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On Symmetric Channels and Codes Over the

Quaternion Group
Jorge Pedraza Arpasi

Abstract—In this paper we study symmetric channels and
group codes over the quaternion group Q8. We show that, related
to these channels, there is a number CQ8, called group-capacity,
which is less or equal than the capacity of the channel. Also we
show that CQ8 is an upper bound for the rate of any reliable
quaternion group code. Finally we show that the group-capacity
equals the channel capacity.

Index Terms—Groups codes, symmetric channels, group ca-
pacity, non-Abelian group codes, quaternion channels.

I. INTRODUCTION

Group codes as generalization of binary linear codes were

introduced in [1], which focused on the optimization of the

minimal distance. When combined with symmetric channels,

group codes have good properties such as the symmetry of

the Voronoi regions which implies the uniform error property

(UEP) when decoding them.

A crucial difference between linear codes and group codes is

in the structure of the (X ,Y, p(y|x)) channels through which

they are transmitted. For a linear code C ⊂ FN , with F a field,

the size of X must be a prime power, one-to-one related with

F . As a field has only trivial sub-fields, for the alphabet Xs (

X of any sub-channel, other than trivial, the respective subset

Fs ( F has no field structure. Then, there is no subspace

Cs ⊂ C such that Cs ⊂ FN
s . On the other hand, for a group

code over a group G, the size of the channel alphabet is not

restricted to being a prime power, and there may exist sub-

channels with alphabet Xs ( X , Xs 6= {0}, one-to-one related

with a subgroup Gs ⊂ G, such that there is a subgroup Cs of

the group code C ⊂ GN satisfying Cs ⊂ GN
s . That is why, in

this work, we can call these sub-channel codes as sub-codes.

For linear codes it is possible to prove Shannon’s coding

theorem. For group codes this may not be true as was shown

in [2] and [3]. The sub-channels determine the existence

of a number CG, called the group-capacity of the channel

which may be different from the channel’s capacity C, more

precisely, CG ≤ C. Moreover, any group code C with rate

R > CG always will have error probability Pe(C) > A, for

some fixed A > 0. Therefore, in order to say that a group

code achieves the channel capacity is necessary to check both

CG = C and the Shannon’s coding theorem for CG, i.e., for

any R < CG and for any ǫ > 0 there is a group code C such

that Pe(C) < ǫ.
This paper will deal with the group-capacity CG for the

case G = Q8, the quaternion group which is non-Abelian. It
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is an extension of [3] where group-capacity was investigated

for channels over Abelian groups. Also, it can be considered

as a continuation of [4] where it was shown analytically

that CD4, the group-capacity for the dihedral group case,

equals the channel capacity. The main difference between both

the dihedral and quaternion cases comes from the dimension

of the respective channels. For the dihedral case the 8-PSK

channel has dimension 2, whereas for the quaternion case

the respective channel has dimension 4. The analysis of the

entropies, related to the capacities of the sub-channels, in the

dihedral case, are reduced to one-dimensional integrals thanks

to the polar coordinates of R2. For the quaternion case, the

four dimensions of its channel do not allow such reduction.

This paper is organized as follows:

In Section II, we present Q8 as ordered pairs of the Cartesian

Z4 × Z2, with a group structure called extension, and where

Z4 and Z2 are the cyclic groups of orders four and two,

respectively. Also, it is derived a formula that characterize its

subgroups. This formula will be useful to analyze the codes

of the sub-channels determined by the subgroups of Q8

In Section III, following [3], the G-Symmetric channels are

presented. A list of their properties, useful for this work, are

mentioned. One special Q8-Symmetric channel is introduced

as an example.

In Section IV, group codes C are defined as subgroups of

QN
8 . It is shown that for each subgroup Ql ⊂ Q8 there is

a subgroup of the code Cl ⊂ C such that Cl is isomorphic to

some subgroup of QN
l

. Thus, Cl is a group code for the

Ql-Symmetric channels, [Proposition 1].

In Section V, it is defined the group-capacity CQ8 of the

Q8-Symmetric channel. It is shown that any group code

transmitting with rate above CQ8 will have its decoding error

probability bounded away from zero [Proposition 2]. Finally,

it is presented a Montecarlo technique based proof, proving

that CQ8 equals the channel capacity C. [Proposition 3].

