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Conversion of Scattering Parameters to
Time-Domain for Imaging Applications: Rules and

Examples
Marcelo Bender Perotoni, Claudio José Bordin Jr., and Kenedy Marconi G. dos Santos.

Abstract—This article discusses the conversion of scattering
parameters from an antenna input port to the time domain
for imaging applications. Frequency-domain measurements offer
advantages to time-domain methods: the complex data encoded
in the scattering matrix convey target geometric and material
information, which can later be used to reproduce the scene
image illuminated by the antenna. We discuss three different
examples using the inverse discrete Fourier transform. Tradeoffs
in the data acquisition, bandwidth, sampling, and topics related
to the antennas used as probes are covered.

Index Terms—Imaging; Scattering Parameters; Signal Process-
ing for Electromagnetics.

I. INTRODUCTION

COMPLEX scattering S-parameters are measured in Vec-
tor Network Analyzers (VNAs) and provide an under-

standing of the behavior and performance of linear passive
and active elements and systems. Besides real-world mea-
surements, electromagnetic field solvers make wide use of
S-parameters as means to evaluate virtual radiofrequency
and electromagnetic compatibility (EMC) problems. Though
provided as a complex-valued vector uniformly spread across
a frequency range, they encode useful information when
analyzed in time-domain, in applications such as TDR (time-
domain reflectometry), radar [1] [2], near and far-field imaging
[3] applied in areas such as breast cancer detection [4],
ground-penetrating radar [5] and even non-destructive concrete
characterization [6].

The use of transformed frequency-domain data instead of a
direct time-domain measurement offers some advantages, such
as higher SNR (Signal-to-Noise Ratio) due to a narrowband
measurement, which reduces associated the thermal noise,
reduction of zero-level drift problems, and the use of known
standards, such as the calibration sets of VNAs [7] [8]. For
imaging purposes, UWB (Ultra-Wide Band) techniques offer
some advantages given the benefit of generating narrow pulses:
with the assigned band in the range of 3.1 GHz to 10.6
GHz, a theoretical 0.13 ns pulse is possible. The analysis of
transformed frequency-domain UWB S-parameter data can be
performed after the VNA measurement, given the 10 GHz-
range oscilloscopes availability. However, systems based on
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time-domain benefit from faster scanner times and more cost-
effective devices, particularly with the availability of real-time
low GHz range oscilloscopes [3] [9]. Despite FFT/IFFT rou-
tines (Fast Fourier Transform / Inverse Fast Fourier Transform)
and Chirp-Z Transforms [10] [8] being available in network
analyzers and field solvers alike, sometimes a deeper under-
standing is needed to implement own codes and better design
systems that make use of time-domain signals transformed
from frequency-domain data sets. Processing resources such
as zero-padding, oversampling, filtering, and windowing might
be used in addition to the IFFT, which might not be quite clear
to the instrument or field solver user.

Previous studies have shown similar applications without
delving into the conversion itself [11], [12], [13]. Several
techniques dealing with microwave imaging use the trans-
formed frequency-domain data as input to spatial variables,
cases of ISAR (Inverse Synthetic Aperture Radar) for far-
field identification of targets, typically aircraft [1], through-
wall imaging, with algorithms such as Delay and Sum (DS) or
Range Migration (RM) [14], or by converting to time domain
where indirect information on target positions and respective
materials are encoded, case of algorithms such as Single Probe
Imaging through Detection and Reconstruction (SPIDR) [15].

This article describes the steps needed to convert complex-
valued uniformly sampled S-parameters in the frequency do-
main to real-valued time-domain responses, providing the
necessary steps and mathematical background, thereby cov-
ering a missing spot on the existing textbooks and related
literature. Specifically, we elaborate further on [16], presenting
detailed derivations and illustrative examples. It uses computer
simulation and analytical expressions as the S-Parameter or
reflection coefficient to analyze different scenarios where the
conversion is performed. The text in the sequel is organized
as follows: Section II details the computation of the IFFT of
scattering parameters. Sections III and IV describe examples of
use of the proposed technique in distinct applications. Finally,
the conclusions are drawn in Section IV.

