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Spectrum Efficient GFDM Based on Faster Than
Nyquist Signaling
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Abstract—Future mobile communication system will provide
high data rates for a miscellany of new applications. Spectrum
efficiency is a key performance indicator that must be consid-
erably improved for the beyond 5G networks. In this paper, a
a new approach to increase the waveform spectrum efficiency
is investigated. This novel schemes combines the faster-than-
Nyquist signaling with generalized frequency division multiplex-
ing, resulting in a scheme that can hold the main benefits of
this innovative waveform with the high spectral efficiency gain.
The scheme proposed in this paper abandons the orthogonality
principle for the time-frequency grid, reducing the spacing
between the subcarriers. The reduced subcarrier spacing does not
affect the minimum distance among the transmitted sequences,
if the Mazo’s limit is respected and the data can be recovered
by a non-linear receiver without bit error penalties. In this
paper, maximum likelihood receiver will be used for a proof of
conception, showing that the bit error performance is equivalent
to the one achieved by orthogonal systems. The system will be
integrated with a forward error control scheme, showing that
the proposed scheme can be fully integrated with modern error
control codes, while improving the spectrum efficiency by 20%.

Index Terms—spectrum efficiency, GFDM, FTN, beyond 5G,
6G.

I. INTRODUCTION

The main design objectives for fifth generation (5G) of
mobile communications networks are: 1) improvement of
data rate and system capacity with the enhancement Mobile
Broadband (eMBB); 2) support for latency sensitive appli-
cations with Ultra Reliable Low Latency Communications
(URLLC), and; 3) improvement of number of connected
devices and reduction in energy consumption with the massive
Machine Type Communications (mMTC) [1]. Recently, the
Third Generation Partnership Project (3GPP) has standardized
orthogonal frequency division multiplexing (OFDM) as the
waveform for an eMBB scenario [2]. Release 16, which is
focusing on URLLC and industry 4.0 applications will also
rely on OFDM [3]. Although 5G New Radio (NR) can achieve
high data rates, the spectrum efficiency of the adopted wave-
form was not improved significantly from previous wireless
networks. The high spectrum efficiency and high data rates
observed in 5G Networks come from the use of massive
multiple-input multiple-output (MIMO) and wider bandwidth
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at both 3.5 GHz and mmWave bands. One important scenario,
which is not being widely discussed, is the enhancement
Remote Area Communications (eRAC). This scenario can
provide connectivity in uncovered or underserved areas and it
is likely to exploit UHF bands for long-range coverage. Large
bandwidth and massive MIMO, that are the main key feature
for the high throughput in 5G networks, cannot be used in this
frequency band.

Several researches has pointed that 6G networks will de-
mand a waveform with higher spectrum efficiency and more
flexibility than conventional orthogonal approaches can deliver
[4]. For future evolution of beyond 5G networks, a more
flexible waveform that does not rely on the orthogonality
principle would provide an extra degree of freedom for the
physical layer (PHY) layer. Among the possible waveforms,
generalized frequency division multiplexing (GFDM) [5] has
received some attention because it covers OFDM and single-
carrier frequency domain equalization (SC-FDE) as corner
cases, while achieving good performance in terms of out-of-
band emissions (OOBE) and bit error rate (BER) without sig-
nificant complexity increment [6]. In this scheme, a data block
composed of N complex Quadrature Amplitude Modulation
(QAM) symbols is divided into K subcarriers carrying M
subsymbols each. GFDM uses circular filtering per subcarrier,
meaning that the waveform block is contained within N
samples. A single prototype filter is circularly shifted in time
and frequency to provide all impulse responses necessary to
carry the N data symbols. Slight modifications in the definition
of time-frequency grid enable GFDM to employ faster than
Nyquist (FTN) signaling principles, improving system spectral
efficiency without introducing performance loss in terms of
BER.

FTN signaling, investigated by J. E. Mazo [7], allows pulses
transmission beyond the Nyquist limit, without suffering BER
performance loss due to the higher intersymbol interference
(ISI). According to [7], the transmitted data symbols carried
by the prototype pulse shape can be packed 25% tighter in
time-domain without suffering a decrease in the minimum
Euclidean distance among the transmitted sequences. This
value is known as the Mazo limit [8]. Above this limit, the
ISI becomes very high and the minimum Euclidean distance
among the data symbol is compromised.

