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Digital TV Channel Prediction Using
Clustering Algorithms and Statistical Learning

Daniel C. Vidal, Pedro V. G. Castellanos and Tadeu N. Ferreira

Abstract—Due to the rise of new communication ser-
vices, portions of the electromagnetic spectrum must
be relocated and their distribution optimized. With the
digitization of the open TV service, the distribution of
channels in the frequency band destined for this service
generates an inefficient use of the radio spectrum. These
unused frequency bands are denominated void spaces. To
establish efficient spectrum use, it is important to identify
these spectrum gaps and use it according to some certain
criteria. In this article, machine learning algorithms are
proposed to identify new spectrum opportunities, through
the signal levels received in the UHF frequency range of
the Digital TV system. These spectrum opportunities are
generated from natural or artificial obstacles present in the
propagation environment. Two measurement campaigns
were carried out in a suburban environment to obtain the
level of the received signal in an area of approximately
240,000 square meters. From the received power values,
machine learning algorithms were used to make prediction
of the received signal levels. By using a reception threshold,
it is possible to identify the shadow regions and the
availability of spectrum opportunities.

Index Terms—Machine Learning, Spectrum Occupancy,
TV White Space, SBTVD.

I. INTRODUCTION

DUE to the evolution of communication tech-
nology and the search for new communication

services, the demand for wider frequency bands is
progressively increasing. The frequency spectrum is
a finite and scarce resource, which disables the rapid
inclusion of new wireless communication services
or the expansion of an existing service due to current
spectrum allocation policies. The spectrum policy
is statically defined for each type of service, i.e., a
portion of the spectrum band is intended solely and
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exclusively for a service. Several authors [1], [2]
have carried out research on the use of the spectrum
in the current model which is not efficient. Thus,
the current scenario of spectrum usage needs a new
efficient spectrum allocation paradigm.

The coverage area of a group of broadcasting
stations is the area where the desired field strength
is greater than or equal to the minimum field
strength necessary to permit a pre-defined reception
quality. This reception quality is pre-defined for a
specified reception conditions and for an envisaged
percentage of the covered receiving locations [3].
According to the Brazilian Association of Techni-
cal Standards (ABNT), the threshold to insure the
minimal quality of reception in a Digital Terrestrial
Television (DTT) receiver is -77 dBm [4]. Some
of the measured locations have a direct line-of-
sight to the site of the antennas from the TV
channels. Then, it was possible to determine the
portion of the area which was receiving the DTT
signal according to the ABNT specifications, and if
the levels received in that specific area were actually
within the threshold.

Previous prediction models, such as the ITU-R
P.1546 recommendation [5], use statistical models
based on data which are specific to the regions
where they were collected. In order to obtain a
good result with this recommendation, the analyzed
area must have certain similarities with those used
to generate conventional models. With the current
generation of digital TV systems, changes in the
transmitted signal are more noticeable when the
aforementioned statistical propagation models are
used. This observation raises the question of what
can be done to try to minimize the effects that
degrade the signal, and to some extent, to improve
the results of the propagation models.

There are several models for propagation path
loss estimation in the literature for outdoor envi-
ronments. To illustrate that, Suh et al. [6] proposed
a methodology for measurements on field strength
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predictions and compared them to well-known mod-
els, such as Okumura-Hata, on suburban areas for 1
kW effective radiated power in the 30 MHz - 3000
MHz frequency range.

Silva et al. [7] made a comparison with predicted
values for field strength measurements of DTV in
five different Brazilian cities using models such
as: ITU-R Recommendation P.525, Deygout-Assis
Knife Edge, Deygout-Assis Rounded, Deygout-
Assis Main Rounded, CRC-Predict, and ITU-R Rec-
ommendation P.1546. The paper pointed out that the
ITU-R P.1546 is the model that best fit the field
measurements by far, in the cities of São Paulo,
Recife and Brası́lia. They concluded that more
investigations are needed to have more accurate
results and that the urban environment needs to be
taken in consideration due to the chances in the
environments morphology.

The studies mentioned above use traditional sta-
tistical methods, which require a detailed knowledge
of the environment where they will be carried out.
On the other hand, our work is based on geographic
data and measurements of the field strength, in an at-
tempt to decrease the amount of information needed
to make predictions. Our approach makes use of
a well-known, low-complexity and comprehensive
machine learning algorithms such as K-Nearest
Neighbors (KNN), Random Forest Regressor (RFR)
and Support Vector Regressor (SVR), in order to
predict the presence and the location of the usable
channels in the UHF band. We also used the K-
Means algorithm to group the measurement point
by similarities in the latitude, longitude and altitude,
which is also necessary due to the grid-like nature
of the measurement campaign.

