a branch-and-bound (BB) algorithm;
(3) Proposal of a semi-distributed low-complexity solution
with a signaling scheme for practical system deployments; (4)
Characterization of the performance/complexity trade-off of
the involved algorithms, and; (5) Performance evaluation by
means of simulations of the proposed solution compared to
state-of-the-art algorithms.

II. SYSTEM MODEL

We assume the uplink of a cellular system with 𝑈 single-
antenna UEs connected to a single-antenna evolved node B
(eNB). We consider that there is a total of 𝐾 available resource
blocks (RBs) and we define U and K as the sets of UEs
and RBs, respectively. In addition, we assume a multiservice
scenario in which a total of 𝑆 services are provided with S
being the set of all services. Each service 𝑠 ∈ S requires a
minimum number (𝜓𝑠) of UEs that should be satisfied. We
also define U𝑠 as the set of UEs that are associated to service
𝑠 and the cardinality of set U𝑠 is 𝑈𝑠 . Note that each UE
subscribes to only a single service. Moreover, 𝜏𝑢 consists of
a QoS requirement for each UE 𝑢 in terms of throughput.

Due to the adjacency constraint imposed by SC-FDMA, the
number of resource assignment patterns that can be build with
𝐾 RBs is given by 𝑁 = 𝐾2/2 + 𝐾/2 + 1 [8]. We define N as
the set of all possible resource assignment patterns. Besides
that, we define the matrix A whose element 𝑎𝑘,𝑛 assumes the
value 1 if the RB 𝑘 ∈ K belongs to the assignment pattern
𝑛 ∈ N , and 0 otherwise.
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We assume 𝑀 modulation and coding scheme (MCS) levels
contained in set M, where a given UE transmits on MCS
level 𝑚 ∈ M when its effective signal to noise ratio (SNR)
is within the interval [𝛾𝑚, 𝛾𝑚+1), with 𝛾𝑚 < 𝛾𝑚+1. The
transmission with MCS level 𝑚 leads to a transmit data rate
equal to 𝑟𝑚. Note that SC-FDMA also imposes two other
constraints in order to assure low PAPR: the same MCS and
the same transmit power level should be employed in all RBs
assigned to a given UE. In addition, we employ the Minimum
Mean Square Error (MMSE) equalizer to combat Inter Symbol
Interference (ISI). Thus, the effective SNR perceived by the
receiver when data is transmitted by UE 𝑢 on the RBs that
belong to assignment pattern 𝑛, 𝛾MMSE

𝑢,𝑛 , is [8], [9]

𝛾MMSE
𝑢,𝑛 =

((
1

𝑐 · 𝐾𝑛

𝐾𝑛∑︁
𝑘=1

𝑐∑︁
𝑧=1

𝛾𝑢,𝑧,𝑘

𝛾𝑢,𝑧,𝑘 + 1

)−1

− 1

)−1

, (1)

where 𝑐 is the number of subcarriers per RB, 𝐾𝑛 is the number
of RBs in the assignment pattern 𝑛 and 𝛾𝑢,𝑧,𝑘 is the SNR
experienced in the link between the UE 𝑢 and eNB when
transmitting on the 𝑧-th subcarrier of RB 𝑘 given by

𝛾𝑢,𝑧,𝑘 = ((𝑝𝑢/(𝑐 · 𝐾𝑛)) · 𝑔𝑢,𝑧,𝑘 )/𝜎2, (2)

with 𝑝𝑢 being the transmit power of UE 𝑢, 𝜎2 is the noise
power in the bandwidth of a subcarrier and 𝑔𝑢,𝑧,𝑘 is the total
channel gain in the link between the UE 𝑢 and eNB on the
𝑧-th subcarrier of RB 𝑘 . Note that the channel coefficients
are kept approximately constant during a transmission time
interval and we assume perfect CSI at eNB and UEs.

Let 𝑓 (·) be the function mapping SNR to discrete data rate
values. The transmit data rate when UE 𝑢 transmits on the
RBs that belong to the assignment pattern 𝑛 with MCS 𝑚 is
given by 𝑟𝑢,𝑛,𝑚 = 𝑓 (𝛾MMSE

𝑢,𝑛 ). Then, to find the power required
by UE 𝑢 using the assignment pattern 𝑛 to achieve the MCS
level 𝑚, 𝑝𝑢,𝑛,𝑚, we should replace (2) in (1) and solve the
equation with 𝛾MMSE

𝑢,𝑛 = 𝛾𝑚.