The main goal of this paper is to modify the GFDM
structure in order to allow it to exploit the FTN signaling, sig-
nificantly increasing its spectrum efficiency. Usually, FTN is
combined with orthogonal waveforms. The approach presented
in this papers differs from the state of the art by applying
compression to a non-orthogonal waveform, adding flexibility,
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better use of cyclic prefix (CP), and improving the frequency
localization of FTN signaling. These features are important for
future wireless communication systems since new approaches
for exploiting the spectrum and new communication strategies
will become necessary to address future challenging require-
ments.

If the Mazo’s limit is respected, non-linear receivers can
be used to recover the data without BER performance loss.
For proof-of-concept proposes, a maximum likelihood (ML)
receiver will be used in this paper, but more practical receivers
can be developed in the future by the research community.
This paper also considers the integration of the a forward
error control (FEC) based on Polar code, showing that the
proposed scheme can be easily integrated with modern error
control techniques. The polar code was recently presented by
Arikan [9] [10] as an efficient channel code that can achieve
the channel capacity for discrete and continuous memoryless
channels. Polar code can have a systematic structure, low com-
plexity and high flexibility coding and decoding algorithms.
Due to its attractive properties, the Polar code was chosen
to protect the information transmitted on the control channel
in 5G networks [11]. For these reasons, this coding scheme
was selected to be integrated with the FTN-GFDM waveform
proposed for performance analysis purposes. Both uncoded
and coded BER performance will be analysed in this paper.

The remainder of this paper is organized as follows. Section
II introduces the FTN signaling principles, while Section III
presents a background on FTN integration with orthogonal
waveforms. Section IV presents the principles of the GFDM
waveform and, in Section V, GFDM is modified to exploit
FTN principles both in time and frequency domains, which
is the main contribution of this paper. In Section VI, the
BER performance for uncoded and Polar coded FTN-GFDM is
evaluated by simulations and compared with BER performance
of orthogonal systems. Finally, Section VII brings the main
conclusions of this paper.

II. FASTER THAN NYQUIST

FTN signaling is a promising technique that can improve
the spectral efficiency of future mobile networks through time
pulse acceleration, i.e., replacing the symbol period T by T ′ <
T [7], where T is the symbol period. The complex QAM
symbols dm, with duration T , are carried by the unitary energy
transmission pulse g(t) every T ′ and then sent through the
channel, leading to

x(t) =
√
τ

M−1∑

m=0

dmg(t−mT ′), (1)

where M is the total number of symbols transmitted and
T ′ = τT , 0 < τ < 1, is the accelerated symbol period. The
parameter τ , defined as accelerator factor, is responsible for
squeezing the signal in time domain. The normalization factor√
τ is used to keep transmit power constant for fair comparison

with orthogonal schemes.
Considering the additive white Gaussian noise (AWGN)

channel, the received signal is given by

y(t) = x(t) + w(t). (2)

On the receiver side, the signal is processed by an matched
filter (MF) to extract an estimate of the transmitted symbols.
Due to the overlap of the pulses, ISI is inserted into the signal.
The signal r(t) at the output of the MF can be written as

r(t) = y(t) ∗ g∗(−t)

=

(
M−1∑

m=0

dmg(t−mT ′)
)
∗ g∗(−t) + w̄(t), (3)

where g∗(−t) is the MF impulse response and w̄(t) is the
noise at the MF output. The signal at the MF output can be
represented using matrix notation by

r = Gd + w̄, (4)

where w̄ is the filtered noise vector, with zero mean and
covariance matrix σ2G. The elements of the G matrix, given
by

Gm,m′ =

∫ ∞

−∞
g(t−mT ′)g∗(t−m′T ′)dt, (5)

represent the ISI between the mth and m′th symbols. There-
fore, ISI depends on the prototype filter and the acceleration
factor τ [12].