This article proposes an approach using machine
learning algorithms for resource allocation of the
electromagnetic spectrum, more specifically in the
UHF band, exploring the white spaces and the
shadow areas, where the received signal is very
low or practically nonexistent. This could facilitate
other services to use this frequencies to enhance its
services, as mobile carriers could use this zones of
shadow to improve the coverage of mobile signals.
Data were obtained by measurement campaigns that
were carried out in a suburban area, where the
transmitted signals pass through different types of
terrain until it reaches the receiver. The transmitters
are located 700 m above sea level and approximately
14 km away from the measurement area.

Section II presents some propagation aspects of
DTV. In Section IV, the machine learning algo-
rithms used in this article are presented. Section V
shows the results, while Section VI concludes this
article.

II. DIGITAL TERRESTRIAL TELEVISION

The terrestrial broadcasting services use a large
part of the frequency spectrum, comprising the
bands from 54 MHz to 216 MHz in the VHF band
for channels 2 to 13 and from 470 MHz to 806
MHz in the UHF band for channels 14 to 69. One
of the main characteristics of digital TV systems
is the possibility of having different transmission
configurations, which allows to adjust the signal
according to the propagation conditions and data
rate. Through BST-OFDM (Band-Segmented Trans-
mission Orthogonal Frequency-Division Multiplex-
ing) modulation, it is possible to transmit up to 4
channels on a single channel of approximately 6
MHz, increasing the diversity of multimedia fea-
tures on a single 6 MHz channel. In communication
system planning, several aspects must be taken
into account, including the coverage area interface
analysis and channel allocation [8]. The coverage
area of a terrestrial TV is subdivided into units of
area known as pixels, which are usually 100 m
by 100 m in size. Within the coverage area, the
availability of the TV signal for each pixel varies
according to the propagation conditions (received
power), noise in the band and interference condition.
This availability is defined through the Location
Probability (LP) parameter [8].

LP is widely used in DTT networks planning, its
values vary from 100% in points close to the trans-
mitter to 0% in points outside the coverage area, in
reference to the ideal model. The target values of
90% of the time in 50% of the location are defined
as an obligation to be reached in a given coverage
area [9]. This value is used to define the system’s
protection area, where the service must be provided
by obligation. The LP calculation considers the
statistical variation of the signal within the pixel and
then evaluating which fraction of pixel has a Carrier-
to-Interference-plus-Noise ratio (C/(I+N)), where
C is the power of the incoming signal of interest,
I is the power of the interference signal and N is
the noise power. The value of C/(I+N) should be
sufficient to support the demodulation of a Digital
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Television (DTV) system. In other words, the LP is
determined by C/(I +N). For the actual operating
configuration where the LTE (Long Term Evolu-
tion) signal is close to the DTV, the interference
levels may increase, thus increasing the number of
pixel in an unavailability condition. In reality, the
pixels in a transmission network are degraded by
both noise and interference from other transmission
networks where there is a frequency reuse (Single
Frequency Network – SFN). They are also degraded
by interference from systems operating at adjacent
frequencies.

A. ITU-R P.1546 Recommendation

The ITU-R P.1546 Recommendation is a stan-
dard defined by the International Telecommunica-
tion Union (ITU) which consists of a set of rec-
ommendations for the calculation of prediction of
radio coverage of terrestrial links, in the frequency
range of 30 MHz to 3000 MHz, in point-to-area
predictions, within the distances of 1 km and 1000
km [6] [10]. The recommendation is valid for some
types of routes, such as: land routes, sea routes
and mixed (land and sea) routes. It is important
to note that, for mixed routes, between land and
river regions, river routes must be considered as land
routes.

The results presented in this recommendation are
based on values of regions where measurements
were performed. The measurements were carried
out in temperate climate environments, such as in
North America and Europe. For maritime routes, the
Mediterranean Sea and North Sea regions were con-
sidered, that is, respectively regions of hot and cold
seas. In regions of maritime routes in hot regions,
the propagation characteristics are different. This
modeling is considered empirical or semi-empirical.
The calculations consist of electric field intensity
curves and tabs, obtained from measurements on
site, and these values are presented in curves, based
on an effective radiated power of 1 kW, for nominal
frequency values in 100, 600 and 2000 MHz and
values of 1%, 10% and 50%, which represent the
percentage of time exceeded for attendance. These
parameters are based on the link distance and the
antennas height. Typically, the values shown on the
curves apply to areas with size 200 m by 200 m.