III. PROBLEM FORMULATION

In this letter, we focus on a max-min EE problem subject
to adjacency and minimum user satisfaction constraints in the
uplink of mobile networks. Let b𝑢,𝑛,𝑚 be the EE of UE 𝑢

using the assignment pattern 𝑛 in MCS level 𝑚 given by
b𝑢,𝑛,𝑚 = 𝑟𝑢,𝑛,𝑚/(𝑝𝑢,𝑛,𝑚 + 𝜍), where 𝜍 is the circuit power.
So, we formulate the problem as

maximize
𝑥𝑢,𝑛,𝑚 , 𝜌𝑢

{
min
∀𝑢

{
𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

b𝑢,𝑛,𝑚 · 𝑥𝑢,𝑛,𝑚

}}
, (3a)

subject to
𝑈∑︁
𝑢=1

𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

𝑎𝑘,𝑛 · 𝑥𝑢,𝑛,𝑚 ≤ 1, ∀𝑘 ∈ K, (3b)

𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

𝑥𝑢,𝑛,𝑚 = 1, ∀𝑢 ∈ U, (3c)

𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

𝑝𝑢,𝑛,𝑚 · 𝑥𝑢,𝑛,𝑚 ≤ 𝑃max
𝑢 , ∀𝑢 ∈ U, (3d)

𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

𝑟𝑢,𝑛,𝑚 · 𝑥𝑢,𝑛,𝑚 ≥ 𝜌𝑢𝜏𝑢 , ∀𝑢 ∈ U, (3e)

𝑈𝑠∑︁
𝑢=1

𝜌𝑢 ≥ 𝜓𝑠 , ∀𝑠 ∈ S, (3f)

𝜌𝑢 ∈ {0, 1}, ∀𝑢 ∈ U, (3g)
𝑥𝑢,𝑛,𝑚 ∈ {0, 1},∀𝑢 ∈ U, 𝑛 ∈ N and 𝑚 ∈ M, (3h)

where 𝑥𝑢,𝑛,𝑚 is a binary optimization variable that assumes 1 if
UE 𝑢 is assigned to the pattern 𝑛 and achieves the MCS level
𝑚 and 0 otherwise, 𝜌𝑢 is a selection variable that assumes
1 if UE 𝑢 is selected to be satisfied and 0 otherwise. The
objective function shown in (3a) consists in maximizing the
minimum EE. Constraint (3b) assures that the RBs cannot be
shared among UEs of the same cell at the same time, while
(3c) ensures that only one assignment pattern can be chosen
by each UE. Constraint (3d) states that the power allocated
by each UE cannot overcome the maximum power available,
𝑃max
𝑢 . Finally, the constraints (3e) and (3f) guarantee that a

minimum number of UEs should have their QoS requirements
fulfilled for each service.

IV. CENTRALIZED OPTIMAL SOLUTION

Problem (3) belongs to the class of non-linear combinatorial
optimization problems and can be transformed into an Integer
Linear Problem (ILP) by using its epigraph form as follows

maximize
𝑥𝑢,𝑛,𝑚 , 𝜌𝑢 , 𝜙

{𝜙} , (4a)

subject to (3b) to (3h) (4b)
𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

b𝑢,𝑛,𝑚 · 𝑥𝑢,𝑛,𝑚 ≥ 𝜙, ∀𝑢 ∈ U, (4c)

where 𝜙 > 0 denotes the minimum EE of UEs. Now, the
optimal solution of this problem can be obtained by standard
methods such as the BB algorithm [11].

V. PROPOSED SEMI-DISTRIBUTED SOLUTION

The centralized solutions such as the one presented in Sec-
tion IV are in general very complex in terms of computational
processing and signaling. Specifically, all problem inputs such
as channel states per RB, should be made available at the eNB
in order to solve problem (4). Therefore, distributed solutions
arise as promising methods to deal with this issue.