The minimum Euclidean distance among data vectors is a
fundamental parameter for the BER evaluation [7][13]. The
square of Euclidean distance between two symbol vectors, d
and d′, is given by [13][14]

µ2 =
1

2τEb

∫ ∞
m=−∞

∣∣∣∣∣∣
∞∑

m=−∞
xd(t)− xd′ (t)

∣∣∣∣∣∣
2

dt =

1

2τEb

∫ ∞
m=−∞

∣∣∣∣∣∣
∞∑

m=−∞
(dm − d′m)g(t−mT ′)

∣∣∣∣∣∣
2

dt =

∫ ∞
m=−∞

∣∣∣∣∣∣
∞∑

m=−∞
emg(t−mT ′)

∣∣∣∣∣∣
2

dt =

∫ ∞
m=−∞

Re2


∞∑

m=−∞
emg(t−mT ′)

+

Im2


∞∑

m=−∞
emg(t−mT ′)


 dt =

∫ ∞
m=−∞

 ∞∑
m=−∞

g(t−mτT ′) Re {em}

2

+

 ∞∑
m=−∞

g(t−mT ′) Im {em}

2 dt =

∫ ∞
m=−∞

 ∞∑
m=−∞

∞∑
n=−∞

Re {em}Re {en} g(t−mT ′)g(t− nT ′) +

Im {em} Im {en} g(t−mT ′)g(t− nT ′)
]
dt =

∞∑
m=−∞

∞∑
n=−∞

[Re {em}Re {en}+ Im {em} Im {en}]Gm,n, (6)

where µ is the Euclidean distance between the sequences d
and d′, em = (dm − d′m)/

√
2τEb is the normalized differ-

ence between sequences. From (6), the minimum Euclidean
distance can be numerically estimated by

µmin = min
e6=0

√
µ2. (7)
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Assuming a binary modulation with unitary average energy
and orthonormal pulses, the square of the minimum Euclidean
distance is equal to 2, regardless of the pulse shape [15]. Mazo
showed that for values of τ greater than 0.802, the minimum
Euclidean distance remains 2 for binary signaling with sinc
pulses, allowing a data rate increase of approximately 25%
over conventional orthogonal systems [7][8]. The value of τ
for which the minimum Euclidean distance does not fall below
the value obtained for orthogonal signaling is known as the
Mazo limit [7]. Years later, this concept extended to non-binary
signaling [16], other transmission pulses [14], and multicarrier
systems, where it became known as the two-dimensional Mazo
limit [8].

The advantage of the FTN system is that, for a given τ
greater than the Mazo’s limit, the minimum Euclidean distance
is not affected and, therefore, there is no performance loss
in terms of BER if the ISI can be properly removed in the
receiver side. Pulse compression increases the complexity of
the receiver because transmitted symbols can no longer be
detected individually but need to be detected as a sequence.
Linear detectors, such as zero forcing (ZF) and minimum mean
square error (MMSE), have poor performance because they
are not able to mitigate ISI. To achieve optimal performance,
it is necessary to employ nonlinear detectors, such as the
maximum likelihood sequence estimation (MLSE) [17]. The
MLSE detector finds a vector d̂ that minimizes the Euclidean
norm below

arg min
d̂∈ξM

∥∥∥r−Gd̂
∥∥∥

2

, (8)

where ‖.‖ is the Euclidean norm and ξM is the set with all pos-
sible JM sequences of data symbols, where J represents the
modulation cardinality. The MLSE detector searches among
all sequences for the sequence with the shortest Euclidean
distance from the received vector r. Although the complexity
of this scheme is prohibitive for practical applications when
J and M are large, the MLSE can be used to show that FTN
can achieve the same BER performance than conventional
orthogonal schemes.

