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Transient Analysis of the Bias-Compensated
LMS Algorithm

Rodrigo M. S. Pimenta, Newton N. Siqueira, Mariane R. Petraglia and Diego B. Haddad

Abstract—In most supervised adaptive filtering settings, only
the additive noise of the reference signal is taken into account.
However, in many practical situations the excitation data is
also immersed in noise, which leads to a bias in the estimation
procedure. In order to mitigate such issue, adaptive algorithms
with bias compensation schemes have been proposed. This paper
advances for the first time a stochastic model that predicts
the average and mean-square learning behavior of the bias-
compensated least mean squares algorithm in the transient
region. Asymptotic predictions can also be obtained as a result
of the devised analysis. Tracking capabilities and the impact of
employing sub-optimal length adaptive filter are also considered,
without restricting the input signal to be white. Results indicate
that the proposed analysis reveals accurate agreement with
simulation results.

Index Terms—Signal Processing, Adaptive Filtering, Transient
Analysis, Bias-Compensated LMS.

I. INTRODUCTION

THE flexibility of adaptive filtering algorithms (AFAs)
derives from the fact that they do not require prior

statistical information about the involved signals. They also
demand low computational effort, since they are restricted to
the exploration of local data in order to feed the adaptive
estimator. Such features make them appropriate for a plethora
of important applications nowadays, such as system identifi-
cation1, temporal series prediction, adaptive control and active
noise cancelling [1].

Recently, several papers have raised attention to the fact that
the acquisition procedure of the input data is also prone to
imperfections (such as quantization noise), so the input of the
adaptive filter is also corrupted by noise signal. In this case,
the emergence of a bias hampers the algorithm learning. In
order to circumvent such an issue, bias-compensated schemes
have been devised. The first of them proposed the BC-LMS
(Bias-compensated LMS) [2], an algorithm obtained from
a modification of the cost function in order to take into
account the statistical properties of the input noise. An affine
projection version of the BC-LMS was derived in [3]. The
optimality in the mean square sense of the BC-LMS was
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recently demonstrated in [4], which also proposes a closed-
form equation for asymptotic performance for a white input,
based on energy conservation arguments. The instability in the
algorithm induced by the estimation of the input noise variance
was addressed in [5].

This paper describes for the first time a comprehensive
stochastic model that predicts the average learning behavior
of the BC-LMS algorithm. The input signal is not restricted
to be white, and both deficient-lenght and tracking configura-
tions are addressed in a unified way. The paper presents the
following structure: Section II describes the fundamentals of
the BC-LMS algorithm. Section III provides an analysis in the
mean sense, whereas Section IV offers a second-order (i.e.,
mean square) theoretical analysis. Section V addresses the
tracking setting, assuming a first-order Markovian perturbation
on the ideal plant coefficients. Section VI models the BC-
LMS learning behavior when the length of the adaptive filter
is suboptimal. Section VII compares some simulated learning
curves with the theoretical ones. At last, Section VIII contains
the concluding remarks.

II. BC-LMS ALGORITHM

Usually, the design of supervised AFAs considers that only
the reference signal d(k) ∈ R is noisy, that is:

d(k) = [w?]
T
u(k) + ν(k), (1)

where2 w? ∈ RN contains the coefficients of the ideal (and
unknown) transfer function, ν(k) ∈ R denotes the additive
noise and u(k) ,

[
u(k) u(k − 1) . . . u(k −N + 1)

]T
concatenates N successive samples of the input signal u(k).

Considering that the measuring process of the input data
is inaccurate, the input x(k) of the adaptive filter is also
corrupted by noise signal η(k), that is,

x(k) = u(k) + η(k), (2)

where η(k) is usually assumed to be a stationary process with
zero-mean and variance σ2

η . Fig. 1 depicts the points where
noise is assumed to disturb the feedback process.

Most adaptive filters based on a tapped-delay structure
utilizes the input vector

x(k) ,
[
x(k) x(k − 1) . . . x(k −N + 1)

]
(3)

to update the coefficient vector w(k) ∈ RN , where the
correction term is usually proportional to the step size β ∈ R+,
whose choice establishes the well-known trade-off between

2In this paper, all vectors are of column-type.
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Fig. 1: Block diagram of an adaptive system identification,
where the adaptive filter input is corrupted by noise η(k).

convergence rate and asymptotic performance. In the super-
vised context assumed by this paper, these algorithms also
employ error signal e(k) ∈ R, which is computed through

e(k) , d(k)− y(k) = d(k)−wT (k)x(k). (4)

Since the LMS derivation does not take into account the
additive noise η(k), its adoption in the configuration presented
in Fig. 1 induces the emergence of a bias in the resulting
estimate [2].