II. COMPUTING THE INVERSE FOURIER TRANSFORM OF A
SCATTERING PARAMETER VECTOR

A band-limited signal Hpb(f) can be represented as a
product of a function with unlimited support H(f) and a
rectangular (rect) function, defined as one in the band ∆F =
fmax − fmin and zero elsewhere [17]:
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Hpb(f) = H(f) · rect

(
f − fo

∆F

)
, (1)

where the center frequency is defined as

f0 =
fmax + fmin

2
. (2)

The product in the frequency domain is equivalent to a convo-
lution in the time domain. If h(t) and hpb(t) are respectively
the inverse transforms of H(f) and Hpb(f), the convolution
can be written as:

hpb(t) = h(t) ∗∆F · sinc(∆F · t)ej2πf0t, (3)

with

sinc(t) =
sin(πt)

πt
. (4)

The measured samples of (1) can be expressed as the multi-
plication of (1) by a train of Dirac deltas spaced by fs (comb
function) representing the sampling rate of the original data
in the frequency domain:

Hpb,sampled(f) = Hpb(f) ·
∞∑

k=−∞

δ(f − kfs). (5)

The effect of sampling in time domain is felt by way of
replicating the pulse at time intervals defined as:

Ts = 1/fs. (6)

Fig. 1 depicts the process. Due to the convolution with
a modulated sinc function, ringing appears in the response.
Ideally, the original function H(f) should have low energy
above fmax as to reduce the ringing [17]. The sampling effect
in the time domain results in the repetition of the pulse at every
1/fs interval. Due to the Nyquist limit, the distance between
samples in the frequency domain vector fs should be such
that 1/fs is larger than the expected response duration (Fig.
1), otherwise aliasing will show up, distorting the computed
signal.

Assuming that the time signal is real-valued, its Fourier
transform has to be Hermitian [18] - i.e. the real part of the
complex data is even and the imaginary part is odd. However,
the extracted data from the measurement or simulation is only
defined for positive frequencies. Therefore, data at negative
frequencies must be defined as conjugate of data at positive
frequencies, in an operation so-called “Hermitian Processing”
[16]. After Hermitian Processing (denoted He{}), one obtains:

He{Hpb(f)} = H(f)∗
[
rect

(
f − f0

∆F

)
+ rect

(
f + f0

∆F

)]
.

(7)
Using the Euler relation, the inverse Fourier transform

results in:

F−1(He{Hpb(f)}) = h(t)·∆F ·sinc(t∆F )·cos(2πtf0). (8)
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Fig. 1. Effect of truncating the ideal response to a band-pass and the
subsequent sampling in time domain. The black arrows show the result of
an Inverse Fourier Transform operation.

The original data acquired from either an instrument or from a
simulation contains N samples uniformly distributed between
fmin and fmax, according to Fig. 2. The imported data then is
submitted to Hermitian Processing [16] and zeros are inserted
between −fmin and fmin with the same sampling step as the
original data.

After this procedure, the IFFT of the resulting vector can
be computed to determine the respective time-domain pulse,
whose time scale (Fig. 2) is determined by the resolution ∆t
and maximum time-span Tmax, defined as:

∆t =
1

L. (fi+1 − fi)
=

1

L.fs
, (9)

Tmax =
1

fi+1 − fi
=

1

fs
, (10)

where L is the total number of frequency samples (including
eventual zero-padding), comprising complex data spread be-
tween −fmax and fmax. fi and fi+1 are consecutive measured
data samples in the frequency domain, whose distance is
represented by the variable fs. Fig. 3 illustrates the relation
between both domains. Usually the samples are homogeneous
either in simulators or measurement instruments; in case they
are not some resampling routine should be applied. Due to
zero-padding, L > N , unless the measurements starts at DC
(zero frequency).
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Fig. 2. Hermitian Reconstruction of the original data and its IFFT.

In order to obtain a finer resolution in the time domain,
able to resolve nearby details in imaging applications, a large
number of samples N and a high maximum frequency fmax
are needed. Therefore, this resolution (∆t) is determined by
the available hardware (VNA, antennas frequency range and
associated elements). In case the number of frequency samples
N is not large enough, resampling can be applied, as long
as the original data is smooth and occasional resonances and
peaks are not lost.