III. SPECTRALLY EFFICIENT FREQUENCY DIVISION
MULTIPLEXING

In [8], FTN signaling has also been studied in the frequency
domain. The main idea of the spectrally efficient frequency
division multiplexing (SEFDM) modulation is to reduce the
spacing between the subcarriers, below the orthogonality limit,
to increase the spectral efficiency [16]. However, this increase
comes at the cost of increasing the detection complexity and
performance penalties, due to the intercarrier interference (ICI)
inserted in the signal. The time domain SEFDM signal is given
by

x(t) =

√
α

T

K−1∑

k=0

dk exp

(
j2πkαt

T

)
, (9)

where K is the number of subcarriers, T is the period of
the SEFDM symbol, dk is the QAM symbol for the kth
subcarrier, and α, restricted to 0 < α ≤ 1, represents the

frequency compression factor. Thus, the separation between
the subcarriers is given by

∆f =
α

T
. (10)

For α = 1, the SEFDM corresponds to OFDM.
Due to overlapping of the subcarriers, the total bandwidth

occupied by the SEFDM signal is reduced by a factor of
( 1
α − 1) compared to OFDM [18]. Assuming AWGN channel,

the received signal is given by

y(t) = x(t) + w(t). (11)

The received signal given by (11) is applied to a bank of
MF, each one centralized for a given subcarrier. Assuming
perfect synchronism, the signal sampled at the MF output is
given by

r = Gd + w̄, (12)

where w̄ is the noise vector at the MF bank output, and
G = CHC is the correlation matrix representing the ICI of
the SEFDM system, with C being a modulation matrix given
by

Cn,k =
1√
Q

exp

[
j2πkαn

Q

]
, (13)

where Q = φK is the number of samples in time domain,
φ ≥ 1 is the oversampling factor and n = 0.1, . . . , Q − 1.
Due to loss of orthogonality between subcarriers, samples at
the MF output will contain ICI. Therefore, low complexity
linear receivers, such as ZF and MMSE, also have poor BER
performance in this situation [19][20]. On the other hand,
the MLSE detector can be used to extract symbols from
the received sequence and achieve optimal performance. The
MLSE detector searches all possible symbol combinations
and decides on the combination with the shortest Euclidean
distance from the vector r, thus

arg min
d̂∈ξK

∥∥∥r−Gd̂
∥∥∥

2

, (14)

where ξK is the set of all JK data symbol combinations for the
SEFDM signal. As a result, complexity grows exponentially
with the K and J increase, which means that the MLSE
implementation is no feasible in practice, but it can be use
as proof-of-concept.

IV. GENERALIZED FREQUENCY DIVISION MULTIPLEXING

In GFDM, each block transmits N = KM data symbols
divided into K subcarriers, each one carrying M subsym-
bols [5] [21]. GFDM uses circular convolution between the
data symbols and the transmit pulse of each subcarrier, so the
waveform has N samples to represent the KM data symbols.
The prototype filter for N samples length is rotated K samples
for each successive subsymbol. Thus, each data symbol dk,m
is carried by a pulse given by

gk,m[n] = g[〈n−mK〉N ] exp

(
j2π

k

K
n

)
, (15)

where g[n] is the prototype filter impulse response. In this
case, gk,m[n] represents the prototype filter shifted to the kth
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subcarrier and mth subsymbol. All filters impulse responses
can be organized into a transmission matrix A, defined by

A =
[

g0,0 g1,0 · · · gK−1,0 g0,1 · · · gK−1,M−1

]
,

(16)
where [gk,m]n = gk,m[n].

The transmit signal x can be written as

x = Ad, (17)

where d = [d0,0 d1,0 · · · dK−1,0 d0,1 · · · dK−1,M−1]T is
the vector of data symbols. A cyclic prefix (CP) is inserted
at the beginning of each GFDM block, mitigating interblock
interference caused by multipath channels. After removing the
CP, the signal at the receiver is given by

y = Hx + w, (18)

where w represents the AWGN vector with zero mean and
variance σ2 and H is the channel circulant matrix based on
the channel impulse response, h. The matrix H represents
the circular convolution matrix between the vector x and the
impulse response h.