That said, we propose a semi-distributed solution in which
each UE reports to the eNB which assignment patterns fulfill
both its power and QoS constraints. In other words, each UE
𝑢 is able to locally compute 𝑟𝑢,𝑛,𝑚 and 𝑝𝑢,𝑛,𝑚 for all 𝑛 ∈ N
and 𝑚 ∈ M and, for each assignment pattern, it verifies which
MCS levels fulfills both power and QoS constraints and selects
only the MCS level with highest EE. Note that, if no MCS
level fulfill the constraints, the UE can discard this assignment
pattern. Thus, we define N∗𝑢 as the set of feasible assignment
patterns for UE 𝑢. Finally, the UE reports to the eNB the
feasible assignment patterns and its respective MCS level.

After receiving the reports from UEs, the eNB can check
which UEs have at least one feasible assignment pattern and
define a new set, U∗, with only the feasible UEs. Observe
that, if the minimum number of satisfied UEs for a given
service cannot be fulfilled (constraint (3e)), problem (4) is
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infeasible and an outage occurs1. On the other hand, if the
minimum number of UEs satisfied per service is fulfilled, we
can reformulate problem (4) as

maximize
𝑦𝑢,𝑛

{𝜙} , (5a)

subject to
∑︁
𝑢∈U∗

∑︁
𝑛∈N∗𝑢

𝑎𝑘,𝑛 · 𝑦𝑢,𝑛 ≤ 1, ∀𝑘 ∈ K (5b)∑︁
𝑛∈N∗𝑢

𝑦𝑢,𝑛 = 1, ∀𝑢 ∈ U∗ (5c)∑︁
𝑛∈N∗𝑢

b𝑢,𝑛 · 𝑦𝑢,𝑛 ≥ 𝜙, ∀𝑢 ∈ U∗, (5d)

𝑦𝑢,𝑛 ∈ {0, 1}, ∀(𝑢 ∈ U∗, 𝑛 ∈ N∗𝑢 ), (5e)

where b𝑢,𝑛 is the EE of UE 𝑢 using the assignment pattern
𝑛 and 𝑦𝑢,𝑠 is a binary optimization variable that assumes 1 if
the assignment pattern 𝑛 is allocated to UE 𝑢 and 0 otherwise.

Note that problem (5) is also an ILP, which can be solved
optimally by the BB algorithm. Indeed, it is easy to see that the
solution of problem (5) is the same of problem (4). However,
the search space is reduced compared to problem (4) since
this approach transfers to UEs part of the optimization tasks
usually performed at the eNB side. Even so, the optimal
solution for problem (5) is obtained at the cost of high
computational complexity. Thus, we propose a low-complexity
solution. The complete algorithm can be seen in Alg. 1 and is
described in details below.

We start, in line 1, by defining the auxiliary sets U+ and
N† equal to U∗ and N , respectively, where N∗ is the set
with all feasible assignment patterns, and we set the binary
variable, 𝑦𝑢,𝑛, equal to 0 for all 𝑢 ∈ U∗ and 𝑛 ∈ N∗. Next,
in lines 2-14 we assign the best assignment pattern to each
UE, prioritizing the UEs in worst channel conditions, letting
them choose their best (and possibly scarce) RBs in set N∗.
Thus, in line 3, we find the UE 𝑢+ with lowest average EE
given by b̄𝑢 = 1/𝑁 ∑

𝑛∈N∗ b𝑢,𝑛. In line 4, we define N+ as the
set of available assignment patterns to UE 𝑢+, which is given
by the intersection between the set of available assignment
patterns of the system, N†, and the set of feasible assignment
pattern of UE 𝑢+, N∗

𝑢+ . Then in lines 5-12, we check which
assignment pattern will be allocated to UE 𝑢+. For that, in line
6, we select the assignment pattern 𝑛+ with highest EE. Note
that, depending on the assignment pattern 𝑛+ assigned to UE
𝑢+, the number of available RBs can be insufficient to fulfill
the data rate requirements of the remaining UEs in set U+. To
solve this issue, we assume an approach in which we estimate
the minimum number of RBs needed by each UE 𝑢 ∈ U+
with 𝑢 ≠ 𝑢+ to fulfill their data rate requirements using the
following relation: d𝜏𝑢/𝑟𝑀 e, where d·e is the ceiling operator.
Note that we assume that the UE is using the highest MCS
level. Then, we verify if the number of available RBs is higher
than the sum of the minimum number of RBs needed to fulfill
the data rate requirements of the remaining UEs in setU+ (line
7). In the negative case, we remove 𝑛+ from set N+ in line 10
and repeat the loop until an assignment pattern is assigned to
UE 𝑢+ or the setN+ is empty. In the positive case, in line 8, we