Next, practical applications of the afore-described method
are presented.

III. EXAMPLE I - BAND-PASS UNITARY AMPLITUDE
FUNCTION

A unitary amplitude, real function with N =100 samples,
between fmin = 4 GHz and fmax = 10 GHz is submitted to
Hermitian Processing (Section II) leading to the results shown
in Fig. 4. After the zero-padding a total number of samples
L=331 is generated.

The sample distance in time domain is ∆t = 1/(331 ∗
60.6MHz) = 0.05 ns, where 60.66 MHz corresponds to the
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Time Domain
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ti-ti-1 = 1 / L(fi-fi-1)

Fig. 3. Relation between the time and frequency scales after the IFFT
operation.
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Fig. 4. Original (black) and Hermitian (red) measurements.

inter-sampling distance of the original data. After the IFFT
operation, the time pulse extends from 0 and 16.5 ns. Fig. 5
shows the time-domain pulse (limited to 10 ns), alongside an
oversampled version, in which the number of time samples is
increased 8 times by interpolation.
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Fig. 5. Transformed time-domain signals (red - original, no oversampling)
and (black - 8 times oversampling). In detail the zoomed-in version up to 1
ns.

It can be seen the oscillatory behavior of the time-domain
pulse following the sinc shape, that originates after the trun-
cated function rect in the frequency domain, as mentioned
before. The next example will show that the phase in the
frequency-domain original data conveys distance information
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in applications such as target identification, imaging and TDR.

IV. EXAMPLE II - SHORT CIRCUITS IN TRANSMISSION
LINES AND FREE-SPACE

A short-circuited lossless transmission line of length l and
characteristic impedance Zo has its input impedance Zin
written as:

Zin = jZo tan(βl) = jZo tan(
2πf

c
l), (11)

with the variables f and c representing the linear frequency
(unit Hz) and speed of light, respectively, and j denotes the
imaginary unit. The reflection impedance factor Γ or the S11
(since there is only one port they are the same) at the input
port can be found after:

Γ =
Zin − Zo
Zin + Zo

=
j tan( 2πf

c l)− 1

j tan( 2πf
c l) + 1

. (12)

It can be seen that Γ has always a unitary module and only
its phase is allowed to vary. In the context of a Smith Chart,
the loci of impedance points lie on the chart periphery. This
equation (12) is equivalent to the reflection produced on an
antenna by N targets, located at distances xi [1]:

Γ =

N∑
i=1

Aie
−j 2πf

c 2xi , (13)

where the factor 2 multiplying the distance variable accounts
for the round-trip length. This equation resembles a DFT
(Discrete Fourier Transform) and is the basics behind ISAR
(Inverse Synthetic Aperture Radar) [1]. Ai stands for the
reflection amplitude, which for the case of a PEC (perfect
electric conductor) is unitary, meaning that the reflected wave
has the same amplitude as the incident wave.

In order to investigate it, two short circuits located at a
distance of 0.2 and 0.6 meters were simulated from DC to
10 GHz using a generic circuit simulator and by means of
equations (12) and (13) - the latter representing a metallic
plane located at the same distances, scattering the energy back
to the antenna. All three analyses resulted in the same data for
the Γ or S11, as shown in Fig. 6 with reduced bandwidth for
a better visualization.

After Hermitian Processing, which in this case did not need
zero-padding since fmin = 0, the IFFT is performed and the
time-domain pulses are visualized in Fig. 7, after oversampled
by a factor of 8. Two interrupted blue lines were added to
show the theoretical delay time (twice the target distance over
velocity of light), showing that the scaling implemented by
the IFFT in the time axis is consistent.