Assuming that the receiver can estimate the channel impulse
response, an linear detector can be used to recover the data
symbols. Three MF, ZF and MMSE receive matrices [5][21]
are defined as

B =





AHH−1 for MF
A−1H−1 for ZF(
σ2I + AHHHHA

)−1
AHHH for MMSE,

(19)

where [·]H is the Hermitian matrix, Rw = σ2

E IN is the noise
covariance matrix weighted by the signal energy and IN is
the N ×N identity matrix. The estimated symbol vector d̂ is
defined by

d̂ = By. (20)

The MF demodulator is the simplest detector. It maximizes
the signal-to-noise ratio (SNR), but does not remove the
interference completely, which results in BER performance
losses for high SNR [22]. The applicability of the ZF de-
modulator depends on the properties of A, which must be
well conditioned and invertable. The ZF eliminates the self-
interference but can cause noise enhancement, affecting the
BER performance at low SNR values. The MMSE demodula-
tor mitigates the problem of low SNR noise enhancement and
minimizes the impact of ISI and ICI on the high SNR and,
therefore, MMSE can be considered a compromise between
MF and ZF.

When MF is employed, G = AHA can be used to evaluate
the residual ISI and ICI on the received GFDM signal. The
elements of G represent the correlation between gk,m and
gk′,m′ , as shown in Fig. 1. The main diagonal of G represents
the gains resulting from the modulation and demodulation
processes at the desired data symbols position, and the other
values represent interference. The ISI and ICI depend on the
chosen prototype filter, hence, it is necessary to consider the
compromise relationship between ISI and ICI when selecting
it.
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Fig. 1: Example of interference matrix for generic values of
M and K.

Fig. 2 shows the simplified block diagram of a GFDM
system [5]. The input data symbols are modulated by A in
the GFDM modulator block. The samples at the output of
this block represent the transmitted GFDM signal, given by
(17). Then, the CP is added and the signal is applied to the
channel. In the channel, the signal suffers distortions caused
by multipaths and AWGN noise, as shown in (18). After the
channel, the CP is removed and the signal goes through the
GFDM demodulator, which can use three distinct approaches:
MF, ZF, and MMSE, all shown in (19). At the output of
the demodulator, symbols can be detected or delivered to the
channel decoder [11].

V. FREQUENCY FTN-GFDM

The principles of FTN signaling can be integrated into
the GFDM scheme by reformulating GFDM [5]. In order to
achieve this goal, (15) must be rewritten as

gk,m[n] = g[〈n−mK〉N ] exp

(
j2π

kM

N
n

)
. (21)

Whereas the prototype filter has N̄ samples, divided into
P̄ periods with S̄ samples each, and that the subsymbols
are separated by K̄ samples in time and the subcarriers are
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GFDM
Modulator Add CP

Channel
h,w Remove CP GFDM

Demodulator
d x y d̂

Fig. 2: GFDM simplified block diagram.

separated by M̄ samples in frequency, the GFDM transmit
vector can be written as

x[n] =

K−1∑

k=0

M−1∑

m=0

dk,mg[
〈
n−mK̄

〉
N̄

] exp

(
j2π

kM̄

N̄
n

)
, (22)

with n = 0, · · · , N̄ − 1. For the GFDM signal to be squeezed
in the frequency domain, it is necessary to violate the Nyquist
criterion, i.e., K̄ = S̄ and M̄ < P̄ . The squeezing factor in
frequency domain is defined as

vf =
M̄

P̄
. (23)

Consequently, the new values of K and M are evaluated as

K =
P̄ S̄

M̄
=

S̄

vf
=

⌊
N̄

M̄

⌋
, (24)

and

M =
P̄ S̄

K̄
= P̄ . (25)

Replacing the new values of K and M and vf in (22) leads
to

x[n] =
√
vf

K−1∑
k=0

M−1∑
m=0

dk,mg[
〈
n−mS̄

〉
N̄

] exp

(
j2π

kvf
S̄
n

)
,

(26)
where the constant √vf keeps the transmission power constant
and n = 0, · · · , N̄ − 1.

Due to the high spectral efficiency of the FTN-GFDM
signal, the density of data symbols per sample of the block, N

N̄
,

becomes greater than 1. If vf = 1 the signal corresponds to the
conventional GFDM, and the Nyquist criterion is respected.