II. THE QUATERNION GROUP Q8

After the Dihedral group D4, the Quaternion group Q8 is the

best-known non-Abelian group with eight elements. One of the

many ways to describe this classical group is by considering

it as an extension of groups;

Definition 1: A group G is said to be an extension of the

group H by the group K if there is a normal subgroup N ⊂ G
such that N ≈ H and K ≈ G/N , where the symbol ≈ denotes

isomorphism of groups and G/N is the group of the cosets

determined by N , [5].

For practical reasons, in this work, a group extension G, of H
by K, will be denoted by G = H ⊠ K. One particular case
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of extension is the direct product of groups which is usually

denoted by H ⊕ K. The quaternion group is an extension

Q8 = Z4 ⊠ Z2, where Z4 and Z2 are the cyclic groups of

orders four and two respectively. This extension representation

of Q8 is fundamental for the analysis of the so called group-

capacity of symmetric channels having group codes over Q8.

The following Table gives an explicit representation of the

elements of Q8, as ordered pairs of the extension Z4 ⊠ Z2.

g0 g1 g2 g3 g4 g5 g6 g7
(0,0) (1,0) (0,1) (1,1) (2,0) (3,0) (2,1) (3,1)

The group operation for the pairs (a, b) ∈ Z4 ⊠Z2 is given

by the formula;

(a1,b1)∗(a2,b2)=











(a1+3b1a2+2 , b1+b2); if b1+b2=2

(a1+3b1a2 , b1+b2); if b1+b2<2,
(1)

where the operations a1+3b1a2+2 and a1+3b1a2+2 are over

the integers mod 4 and b1+b2 are over the integers mod
2. For instance (2, 1)∗ (0, 1) = (2+31.0+2 , 1+1) = (0, 0),
also it can be verified that (0, 1)2 = (2, 0).

A. Characterizing the subgroups of Q8

In order to determine how the group codes over Q8 are

and how they behave when transmitted through the quaternion

channel, first we need to understand the structure of the

subgroups of Q8.

Lemma 1: Any subgroup of Q8 can be written as H ⊠K,

where H and K are such that H ⊂ Z4 and K ⊂ Z2 and

H = {0} implies K = {0}.

Proof.- The set {(0, 0)} ∈ Z4 ⊠ Z2 can be written as

{0} ⊠ {0} and it is a trivial subgroup of Q8, product of the

trivial subgroups of Z4 and Z2. Also, for 2Z4 = {0, 2}, the

set 2Z4 ⊠ Z2 = {(0, 0), (2, 0), (0, 1), (2, 1)} is a subgroup

of Q8. On the other hand, since (0, 1)2 = (2, 0), the set

{0} ⊠ Z2 = {(0, 0), (0, 1)} is not a subgroup. These facts

can be summarized by saying that whenever H subgroup of

Z4, K subgroup of Z2 and H = {0} implies K = {0}, the

set H ⊠K is a subgroup of Q8.

But the converse, at first glance, seems to be incorrect: the

subgroup G1 = {(0, 0), (1, 1), (2, 0), (3, 1)}, apparently, has

not a representation H ⊠ K where H ⊂ Z4 and K ⊂ Z2.

To remedy this, let us remember that Q8 has three normal

subgroups of order four all of them isomorphic with Z4. One

of them, certainly not G1, was chosen to be represented by

Z4⊠{0}. Then, changing this choice so that G1 is represented

by Z4⊠ {0} we will have G1 = H ⊠K, H and K subgroups

of Z4 and Z2 respectively. �

Now, we will characterize the subgroups of Q8 in terms of

constrained arrays of integers l = (l1, l2, l3). For that, it is

necessary to remember that Zpr (pj) = {g ∈ Zpr ; pjg = 0},

the subgroup of Zpr whose elements have order pj , can be

written as pr−jZpr , for any prime p. Then, by Lemma 1 a

subgroup of Q8 can be expressed by the formula

Q8(l) = [21−l1Z4(2) + 22−l2Z4(2
2)]⊠ 21−l3Z2, (2)

where the symbol + is the group operation of Z4 and l =
(l1, l2, l3) is an array of integers satisfying 0 ≤ l1, l3 ≤ 1 and

0 ≤ l2 ≤ 2, and (l1, l2) = (0, 0) implies l3 = 0.