The bias compensated LMS (BC-LMS) algorithm [2] em-
ploys an estimate σ̂2

η of the variance of η(k) in order to
mitigate the bias induced by the LMS algorithm by inserting
an additional term in the LMS update equation, which gives
place to the following update rule:

w(k + 1) = w(k) + βx(k)e(k) + βσ̂2
ηw(k). (5)

III. FIRST-ORDER ANALYSIS

The analyses of this paper are based on the deviation vector
w̃(k) ∈ RN , defined as

w̃(k) , w? −w(k). (6)

Using (5) and (6), one obtains the following exact relation-
ship

w̃(k + 1) =
[
I − βx(k)xT (k) + βσ̂2

ηI
]
w̃(k) (7)

−βx(k)ν(k) + β
[
x(k)ηT (k)− σ̂2

ηI
]
w?.

The application of the expectation operator E[·] in (8) demands
the evaluation of complex joint moments. In order to make the
mathematics tractable, the following hypotheses are adopted:

Independence assumption (IA). The input data (i.e., u(k)
and η(k)) are statistically independent from w̃(k).

Noise Assumption (NA). The additive noise ν(k) is white and
statistically independent from the remaining random variables.

Remarks: although it does not generate accurate predictions
when the value of the step size is large, IA is an almost
ubiquitous statistical hypothesis, due to the fact that overcom-
ing it leads to cumbersome mathematical complexity [6]. In
its turn, NA is a very popular simplification that, although
physically plausible in some settings, was circumvented in
recent analyses [7].

Using IA and NA, recursion (8) implies the following
difference equation:

E [w̃(k + 1)] =
[
I − βRx + βσ̂2

ηI
]
E [w̃(k)]

+β(Rη − σ̂2
ηI)w?, (8)

where Rx , E
[
x(k)xT (k)

]
and Rη , E

[
η(k)ηT (k)

]
are the autocorrelation matrices of signals x(k) and η(k),
respectively.

Remark: note that (8) does not assume that η(k) is white,
which makes it distinct from the previous literature (see, e.g.,
[2], [5]).

If the algorithm indeed converges in the mean (i.e.,
limk→∞ E [w̃(k + 1)] = E [w̃(k)]), Eq. (8) implies that in
steady-state

lim
k→∞

E [w̃(k)] =
(
Rx − σ̂2

ηI
)−1 (

Rη − σ̂2
ηI
)
w?, (9)

where the asymptotic bias does not depend on the value of the
step size.

Remark: Note that when the traditional hypothesis of a white
noise signal η(k) is utilized, Eqs. (8) and (9) turn into:

E [w̃(k + 1)] =
[
I − βRx + βσ̂2

ηI
]
E [w̃(k)]

+β(σ2
η − σ̂2

η)w? (10)

and

lim
k→∞

E [w̃(k)] =
(
Rx − σ̂2

ηI
)−1 (

σ2
η − σ̂2

η

)
w?, (11)

which implies that the BC-LMS is asymptotically unbiased
whenever σ2

η = σ̂2
η .

Unfortunately, the average behavior of each deviation coef-
ficient E [w̃i(k + 1)] (for i ∈ {0, 1, . . . , N − 1}) depends on
the set {E [w̃j(k)]}, for j ∈ {0, 1, . . . , N − 1}. In its turn,
matrix Rx can be decomposed according to [1]

Rx = QΛQT , (12)

where the i-th column of Q ∈ RN contains the i-th eigen-
vector qi ∈ RN and the i-th element of the main diagonal of
the diagonal matrix Λ contains the corresponding eigenvalue.
Since QQT = QTQ = IN [1], where IN denotes the N -
order identity matrix, and defining

v(k) ,
[
QT w̃(k)

]
, (13)

where vi(k) , qTi w̃(k), by multiplying both sides of (9) by
QT , one may convert (8) to

E [v(k + 1)] =
[
I − βΛ + βσ̂2

ηI
]
E [v(k)] + c, (14)

where c , βQT (Rη−σ̂2
ηI)w?. From (14), one may conclude,

for the i-th element of v(k + 1), that the following recursion
is valid

E[vi(k + 1)] = (1− β(λi + σ̂2
η))E [vi(k)] + ci, (15)

so that the BC-LMS is stable in the average if

|1− β
(
λi + σ̂2

η

)
| < 1⇒ 0 < β <

2

λi + σ̂2
η

, (16)
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or, in an equivalent way,

0 < β <
2

λmax + σ̂2
η

, (17)

where λmax is the largest eigenvalue of Rx.
By comparing (17) to the upper bound that guarantees

convergence in the mean for the LMS [1], that is,

0 < βLMS <
2

λmax
, (18)

it is possible to infer that the theoretical upper bound on the
value of β that guarantees stability in the mean of the BC-LMS
is always lower than the one of the LMS.