V. EXAMPLE III - FREE SPACE SYSTEM, ANTENNA AND
METALLIC TARGET

For the purpose of near-field or far-field imaging, antennas
are used as probes. Similarly to radars, the imaging system can
be called monostatic, where the same antenna is used for either
transmission and reception, or bistatic, where there are differ-
ent antennas for each purpose [19]. Based on the measured
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Fig. 6. S11 or Γ for a short circuit/target located at distance of 0.6 m. The
scattering equation is (13) and Transmission line is (12).
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Fig. 7. Time responses corresponding to the S11 of a short circuit (or metallic
target in free space) located at 0.2 (green) and 0.6 m (red).

antenna response, the target image can be obtained using either
inversion or direct processing. Inverse scattering techniques
use the available data to back-propagate the information and
generate the image. In contrast to direct analysis methods,
they are more computationally intensive given the fact the
matrix containing the S-parameters from the scene is ill-
conditioned [21]. They usually rely on previous information,
simulated or measured, of the environment where the imaging
is performed, and disregard multi-path propagation using the
Born approximation to simplify the problem [22] [23] [24].

Though phase information is of paramount importance
in the process, there are special techniques based only on
amplitude information, such as phaseless imaging [25]. For
the sake of phase measurement, complex data should be
acquired, which means coherent detection is needed. Spectrum
analyzers, largely available in laboratories, for instance, only
provide amplitude data. Unfortunately, more expensive VNAs
or high-frequency oscilloscopes should be used if one needs
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coherent detection.
For the sake of example, a TEM Horn Antenna was simu-

lated alone to extract its isolated characteristics, and radiating
against a target, according to Fig. 11. Horns are particu-
larly attractive for imaging purposes given their mechanical
sturdiness and high gains, either in far and near-fields [26]
[27]. The antenna has inherent broad bandwidth, which is
mainly determined by its exponentially flared shape and the
balun that connects the coaxial connector to the parallel-plate
transmission line. The antenna isolated was simulated and Fig.
8 presents the input reflection in dB, which is the same as the
S11 for systems with only one port. Its maximum computed
gain is shown in Fig. 9, for endfire direction. It can be seen
that the computed S11 goes below -10 dB at frequencies higher
than 10 GHz. However, 10 GHz was chosen as upper limit in
the current analysis in order to make it consistent with UWB
legal limits and also to avoid too long simulation times, which
are proportional to the maximum frequency.
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Fig. 8. Computed antenna return loss, S11.

2 4 6 8 10 12 14 16
Frequency [GHz]

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

G
ai

n 
[d

B
]

Fig. 9. Computed antenna Gain, in dB.

Fig. 10 shows the gain in a 3D cutplane. It can be seen that

for three different frequencies within the analyzed range the
direction of maximum radiation is pointing towards the target
(endfire direction). It is important that the antenna as a sensor
have small side lobes and a null in the back side, conditions
that are unfortunately not possible if a high gain is needed
[28].

3 GHz

6 GHz

10 GHz

Fig. 10. Computed antenna Gains in 3D, for three different frequencies, in
dB.

A metallic obstacle was placed at a distance (0.1 and 0.2
m) measured from the antenna aperture middle-point, a square
sheet with side length 0.1 m, according to Fig. 11. Define the
far-field condition [19] as:

r >
2D2

λ
, (14)

where r is the limit distance where far-field conditions apply
and D is the largest antenna dimension. Considering the
minimum and maximum frequency (2.5 and 10 GHz) it results
in the limit distance to be respectively 11 and 44 cm, so the
target can be supposed to lie in the far-field region. Following
the definition of [20], on the other hand:

r >
λ

2π
, (15)

it results in 12 cm and 3 cm for 2.5 GHz and 10 GHz,
respectively, thereby placing the target in near-field for the
lower frequency range. What really matters is whether the
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antenna input impedance is sensitive enough against the target
influence. These modifications in the complex S11 results
would encode the target position and geometry.
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Fig. 11. TEM horn antenna and the target.

Three scenarios were simulated inside CST Microwave
Studio - the isolated antenna and the target at the two distances.
Fig. 12 contains the simulated scattering parameters, covering
the frequency range with 751 equidistant points. The range was
chosen as to use the antenna with its S11 parameter operating
under -10 dB. Given the inherent broadband scenario, a FIT
(Finite Integration Technique) time-domain solver was used.
The S-parameters for each scenario were later exported to an
ASCII file.
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Fig. 12. Real and imaginary input reflection at the antenna input port. Red:
Isolated antenna; blue: target at 10 cm and black: target at 20 cm.