III. G-SYMMETRIC CHANNELS

Groups are sets with algebraic structure strongly related to

symmetries since its conception by E. Galois in the nineteen

century [5]. If X is a discrete subset of Rn, related to it there

is a group G called the group of symmetries of X , such that

G acts over X . When the action of G over X is transitive,

the set X is called Geometrically Uniform Constellation GUC

[6]. Thus, a GUC X with a symmetry group G transmitted

through a channel p(y|x) such that p(gx|gy) = p(y|x) for all

x, y and for all g ∈ G is called symmetric channel [3]. More

precisely:

Definition 2: Let (X ,Y, p(y|x)) be a memoryless channel.

If there is a group G such that:

• G acts over X in such a way this action is transitive and

one-to-one,

• G acts isometrically over Y ,

• p(y|x) = p(gy|gx) for all x ∈ X , for all y ∈ Y and for

all g ∈ G;

then (X ,Y, p(y|x)) is called G-Symmetric channel.

From the above definition, the symmetry of (X ,Y, p(y|x))
depends on the existence of a group G satisfying the three

conditions. That is the case of the BSC and BEC channels.

They are G-Symmetric for the group of binary permutations

G = {(), (12)} [3]. On the other hand it may be the case that a

channel to be symmetric for more than one group. For instance

the 8PSK-AWGN channel is G-symmetric for both G = Z8

(cyclic) and G = D4 (dihedral) [4], [3]. A final observation

on Definition 2 is that the G-Symmetric channels preserve the

two important properties of classical symmetric channels:

• The mutual Information I(X;Y ) equals the channel

capacity C when p(x), the probability distribution of the

input set X , is uniform. With this, the capacity of the

channel C, can be computed with the formula

C =

∫

Y

p(y|x) log
(

p(y|x)
p(y)

)

dy, (3)

where x is an arbitrary but fixed element of X , and

p(y) = 1
|X |

∑

x∈X

p(y|x) is the probability density of Y ,

page 94 of [7].

• All the codewords c of a group code C, transmitted

through a G-Symmetric channel, have the same proba-

bility of decoding error p(error|c) = Pe(C|c). Therefore,

Pe(C) =
∑

c

p(c)Pe(C|c) = Pe(C|c). This property is

known as the uniform error property (UEP).

An additional property of a G-Symmetric channel is that

for each subgroup H ⊂ G, the sub-constellation XH ⊂ X
over which H acts transitively, determines a sub-channel

(XH ,Y, p(y|x)) such that it is H-Symmetric by itself.

Example 1: Let the elements g0, g1, . . . , g7 of Q8 repre-

sented as in the Table of Section II. If C is the complex number
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set, let X = {x0, x1, . . . , x7} ⊂ C2 be the constellation

defined in the following Table where i =
√
−1

x0 x1 x2 x3 x4 x5 x6 x7

( 10 ) ( i
0 ) ( 01 ) ( 1i ) −( 10 ) −( i

0 ) −( 01 ) −( 1i )
.

Consider the conditional Gaussian densities;

p(y|xk) =
1

4π2σ4
e−

‖y−xk‖2

2σ2 , (4)

where y ∈ Y , xk ∈ X and σ > 0.

Using a matrix representation O(C, 2) ≈ O(R, 4) of Q8 we

will have;

• ‖gky‖ = ‖y‖, for all gk ∈ Q8 and for all y ∈ C2,

• xk = gkx0, for all k = 0, 1, . . . , 7,

which shows that (X ,Y, p(y|xk)) is a Q8-Symmetric channel.

IV. GROUP CODES AND SYMMETRIC CHANNELS OVER Q8

For a given group G and a positive integer N , it is

customary to write the group of N -tuples of G as GN =
G⊕G⊕· · ·⊕G, where ⊕ denotes the direct product of groups.