It is important to note that if the value of the argument in
(24) is not an integer, there will be a loss in the density of data
symbols per sample of the block due to the floor operator. For
the correct normalization of the signal’s power, the value of
the power normalization factor must be corrected, resulting in

v̄f =
S̄

K
. (27)

Finally, the FTN-GFDM signal is defined as

x̄[n] =
√
v̄f

K−1∑
k=0

M−1∑
m=0

dk,mg[
〈
n−mS̄

〉
N̄

] exp

(
j2π

kvf
S̄
n

)
,

(28)
with n = 0, · · · , N̄ − 1. Fig. 3 shows the block diagram of
the FTN-GFDM transmitter.

Spectral efficiency is an important parameter in evaluating
the performance of a system. Considering the FTN-GFDM
with J-QAM constellation, the data rate is given by

Rb =
RcMK

(P̄ S̄ +NCP)Ts
, (29)

d[n]

S/P

g[〈n〉N̄ ]

g[〈n〉N̄ ]

g[
〈
n− S̄

〉
N̄

]

g[
〈
n− S̄

〉
N̄

]

g[
〈
n− (M − 1)S̄

〉
N̄

]

g[
〈
n− (M − 1)S̄

〉
N̄

]

exp
(
j2π 0

S̄
n
)

exp
(
j2π

(K−1)vf

S̄
n
)

exp
(
j2π 0

S̄
n
)

exp
(
j2π

(K−1)vf

S̄
n
)

exp
(
j2π 0

S̄
n
)

exp
(
j2π

(K−1)vf

S̄
n
)

∑ x[n]

d0,0

d(K−1),0

d0,1

d(K−1),1

d0,(M−1)

d(K−1),(M−1)

···
···

···

···
···

···

Subsymbol 0

Subsymbol 1

Subsymbol (M − 1)

CP

1

Fig. 3: FTN-GFDM transmission block diagram.

where Rc is the FEC coding rate, NCP is the number of
samples used as CP and Ts is the sampling period in seconds.
The occupied bandwidth is given by

Bw =
1

log2 (J)Ts
. (30)

Thus, the spectral efficiency is defined as

η =
RcMK log2 (J)

P̄ S̄ +NCP
. (31)

Considering the FTN-GFDM signal at (28), the received
vector is given by

y = Hx̄ + w. (32)

Fig. 4 illustrates the block diagram of the FTN-GFDM com-
munication chain. Thus, the FTN-GFDM modulator shown in
Fig. 3 is integrated with channel, demodulator and detector
blocks to complete the FTN-GFDM system.

The reception process consists of two blocks: demodulator,
which also performs equalization, and detector. First, equal-
ization, assuming that the receiver can estimate the channel
impulse response, is combined with MF to decouple the
subcarriers, leading to

r = AHH−1HAd + AHH−1w = Gd + w̄, (33)

where G = AHA is the interference matrix that represents
ICI and ISI in the FTN-GFDM signal. The filtered noise
vector w̄ = AHH−1w has correlated samples due to the non-
orthogonality of the MF matrix. MF maximizes the SNR so
that the detector can retrieve the transmitted symbols with an
acceptable BER.

An important issue in the reception process is the con-
ditioning of the G matrix, since the performance of the
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FTN-GFDM
Modulator Channel FTN-GFDM

Demodulator MLSE Detector
d x̄ y r d̂

Fig. 4: Block diagram of the FTN-GFDM transceiver.

system is affected by ill conditioning. A matrix is said to
be ill conditioned when its rows or columns are correlated
and, consequently, its determinant is close to zero. Thus, the
determinant of a matrix can be an indicator of the conditioning
of a matrix.

Due to ISI and ICI present in the FTN-GFDM system, the
G matrix is said to be ill correlated, since the magnitude
of the elements that represent the cross-correlation between
the subcarriers/subsymbols is different from zero. Thus, the
conditioning of the FTN-GFDM system deteriorates with the
reduction of the frequency squeezing factor, increment of the
number of subcarriers and subsymbols in the system, or choice
of the prototype filter used in the A matrix. Ill conditioning
of a matrix leads to the sensitivity of the system to small
disturbances and unstable matrix inversion, which affects the
applicability of linear detectors such as ZF in FTN-GFDM
systems.