(a) Area of interest for evaluating TVWS.

(b) Different paths of propagation.

Fig. 1: Representation of different paths and the area
of interest.

III. COLLECTED DATA

A. Measurement Campaign

In this work, a measurement campaign was per-
formed aiming the DTV signal availability using a
received signal power in an area of approximately
240,000 square meters, as shown in Fig.1a. The area
of interest and the transmitter antennas are on oppo-
site sides of the Guanabara Bay, over 14 km apart, as
shown in Fig.1b. This is an interesting characteristic
of this work, since the transmitted signal has to
travel over different paths, over both land and water.
We use as transmitted signals the actual broadcasted
signals by the local television operators. They are
all located at the same geographical point, at 700
meters above sea level.

The results presented in this campaign were the
reception levels in the UHF frequency range of DTV
with a frequency range from 470 MHz to 700 MHz.
In order to not lose resolution, the band was divided
into segments of approximately 57 MHz. The data
was collected through Anritsu’s MS2034A spectrum
analyzer, using a of 10 kHz Resolution Bandwidth
(RBW). The spectrum analyzer power provides us
with 551 measurement points for each scan, where
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each point provides the received power value for
each 103.45 kHz band. To obtain the power received
on a 6 MHz DTV channel, equation (1) was used.

P = 10log10

[
Bs

(
1
n

∑n
i=1 10

P (i)
10

NBW

)]
(1)

where P is the total power in the channel width, Bs

is the channel width, NBW is the equivalent analyzer
noise bandwidth, n is the number of sample points
and P (i) is the power read on the spectrum analyzer
[11].

IV. MACHINE LEARNING ALGORITHMS FOR
CLUSTERING AND REGRESSION

In order to estimate the received signal levels
and thus detect the presence or absence of the
signal from a DTV operator, the data collected
from the measurements were processed and the
received power value for each channel present in
the measurement locations was calculated. A pre-
liminary analysis using the prediction model ITU-
R P.1546 was performed. Due to the power vari-
ability of the received signal at each measurement
point, the model prediction does not present an
adequate approximation to the collected data. As
described in section I, the objective of this work
is the use of machine learning algorithms to esti-
mate the received channel power with some type
of pre-classification in the data. Those models are
compared with traditional prediction models. Based
on this principle, there is a manner to improve the
accuracy of the response of the prediction algo-
rithm, which is by grouping the data according to
common characteristics. The chosen characteristics
are the conditions of inspection at the measuring
points, that is, the coordinates that are often used
to determine a geographical point, such as latitude,
longitude and altitude. In addition, some machine
learning techniques and algorithms used in forecast-
ing will be presented in this article.

A. Clustering using K-Means
From the collected measurements, we propose to

divide the measurement points into groups based
on their geographic characteristics, such as latitude,
longitude and altitude, in a way that a regression
algorithm can achieve a better estimation of the
area of interest. Clustering techniques [12] seems to

adequately group the points together. The K-Means
algorithm was chosen because of its simplicity. This
algorithm is widely used for clustering points spread
in a Euclidean space and it has a fast convergence
time.

K-Means is an unsupervised algorithm that clas-
sifies data into k different groups by an iterative
method, so the results generated are compact and
independent groups of samples [13]. In order to
achieve a correct behavior of the K-Means algorithm
we transformed the latitude and longitude coordi-
nates (spherical coordinates) into a Universal Trans-
verse Mercator (UTM) coordinate system, which
provides a projection of the GPS coordinates over
a 2-dimensional Cartesian coordinate system for a
correct operation.

One main issue in clustering is to define an
optimal number of clusters for a data-set. For this
purpose, we applied the elbow method [14], which
consists of executing the K-Means algorithm over
the data-set for a range of k clusters. This is a
heuristic method, which involves graphing the vari-
ation explained according to the number of clusters
and choosing the elbow of the curve as the number
of clusters to be used. Then for each candidate
number of clusters it evaluates the Within Cluster
Sum of Squares (WCSS), which is the sum of
the square distance of the samples to their closest
cluster center. Suppose that a given set of clusters
C = (C1, . . . , Cn), whose centers are (φ1, . . . , φn).
Therefore, the WCSS can be expressed as in equa-
tion (2).