Unfortunately, such upper bound has restricted usefulness,
since an adaptive algorithm may diverge even when its first-
order statistics do not, due to the fact that the variance of its
coefficients may grow without limit [8]. Such fact motivates
the study of the mean-square learning behavior of the BC-
LMS, which is the goal of the next section.

IV. MEAN SQUARE ANALYSIS

Note that Eq. (8) can be rewritten as

w̃(k + 1) = A(k)w̃(k)− βx(k)ν(k) + βB(k)w?, (19)

where

A(k) , I − βx(k)xT (k) + βσ̂2
ηI = AT (k), (20)

B(k) , x(k)ηT (k)− σ̂2
ηI = BT (k). (21)

By multiplying (19) by its transpose, one obtains

W(k + 1) = AW(k)AT − βν(k)Aw̃(k)xT (k)

+βAw̃(k) [w?]
T
B − βν(k)x(k)w̃T (k)A

+β2ν2(k)x(k)xT (k)− β2ν(k)x(k) [w?]
T
B

+βBw?w̃T (k)AT − β2ν(k)Bw?xT (k)

+β2Bw? [w?]
T
B, (22)

where W(k) , w̃(k)w̃T (k) is a quantity whose average
evolution is of interest. Consider vec[A] as the operator that
concatenates the columns of matrix A in a single column
vector. Denoting the Kronecker product by ⊗ , one has

vec (XY Z) =
[
ZT ⊗X

]
vec(Y ). (23)

By defining ṽ(k) , vec [W(k)], (22) can be rewritten as

ṽ(k + 1)= [A(k)⊗A(k)] ṽ(k)

+β [B(k)⊗A(k)] vec
{
w̃(k) [w?]

T
}

+β2ν2(k)vec
[
x(k)xT (k)

]
+β [A(k)⊗B(k)]vec[w?w̃T (k)] (24)

+β2 [B(k)⊗B(k)] vec
{
w? [w?]

T
}
+O[ν(k)],

where O[ν(k)] contains quantities that are O[1] w.r.t. ν(k).
The use of the expectation operator in (25) along with IA

and NA leads to

E [ṽ(k + 1)] = CE [ṽ(k)] + βDg + β2σ2
νvec [Rx]

+βEḡ + β2F , (25)

where g , E
{

vec
[
w̃(k) [w?]

T
]}

, ḡ , E
{

vec
[
w?w̃T (k)

]}
can be inferred from (8), and

C , E [A(k)⊗A(k)] ,D , E [B(k)⊗A(k)] , (26)
E , E [A(k)⊗B(k)] , (27)

F , E [B(k)⊗B(k)] vec
{
w? [w?]

T
}
, (28)

are input data-dependent matrices. In order to theoretically
compute these matrices, the input signal is henceforth assumed
to be Gaussian (although not necessarily white), so that an
additional assumption is necessary:

Gaussianity assumption (GA). Signals u(k) and η(k) are
samples from a Gaussian distribution.

Remark: Using GA, fourth-order moments of these random
variables can be computed using the formulas presented in [9].

It is noteworthy that (25) can be employed to predict the
evolution of the mean square distortion (MSD)

MSD(k) , E
[
‖w? −w(k)‖2

]
, (29)

since the MSD can be estimated through

MSD(k) ≈ Tr {unvec [E [ṽ(k)]]} , (30)

where the operator unvec[·] reverses the vec[·] operation and
Tr[X] denotes the trace of matrix X .

V. TRACKING ANALYSIS

It is important to obtain performance guarantees in non-
stationary settings, which occur when the ideal plant to be
identified is time variant. In this section, the tracking capability
of the BC-LMS is analyzed when the coefficients of ideal plant
vary slowly, according to a first-order Markovian model [10],
[11]:

w?(k + 1) = w?(k) + ϑ(k), (31)

where ϑ(k) ∈ RN is a zero-mean i.i.d. stochastic perturbation
whose (diagonal) autocorrelation matrix is denoted by Rϑ.
Note that time-varying channels introduce a “lag” in the
adaptive process to the emulation of the optimal and unknown
vector w?(k).

In order to simplify the second-order analysis of the tracking
setting, consider an additional stochastic hypothesis:

Tracking Assumption (TA). The random vector ϑ(k) is
statistically independent from the remaining random variables.

Using IA, NA and TA, and following steps similar to those
that led to Eq. (25), one may demonstrate that, under the
considered tracking scenario, the recursion that describes the
second-order quantity can be written as [12]

E [ṽ(k + 1)] = CE [ṽ(k)] + βDg + β2σ2
νvec [Rx]

+βEḡ + β2F + vec [Rϑ] , (32)

which implies that, under the adopted Markovian model, the
tracking configuration does not modify the range of values of
the step size that guarantees stability.
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TABLE I: Transfer functions responsible for the coloring of
signals u(k) and η(k) in the considered scenarios.