Then, a group code C over G is a subgroup of GN and it must

be the image of some encoding mapping φ : U → GN , where

φ is a injective group homomorphism and U is a group, the

uncoded group of real information. From this, U ≈ C.

For the specific case of the quaternion group, a group code

must be a subgroup of (Z4 ⊠Z2)
N . A useful formula, shown

in [4], is (Z4 ⊠ Z2)
N ≈ ZN

4 ⊠ ZN
2 , which means there is

a normal subgroup N0 ≈ ZN
4 with (ZN

4 ⊠ ZN
2 )/N0 ≈ ZN

2 .

Hence, the structure of these N -fold subgroups must obey the

structure of the single subgroups of Z4⊠Z2, based on Lemma

1. This means that a subgroup of ZN
4 ⊠ ZN

2 has to be a set

H⊠K, where H and K are such that H ⊂ ZN
4 and K ⊂ ZN

2

and H = {0} implies K = {0}.

Therefore, a quaternary code C ⊂ (Z4 ⊠ Z2)
N has the

following structure;

C ≈ U ≈ (Zk1
2 ⊕ Zk2

4 )⊠ Zk3
2 = (Zk1

2 ⊕ Zk2

22 )⊠ Zk3
2 , (5)

where the elements of the array of exponents k = (k1, k2, k3)
satisfy the conditions k1+k2 ≤ N , k3 ≤ N , and if (k1, k2) =
(0, 0) then k3 = 0.

Proposition 1: Let Q8(l) be, as in equation (2), a subgroup

of Q8. Then, there is a subgroup C(l) of the code C ⊂ QN
8

such that C(l) ⊂ (Q8(l))
N .

Proof.- The equation (2) can be reduced by doing

the following operations: 21−l1Z4(2) + 22−l2Z4(2
2) =

21−l122−1Z4 + 22−l222−2Z4 == 22−l1Z4 + 22−l2Z4 =
22−l∗Z4, where l∗ = max{l1, l2}. Thus, the group structure

of Q8(l) is;

Q8(l) = 22−l∗Z4 ⊠ 21−l3Z2 ≈ Z2l∗ ⊠ Z2l3 . (6)

On the other hand, for the same l, the subset of U defined

by; U(l) = (21−l1Zk1
2 ⊕ 22−l2Zk2

22 )⊠ 21−l3Zk3
2 , is a subgroup

of U . By the isomorphism pnZpm ≈ Zpm−n , the structure of

this subgroup is U(l) ≈ (Zk1

2l1
⊕ Zk2

2l2
) ⊠ Zk3

2l3
. Therefore, if

C(l) = φ(U(l)), then

C(l) ≈ (Zk1

2l1
⊕ Zk2

2l2
)⊠ Zk3

2l3
. (7)

Comparing equations (7) and (6) we have C(l) ⊂ (Q8(l))
N .

�

The above Proposition 1 is telling us that each Q8(l)-
Symmetric sub-channel has its own group code, namely C(l).
That is why, sometimes, C(l) ⊂ C is called a sub-code.

Also, observe that for the trivial array l = (0, 0, 0), the

subgroup Q8(l = 000) in equation (6) is Q8(l = 000) =
4Z4 ⊠ 2Z2 = {(0, 0}, the neutral element of Q8. Thus,

from equation (7), this array l = 000 yields the trivial code

C(l = 000) = {(0,0)} whose both rate and capacity are zero.

On the other hand, computing the formula (6) for the array

l = (1, 2, 1) we have that l∗ = max{l1, l2} = 2 and

Q8(l = 121) = 22−2Z4 ⊠ 21−1Z2 = Z4 ⊠ Z2 = Q8.

Then, from (7), the respective code C(l = 121) is

C(l = 121) = (Zk1
2 ⊕ Zk2

4 )⊠ Zk3
2 , (8)

which is exactly the full quaternion code C of (5). Therefore

C(l = 121) = C. (9)

V. THE GROUP-CAPACITY OF THE QUATERNION CHANNEL

Let C = φ(U) be an arbitrary quaternion code, as in (5),

generated by k = (k1, k2, k3) with (k1, k2) 6= (0, 0). The

rate of the sub-code C(l) = φ(U(l)) through the sub-channel

(X (l),Y, p(y|x)) is: R(l) = log |U(l)|
N

= log(2
∑3

i=1 liki )
N

=
log(2)

∑3
i=1 liki

N
. For the maximal array l∗ = (l∗1, l

∗
2, l

∗
3) =

(1, 2, 1) of (9) we have: R(l = 121) =
log(2)

∑3
i=1 l∗i ki

N
=

log(2)(k1+2k2+k4)
N

= log |U|
N

= R, where R is the rate of the

code C.