WCSS =
n∑
i=1

∑
x∈Ci

‖x− φi‖2 (2)

After running the test to select the value of
k, in this case k = 5, the measurement points
were assigned to their respective groups and the
model was trained in independent instances for each
created group, applying the regression algorithms
that were selected for this work, as shown in Fig.
2.

B. Random Forest Regressor

Random Forest algorithms are an ensemble
method of classification or regression, by cron-
structing a multitude of Decision Trees, that is a
simple algorithm which rarely produces results as
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Fig. 2: Method of Evaluation of the K-Means algorithm.

satisfactory as the other supervised methods used in
this work. Therefore, the Random Forest Regressor
(RFR) algorithm was chosen in this work, which
consists of an ensemble of decision trees that are
then combined to produce a consensus on the fore-
cast.

In the RFR algorithm, a number of decision trees
are built on a bootstrap training samples. But in the
process of building these decision trees, each time
a split in a tree is considered, a random sample
of m predictors is chosen as split candidate from
the complete set of p predictors [15]. This method
does not allow the trees to consider the majority of
the available predictors. Assume that one predictor
is stronger than the others, this means that each
decision tree chooses the same predictor at the top
split. By not allowing the trees to choose from the
full set of predictors, those trees will not be highly
correlated on average.

In the training phase, let D = (xi, Li) a data set
containing the vector xi ∈ R3, i ∈ 1, 2, . . . , q, q
being the number of samples, xi a vector composed
of latitude, longitude and altitude, and Li ∈ R which
is the propagation loss.

The Random Forest divides the data set D into

T bootstraps, which is a tool used to quantify the
uncertainty with a given estimator and widely used
when it is very difficult to calculate the standard
deviation, DS ⊆ D and each one is inserted into the
root node of a regression tree. Let Dp be a bootstrap
subset of DS on node p. A subset of samples is
selected at random on each split node to develop
the binary test, tc, where x ∈ Dp. The binary test is
shown by Equation (3).

tc,τ (x) =

{
1 if xc > τ
0 otherwise

(3)

The test that has the lowest mean Square Error
(MSE) value is selected to move forward on the tree,
and it is kept constant as the tree grows. The RFR
prediction results correspond to the average of the
T regression trees [16] following the Equation (4).

Lpred(x) =
1

T

T∑
i=1

L̂i(x) (4)

C. Support Vector Regressor

The Suopport Vector Regressor (SVR) is an
extension of the Support Vector Machine (SVM),
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which constructs a hyperplane, or a set of hyper-
planes, in a high dimensional-space. The main idea
behind the SVM is to non-linearly map a data set
contained in a finite-dimensional space to a larger
space, so that the data set is linearly separable. The
SVR maps the samples of a hyper-plane of high
dimension which can be described by Equation (5):

f(x) = wTφ(x) + b (5)

where w is a normal vector that determines the
hyper-plane directions, x is the entry vector, φ(.)
is the nonlinear map function and b is the displace-
ment.

The solution to equation (5) needs a kernel func-
tion, which is the key to the performance of the
SVR-based predictor. In this work, we choose the
Radial Basis Function (RBF) that suits it better for
low-dimension tasks and for lacking of previous
knowledge [16] [17].

D. K-Nearest Neighbors Regression

The K-Nearest Neighbors (KNN) algorithm
finds a group of k neighboring points that are the
closest in distance to the point x, which is being
investigated, thus making a comparison with the
y values assigned to each of the k neighbors [15].
The associated response of the training point is
compared through a consensus of the k associated
neighbour responses.

Entry: D, the set of k training samples and a test
set z = (x′, y′).
Training: Calculate d(x′, x), which is the distance
between z and all the samples (x, y) ∈ D.
Output: y′ = maxv

∑
(xi,yi)∈Dz

I(v = yi).

Given a training set D and a test point z = (x′, y′),
the algorithm calculates the distance between z and
all other training points (x′, y′) ∈ D, to determine
the list of nearest neighbors. Once the list of closest
neighbors is completed, the test points have the
final response value calculated by averaging their
neighbors, as shown by Equation (6).

Mean : y′ =
1

K

∑
xi∈Dz

yi (6)

V. NUMERICAL RESULTS

The power received on a 6 MHz channel of the
digital television system, collected from 551 points,
was used to train the machine learning algorithms
mentioned in the previous section. The SVR pro-
cessing is made based on the frequency 533 MHz,
that is, channel 24, in order to compare it with the
other channels in the UHF band. After generating
the parameters of the algorithm, they were applied
to the measured data of channel 29 (563 MHz) to
evaluate its accuracy. Firstly, the elbow method [14]
was applied to select the number of groups to be
executed by the K-Means algorithm. To apply this
method, it was identified that the ideal number of
groups would be 5, as it has a low WCSS value
and does not represent a high value of k. Next,
the data were divided into their designated group
and thus were ready for simulations with the other
algorithms.