After the Hermitian Processing is performed, the IFFT is
computed. In case of an antenna, there are several reflections
arising besides the target; all different transitions of the guided
wave from the input port to the effective radiation into space
generate reflections clearly seen on the time-domain pulse,
even if the input impedance of the antenna is well matched
within the used frequency range [29]. It is important to stress
that the scattered wave amplitude from the target and picked
up by the antenna aperture is very low and can be masked
by reflections from the antenna itself, even with relatively low

S11 parameters. Therefore, an artifact removal procedure is
needed to better isolate the effects of the target alone. Fig. 13
shows the three pulses (isolated antenna and with two targets)
zoomed in up to 3 ns. It can be seen that during the pulse
onset all the three curves are very similar, accounting for the
antenna structure internal reflections. Besides that, as the target
is moved away from the antenna aperture, the return pulse
amplitude decreases. In a real case, ambient noise, reflections
from the environment, and instrument dynamic ranges impose
a constraint on the maximum distance in which a target can
be identified. Field solvers, on the other hand, are limited only
by the numerical and discretization errors, as there is no noise
in the virtual model.

Besides mechanical and size constraints, from the viewpoint
of electromagnetic performance, the following parameters
are important to address which antenna should be used for
imaging:

• A larger gain antenna implies a target can be spotted
further away;

• A large bandwidth antenna generates faster pulses in the
time-domain;

• A constant group delay and a stable center of phase
across the used frequency range would help keep the
pulse undistorted.

A moving center of phase implies that, in contrast to the
previous transmission line example, the origin (distance zero)
from where the phase is measured is not constant across
the antenna geometry. There is a distortion on the pulse
due to the non-constant center of phase [29], which in turn
implies a frequency-varying group delay. Routines similar
to MIMO (Multiple-Input Multiple-Output) are used for the
identification of different targets and, to discard information
from multipaths, among other techniques the Singular Value
Decomposition (SVD) is employed [30]. For imaging applica-
tions, the antenna design can be made to specifically address a
constant phase center in order to decrease this source of error
[31].

0 0.5 1 1.5 2 2.5 3
Time [ns]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 A
m

pl
itu

de

Fig. 13. Pulses in the time domain; blue: target at 10 cm and black: target
at 20 cm.
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In order to eliminate structural reflections from the re-
sponses, the pulse shape in the time domain with the antenna
only is subtracted from the same pulse with targets. Fig. 14
contains the pulses after subtracting the antenna-only. The
time difference between the maxima of both pulses is 0.64 ns
whereas the theoretical value is 0.66 ns; this difference can be
accounted for geometrical offsets in the center of phase along
the used frequency range. The same reason explains the time
of the maxima not being exactly equal to c/2x, where x is the
distance antenna-target. Since the distance in the simulation is
considered from the aperture, it does not correspond to the
center of phase. Fig. 15 depicts the simulated center of phase
variation for the frequency range 3 GHz to 10 GHz. It can
be seen that the variable position across the bandwidth will
impose a different phase error in the time waveshape.
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Fig. 14. Pulses in the time domain after subtracting antenna-only; blue: target
at 10 cm and black: target at 20 cm.
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Fig. 15. Simulated loci of phase center for different frequencies.

VI. CONCLUSION

This paper reported the conversion of S-parameter data to
time-domain employing Hermitian Processing, where the orig-
inal frequency-domain S-parameter represents some physical

measurement. We present the necessary steps in the processing
with examples that show the physical consistency of the
defined rules. Topics regarding antennas for near and far-field
imaging are also discussed, as well as trade-offs concerning
different parameters, such as antenna characteristics, choice of
bandwidth, number of sampling points, thereby providing an
overall understanding of the limitations and boundaries given
the available hardware. The information presented enables a
clearer understanding of the conversion of existing scattering
parameter matrices in the frequency domain to time-domain
signals
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