Since, in this quaternion coding, (k1, k2) 6= (0, 0), for any

array l 6= (0, 0, 0), the
∑3

i=1 liki 6= 0. Therefore, for l 6=
(0, 0, 0), the rate R(l) is positive and is legitimate to setup

the relation
R(l)
R

=
∑3

i=1 liki
∑3

i=1 l∗
i
ki

from which is obtained;

R =
R(l)

∑3
i=1 l

∗
i ki

∑3
i=1 liki

; ∀l 6= (0, 0, 0). (10)

Definition 3: Let C(l) be the capacity of the sub-channel de-

termined by l. The group-capacity of a Q8-Symmetric channel

is defined by: CQ8 = max
k 6=(0,0,0)

{

min
l 6=(0,0,0)

{

C(l)
∑3

i=1 l∗i ki
∑3

i=1 liki

}

}

.

Notice that for any k = (k1, k2, k3) 6= (0, 0, 0), the number

min
l 6=(0,0,0)

{

C(l)
∑3

i=1 l∗i ki
∑3

i=1 liki

}

is upper bounded by C(l∗) = C, the

capacity of the channel. Hence

CQ8 ≤ C. (11)

Proposition 2: If a code C over the quaternion group has a

rate R > CQ8 then its probability of error is bounded away

from zero, i.e., Pe(C) > A, for some A > 0.

Proof.- Let lm = (lm1 , lm2 , lm3 ) and kM = (kM1 , kM2 , kM3 )

be the arrays such that CQ8 =
C(lm)

∑3
i=1 l∗i k

M
i

∑3
i=1 lm

i
kM
i

and suppose

there is a code C generated by an array k = (k1, k2, k3)

with rate R > CQ8, then, by (10), R =
R(lm)

∑3
i=1 l∗i ki

∑3
i=1 lm

i
ki

>

C(lm)
∑3

i=1 l∗i k
M
i

∑3
i=1 lm

i
kM
i

. On the other hand, since
∑3

i=1 l∗i ki
∑3

i=1 lm
i
ki

≤
∑3

i=1 l∗i k
M
i

∑3
i=1 lm

i
kM
i

, then R(lm) > C(lm).
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However, if R(lm) > C(lm), by the converse of Shannon’s

Coding Theorem, the probability of error of the sub-code

C(lm) is bounded away from zero, which means Pe(C(lm)) ≥
A, where A is some positive number. Combining this with

the UEP of symmetric channels it can be seen that: Pe(C) =
Pe(C|0) ≥ Pe(C(lm)|0) = Pe(C(lm)) ≥ A. �

A. The group-capacity equals the capacity

By the constraints about the arrays l, k the conditions

l 6= (0, 0, 0) and k 6= (0, 0, 0) are equivalent to (l1, l2) 6= (0, 0)
and (k1, k2) 6= (0, 0) respectively. Defining the auxiliary

function f(l) = f(l1, l2, l3) =
∑3

i=1 liki, it can be checked

that f(1, 1, l3) ≥ f(1, 0, l3) and f(1, 1, l3) ≥ f(0, 1, l3),
also f(1, 2, l3) ≥ f(0, 2, l3). Hence, denoting by L =
{(1, 1, 0), (1, 1, 1), (1, 2, 0), (1, 2, 1)} the group-capacity be-

comes: CQ8 = max
k

(k1,k2) 6=(0,0)

{

min
l∈L

{

C(l)
∑3

i=1 l∗i ki
∑3

i=1 liki

}

}

.