1An outage event occurs due to the suboptimality of the solutions or when
there is no feasible solution even to the optimal solution shown in Section IV.

allocate the assignment pattern 𝑛+ to UE 𝑢+, remove it from
set N† and we set N+ equal to empty. After that, we remove
UE 𝑢+ from set U+ and repeat the loop until set U+ is empty.
Finally, we return the binary variable, 𝑦𝑢,𝑛, for all 𝑢 ∈ U∗ and
𝑛 ∈ N∗ with the found assignment. In addition, the decisions
about resource allocation at eNBs should be signaled to the
UEs (in downlink direction) for proper uplink transmission.

Algorithm 1 Low-complexity semi-distributed solution.
1: U+ ← U∗, N† ← N∗ and 𝑦𝑢,𝑛 ← 0, ∀(𝑢, 𝑛) ;
2: while U+ ≠ ∅ do
3: 𝑢+ ← arg min

𝑢∈U+
{ b̄𝑢 };

4: N+ ← N†⋂N∗𝑢 ;
5: while N+ ≠ ∅ do
6: 𝑛+ = arg max

𝑛∈N+
{b𝑢+ ,𝑛 };

7: if |N† | ≥ ∑
𝑢∈U+ ,𝑢≠𝑢+ d𝜏𝑢/𝑟𝑀 e then

8: 𝑦𝑢+ ,𝑛+ ← 1, N† ← N† \ {𝑛+ }, and N+ ← ∅;
9: else

10: N+ ← N+ \ {𝑛+ }
11: end if
12: end while
13: U+ ← U+ \ {𝑢+ };
14: end while
15: return 𝑦𝑢,𝑛 , ∀(𝑢, 𝑛) .

VI. COMPUTATIONAL COMPLEXITY AND SIGNALING

As in [8], [9], we consider summations, multiplications
and comparisons as the most relevant and time-consuming
operations. Therefore, the centralized optimal solutions have
exponential worst-case computational complexity given by
O(2𝑈𝑁𝑀+𝑈 ), see [8] and [9] for more details. Regarding
the proposed semi-distributed solution, the most computational
complex operations consist in finding the UE in line 3 and the
assignment pattern in line 6. An algorithm that could be used
for this task is the MergeSort that according to [12] has worst-
case complexity O(𝑙 log(𝑙)) where 𝑙 is the length of the input.
Then, we have that the complexity of the semi-distributed
solution is, approximately, O(𝑈 (𝑈 log(𝑈) + 𝑁 log(𝑁))), i.e.,
it has a polynomial worst-case computational complexity.

Regarding the signaling aspects, we have that each UE
𝑢 must report 𝑁∗𝑢 scalars with the indices of the feasible
assignment patterns plus 𝑁∗𝑢 scalar parameters representing the
EE for each assignment pattern, i.e., only 2𝑁∗𝑢 parameters must
be shared between the UE 𝑢 and the eNB. Such a signaling
alleviates the network task of scheduling patterns, since it
eliminates part of the optimization tasks usually performed
at the network side, i.e., satisfy UE requirements.

VII. PERFORMANCE EVALUATION

We assume the uplink of an LTE network with parameters
{𝑈, 𝐾, 𝑆,𝑈𝑠} = {8, 15, 2, 4}. The path loss model2 is given
by PL(dB) = 35.3 + 37.6 log(𝑑) and we assume a log-normal
shadowing component with standard deviation of 8 dB and
a Rayleigh-distributed fast fading component, as specified in
[13]. The link adaptation is realized based on the 15 channel
quality indicator (CQI) values used by LTE [14] and the SNR
thresholds for switching MCS levels were obtained from [15].
We set 𝑃max

𝑗
equal to 24 dBm and the circuit power, 𝜍 , is equal

to 0.2 W. Also, the results are obtained from 3,000 different
realizations. We assume 𝜓1 = 4 and 𝜓2 = 3. We admit that

2𝑑 is a distance between eNB and UE in meters.
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Fig. 1. Jain’s fairness index versus required data rate of service 1.