Scenario Bu(z) Bη(z)
1 1− 0.8z−1 1− 0.1z−1

2 1− 0.8z−1 + 0.2z−2 1− 0.3z−1 + 0.1z−1

3 1− 0.8z−1 + 0.2z−1 1− 0.3z−1 + 0.1z−2

4 1 1

VI. DEFICIENT-LENGTH ANALYSIS

Sometimes system identification procedures may operate in
a deficient-length setting, which occurs when the length of the
ideal transfer function surpass the adaptive filter length [13].
This may happen when the designer intends to deal with
computational limitations or if the unknown transfer function
is long [8], [14]. In such a suboptimal scenario, suppose that
the reference signal can be written as

ddef(k) = [w?]
T
u(k) + [w?]

T
u(k) + ν(k), (33)

where w ∈ RL contains the additional coefficients of the ideal
plant (which the adaptive filter does not cover up) and

u(k) ,
[
u(k −N) u(k −N − 1) . . . u(k −N − L+ 1)

]T
.

(34)
In order to simplify the mathematics, the following stochastic
assumption was assumed in the following second-order anal-
ysis:

Whiteness Assumption (WA). The input signal u(k) is white.
Using IA, NA and WA and after some manipulations, one

obtains the following recursion for the mean square analysis:

E [ṽ(k + 1)] = CE [ṽ(k)] + βDg + β2σ2
νvec [Rx]

+βEḡ + β2F

+β2Hvec
{
w? [w?]

T
}
, (35)

where H , E
[
x(k)uT (k)⊗ x(k)uT (k)

]
.

VII. RESULTS

In the following simulations, the following transfer function
was utilized:

w?i = cos [0.4π(i− 1)] exp(−0.2(i− 1)), for 0 ≤ i ≤ N + L− 1,
(36)

where L > 0 in deficient-length scenarios and N = 20 for all
considered simulations. The noise signal ν(k) was sampled
from a white Gaussian process. Signal u(k) (resp. η(k)) is
obtained by filtering a unitary-variance white Gaussian signal
(resp. white Gaussian signal with variance σ2

η) by a coloring
filter Bu(z) (resp. Bη(z)). The coloring filters employed in the
four considered scenarios are presented in Tab. I. Note that the
devised analysis is not restricted neither for white u(k) nor for
white η(k), which avoids common statistical assumptions in
the literature.

Fig. 2a depicts the averaged evolution of the deviations in
the first scenario, with β = 10−2, σ2

ν = 10−3, σ2
η = 10−2

and σ̂2
η = 0.008. The theoretical curves, evaluated using (8),

reveal good agreement with the empirical ones, even when the
estimated variance of η is different from its actual value.

The prediction of the MSD evolution is the main goal of
the second scenario, in which σ2

η = 0.007, σ̂2
η = 0.01, β =
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Fig. 3: Results for the third scenario (a) and fourth scenario
(b). Blue: empirical curve, computed with 100 Monte Carlo
trials. Dashed red: theoretical curve.

5×10−3, and σ2
ν = 10−3. From Fig. 2b, one may note that the

advanced stochastic model also accurately predicts the actual
mean square learning curve.

The prediction of the performance loss induced by a sub-
optimal adaptive filter is studied in the third scenario, for
which σ̂2

η = σ2
η = β = 10−2, and σ2

ν = 10−3. Fig. 3a
depicts the comparison between the theoretical and empirical
MSD curves for different values of L, where w̄?i = 0.1, for
i ∈ {0, 1, . . . , L − 1}. One observes that Eq. (35) accurately
describes the empirical curves. Note that the adoption of
the same value of β for distinct ideal plant length does not
influence the algorithm stability, as predicted by the proposed
stochastic model.

The last (fourth) scenario addresses the time-variant con-
figuration, in which σ2

ν = 10−6 and β = σ2
η = σ̂2

η = 10−2.
Fig. 3b depicts the the asymptotic mean square distortion for
different values of β. The steady-state MSD was computed by
averaging the last 104 iterations of a execution with 3 × 105

iterations. It can also be observed that there indeed exists
an optimal value of β (as usual in tracking scenarios [10]),
and that optimal value is well approximated by the advanced
model.

VIII. CONCLUSION

This paper presented a comprehensive analysis of the learn-
ing behavior of the BC-LMS algorithm. Theoretical predic-
tions for both first- and second-order statistics were provided,
and the resulting model was successfully extended in order to
address both tracking and deficient-length configurations.
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