We selected two error metrics, Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE),
which are explained below, to evaluate the estima-
tion error in the considered algorithms.
• RMSE indicates the error through the square

root of the squared differences of ŷ, which is
the predicted value of the loss on the path, and
the observation of the real value of the loss y.
This metric is defined by equation (7).

RMSE =

√∑n
i=1(yi − ŷi)2

n
(7)

• MAE indicates the average error of the pre-
dicted values by calculating the absolute value
of the difference between the predicted mea-
surement ŷ and the corresponding true value y.
This metric is defined by equation (8):

MAE =
1

n

n∑
i=0

|yi − ŷi| (8)

Processing was performed by dividing the groups
into two subgroups, one for training with 70% of
the data from the original group and another group
for testing with the remaining 30% of the data. In
addition, in all algorithms the value 42 was used as
the value of random state. As the first simulation,
the RFR algorithm was used with 30 trees and with
the MSE decision criterion, Simulations with the
SVR algorithm were performed, after an exhaustive
search through a grid search, using the RBF function
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as the chosen function for the kernel and with
gamma and error penalty equal to 1. Finally, the
simulation of the KNN algorithm was performed
with the value k = 7, which is the number of
neighbors used to determine the final value.

After regarding the evaluation of the MAE, de-
picted in Figure 3 and Table 1, the best performance
is given by the RFR algorithm with an average
value of 2.22, followed by KNN equal to 5.20
and SVR equal to 5.63. We can observe that these
new methods have a superior performance to the
ITU recommendation model, as seen in Table 1.
All other methods obtained lower values in both
criteria adopted for the error. By observing the
RMSE we can also see that the performance of the
RFR algorithm was superior when compared to all
others, with a value equal to 3.19, followed by KNN
and SVR with 6.66 and 7.19, respectively. In all
comparisons, the model presented by ITU is inferior
to all the models tested in this work.

Fig. 3: Performance comparison for Machine Learn-
ing algorithms on Channel 24.

TABLE I: Algorithm comparison for MAE.

Channel RFR KNN SVR ITU-1546
21 3.91 5.63 5.47 10.76
22 4.84 6.61 6.68 8.37
24 2.22 5.20 5.63 7.54
27 4.02 5.59 6.28 12.53
29 5.08 7.10 7.18 8.37

VI. CONCLUSION

A measurement campaign was carried out in a
suburban area, where 551 measurements were taken

Fig. 4: Performance comparison for Machine Learn-
ing algorithms on Channel 29.

TABLE II: Algorithm comparison for RMSE.

Channel RFR KNN SVR ITU-1546
21 4.79 6.85 6.96 12.65
22 5.66 7.95 7.84 10.97
24 3.19 6.66 7.19 10.13
27 5.02 7.24 8.09 14.81
29 6.02 8.44 8.46 11.14

to obtain power values received on the digital TV
channels in the UHF band. This article covers well-
known and simple machine learning algorithms to
identify spectrum opportunities based on reception
conditions. In addition, it was also possible to use
easily obtainable input data to be able to use such
algorithms. When comparing the error metrics with
the results of the ITU model, the machine learning
models obtained better results, for the frequency 533
MHz, channel 24, which is used for training the
algorithms. By comparing the algorithms already
trained, on channel 24 and 29, it was observed
that they performed better than the ITU-R P.1546-6
Recommendation. From the analysis it is possible
to observe that the predicted values for each point
tends to follow the measured data better because the
points were grouped according to their geographical
position, allowing the training of the algorithm to
take into account the reception characteristics of
each group. From the results, it is possible to see
that the machine learning algorithms proposed in
this work present a better prediction of the received
power signal when compared with the traditional
prediction models that provides an average or me-
dian value of its forecast results. From the obtained
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results, we believe that the algorithm could be used
to define shadow areas that produce spectrum oppor-
tunities by applying a reception threshold criterion
that depends on the system in operation, in a more
appropriate way than traditional methods.

For future work we can propose to carry out sim-
ulations using the machine learning models already
trained, in other locations similar to those covered in
this work; new measurement campaigns to compare
results and also for new training. Another suggestion
is to use other algorithms, such as Artificial Neural
Networks [18], to compare the gain in results with
the computational cost of the methods involved.
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