UEs from service 2 demand a throughput 20 kbps higher than
the UEs from service 1 and we assume that the required data
rate of UEs from service 1 vary from 20 kbps to 180 kbps
with steps of 40 kbps. Finally, we compare our solution with:
1) MPDF algorithm from [6]; 2) HSO-EE algorithm from [7];
3) CPM solution from [8] and; 4) CEEM solution from [9].

In Fig. 1 we show the Jain’s fairness index3 for all solutions.
As we can see, CEEM has the worst performance. This occurs
because this solution dedicates more resources to UEs with
good channel conditions, which achieve high EE while UEs
with worst channel conditions have low EE. On the other hand,
the HSO-EE algorithm presents the best performance in terms
of Jain’s fairness index. The reason is that it allocates only
the power necessary to fulfill the data rate requirements of all
UEs. The same is valid to CPM, however, to minimize the
power consumption it fulfills only the minimum number of
UEs in each service, which reduces its fairness. MPDF and
the proposed solution present moderate Jain’s fairness index.
Even so, we note that Jain’s fairness index of the proposed
solution is higher than 0.8 for all loads.

However, the maximum Jain’s fairness index occurs when
all EEs are equal, independently of their values. Thus, even
when these solutions achieve low EE values, Jain’s fairness
index can be high. Therefore, in Fig. 2 we present the mini-
mum EE versus the QoS levels. As we can see, the minimum
EE decreases as the QoS levels increase for the proposed so-
lutions. This occurs because the power consumption increases
in order to fulfill the QoS demand. Another interesting result
is that the minimum EE of CPM and CEEM solutions are
zero for all simulated loads. The reason is that these solutions
fulfill only the minimum number of UEs of each service. Since
𝜓2 = 3, one of the UEs of service 2 is always discarded and
no resource is allocated to it, consequently, its EE is zero.
On the other hand, our proposed solutions aim to maximize
the minimum EE, thus, they always allocate resource for all
UEs whenever possible. Indeed, the proposed solutions discard
one of the UEs of service 2 only when this is necessary to
avoid outage, i.e., to guarantee that the system requirements
are fulfilled. In addition, the proposed solutions outperform the
state-of-art algorithms for all loads. The reason for this is that,
in general, the other solutions focus on UEs with good channel
condition in order to maximize the overall EE or to minimize
the power consumption of the system. On the other hand,
the proposed solutions dedicate more resources to the UEs in
worst channel conditions in order to maximize the minimum

3Note that Jain’s index is applied in the EE instead of the data rate.
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Fig. 3. Outage rate versus required data rate of service 1.

EE of the system. Also, comparing the performance of the
semi-distributed solution to that of the centralized optimal
solution, we have that the former performs very close to the
centralized optimal solution for all loads.

In Fig. 3 we present the outage rate versus the QoS levels
for all algorithms. As expected, the outage rate increases as
the QoS levels augment. Furthermore, we observe that MDPF
and HSO-EE solutions present the worst performances in term
of outage rate. This occurs because these solutions do not
consider a minimum number of UEs per service, i.e., all UEs
must have their QoS demands fulfilled. The other solutions, in
their turn, can select only the three UEs with better channel
conditions in service 2, instead of fulfilling the QoS demand
of all UEs. Also, we can see that the proposed semi-distributed
solution presents the same outage rate of the centralized
optimal solution for all simulated loads. This occurs because
the UEs inform to eNB which are the feasible assignment
patterns of them, then, the eNB needs only to select the better
assignment pattern in order to maximize the objective function,
which can be done efficiently by Alg. 1.

VIII. CONCLUSIONS

In this letter, we studied the max-min EE problem consider-
ing minimum user satisfaction and adjacency constraints in the
uplink of LTE networks. The formulated problem consists in
a nonlinear combinatorial optimization problem. By means of
mathematical manipulations, we converted it into an ILP and
solved it using conventional methods in a centralized way,
however, at a high computational cost. Thus, we proposed
a low-complexity semi-distributed solution using a specific
signaling scheme and through computational simulations, we
have shown that it performs closely to the centralized optimal
solution and outperforms state-of-art algorithms both in terms
of minimum EE and outage rate. As a perspective of this study,
we indicate the analysis of the presented problem considering
a more general fading model, imperfect CSI and multiple
antennas at the eNB and UEs.
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