The group-capacity can be computed more efficiently if

the arrays k = (k1, k2, k3) are normalized. From log |U| =
log(2)

∑3
i=1 l

∗
i ki it can be seen that αi =

log(2)l∗i ki

log |U| is a

probability vector, i.e, α1 + α2 + α3 = 1. Conversely, from

each probability vector α, with (α1, α2) 6= (0, 0), a group

code can be generated making ki = αi log |U|
l∗
i
log(2) . Hence, the

group-capacity of the quaternion channel can be computed

with: CQ8 = max
α

(α1,α2) 6=(0,0)

{

min
l∈L

{

C(l)
∑3

i=1
li
l∗
i
αi

}}

. For the sake

of simplicity, for the array l = (l1, l2, l3), let us denote by

Cl1l2l3 as the capacity of the sub-channel (X(l),Y(l), p(y|x)).
For instance, C121 is the capacity of the sub-channel whose

input alphabet is X (l = 121) which by (7) is the full input

alphabet X of the channel. With this notation, if C is the

capacity of the channel, we have that C121 = C.

From here:

CQ8= max
α

(α1,α2) 6=(0,0)

{

min

{

C110

α1+
α2
2

,
C111

α1+
α2
2

+α3
,

C120
α1+α2

,C

}}

≥ min

{

3C110,
3C111

2
,
3C110

2
, C

}

. (12)

For the array l = (l1l2l3) the capacity Cl1l2l3 can be

computed with the formula (3). For instance, if l = (1, 1, 0),
by formula (6), the subgroup is Q8(l = 110) = 22−1Z4 ⊠

22−0Z2 = 2Z4 ⊠ {0} = {(0, 0), (2, 0)} = {g0, g4} (Table

of Section II). By the Table of Section III, the respective

sub-constellation is {x0, x4} = {( 10 ), (−1
0 )} ⊂ C2. Then the

capacity integral (3) becomes:

C110 =

∫

R4

p(y|x0) log

(

p(y|x0)

p110(y)

)

dy, (13)

where p110(y) = 1
2 (p(y|x0) + p(y|x4)) and p(y|xk) is the

conditional density (4). Now, notice that the capacity integral

(13) can be interpreted as the the expected value of the

function f110(y) = log
(

p(y|x0)
p110(y)

)

, for the random variable Y

whose density is p(y|x0). Then, by the law of large numbers,

the capacity C110 is C110 = lim
n→∞





n
∑

k=1

f110(yk)

n



, where the

0 2 4 6 8 10 12 14
0.5

1

1.5

2

2.5

3

SNRDB

bi
ts

/u
se

3*C110

1.5*C111

1.5*C120

C

Fig. 1: C=min{3C110, 1.5C111, 1.5C120, C}

sequence {yk}nk=1 is sampled in accordance to p(y|x0). The

software Octave [8] has the command normrnd which makes

this sampling job. In general, the capacity Cl1l2l3 will be

Cl1l2l3 = lim
n→∞









n
∑

k=1

fl1l2l3(yk)

n









. (14)

Proposition 3: The group-capacity CQ8, of the channel of

Example 1, equals the channel capacity C.

Proof .- Computing the capacities C = C121, C110, C111

and C120 with the Montecarlo method described in (14) it can

be produced the data which allows Figure 1 showing that:

C ≤ 3C110 C ≤ 3
2C120 C ≤ 3

2C111,

for all SNRDB in the interval [0,15]. Therefore

C = min{C, 3C110,
3
2C111,

3
2C120} (15)

Comparing (15) and (12) we obtain

CQ8 ≥ C (16)

Finally, comparing (16) and (11) we conclude

CQ8 = C.

�

VI. CONCLUSION

We have shown that the group-capacity CQ8 is an upper

bound for the transmission rate of any reliable group code over

Q8. Also, we have exhibited a Montecarlo technique based

proof showing that CQ8 = C. A couple of tasks to be done,

to give continuity to this work, would be:

• To find a totally analytical proof for the equality CQ8 =
C.

• To prove Shannon’s coding theorem with respect to CQ8,

that is, for any R < CQ8 and for any ǫ > 0 there is a

group code C over Q8, with rate R, such that Pe(C) < ǫ.
With this, it would be complete the proof that quaternion

group codes achieve the channel capacity.
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