Due to the G conditioning characteristics, the MLSE detec-
tor is used to recover the data symbols minimizing the BER.
The computational complexity of MLSE in terms of complex
multiplications is O(N2JN ). Therefore, the complexity in-
creases significantly with N and the QAM constellation size,
hindering its use in practical cases. However, this receiver will
be employed to evaluate the best BER performance that can
be achieved by the proposed system. This result can be seen as
a benchmark for sub-optimal receivers with lower complexity.
Hence, the results achieved in the next section is a proof-of-
concept, showing that the FTN-GFDM can increase the data
rate without introducing BER performance degradation.

VI. BER PERFORMANCE EVALUATION

The uncoded and coded BER performance of the proposed
FTN-GFDM system is evaluated by numerical simulations.
Three channel models were considered: AWGN, frequency-
selective channel (FSC) and time-variant channel (TVC) with
a single Rayleigh tap that changes at every FTN-GFDM
block. Table I presents the channel parameters, while Table
III presents the FTN-GFDM parameters. Simulations assume
that the channel is known on the receiver side and that the
synchronization is perfect. Table II presents the software and
hardware specifications of the device used in the simulations.

TABLE I: Channel models

Channel Impulse response

AWGN hAWGN = 1

Invariant FSC hFSC = [1 0.4 0.2 0.08]

Time-variant channel hTVC = h, h ∼ CN (0, 1)

The simulated uncoded BER is compared with the theo-
retical curves. The analytical BER expressions considering

TABLE II: Software and hardware specifications

Specification

Operating system Windows 10 Pro

CPU Intel Core i5 2.20 GHz

Memory 8 GB RAM

Simulation software MATLAB R2016a

binary phase shift keying (BPSK) modulation under AWGN,
frequency selective and time variant channels are, respectively,
given by [5]

PAWGN(e) =
1

2
erfc

(√
Eb
N0

)
, (34)

PFSC(e) =
1

2K

K−1∑

k=0

erfc



√
|H[k]|2Eb

N0


 , (35)

PTVC(e) =
1

2


1−
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Eb

N0

Eb

N0
+ 1


 , (36)

where H is the channel frequency response, Eb is the average
energy per bit and N0 is the noise power density.

Two prototype filters are considered: i) Dirichlet; and ii)
rect. Table III shows the FTN-GFDM parameters used in the
simulations. It is important to note that for other configu-
rations with higher K and M values, the MLSE complexity
becomes prohibitive. Therefore, the computational simulations
in this paper will be restricted to the values presented in Table
III.

TABLE III: FTN-GFDM system for the simulations.

Parameter Description

Mapping BPSK

Number of periods (P̄ ) 3

Number of samples per period (S̄) 5

Subcarrier distance factor (vf ) 0.8

Number of subsymbols (M ) 3

Number of subcarriers (K) 6

FEC Polar coding

FEC codeword legth 2048 with 14 bits punctured

FEC coding rate 1
2

FEC decoder Successive Interference Cancellation

The chosen parameters lead to S̄/vf = 5/0.8 = 6.25, which
is not an integer value. Due to the rounding, there is a loss in
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data density. Therefore, the transmission signal normalization
is based on v̄f = 5/6 = 0.833. Consequently, the data symbol
density per sample of the FTN-GFDM block is 1.2.

The spectral efficiency for the proposed FTN-GFDM system
can be evaluated from (31), resulting in η = 1.2 bits/s/Hz
for the uncoded case and η = 0.6 bits/s/Hz for the coded
case. This means that it is possible to increase the spectral
efficiency by 20% compared with the Nyquist signaling,
without increasing the modulation order, energy, or weakening
the codeword.

A reference BER is established for each channel to measure
the performance gain provided by the Polar code: 10−6 for
AWGN, 10−5 for FSC e 3× 10−3 for TVC.
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Fig. 5: BER for FTN-GFDM BPSK with Dirichlet pulse.
Assuming uncoded and coded cases with MLSE detection.

Fig. 5 considers the FTN-GFDM with Dirichlet prototype
filter. System performance is evaluated in terms of BER for
the coded and uncoded signal. The FTN-GFDM uncoded BER
performance matches the theoretical curves, showing that the
proposed system can improve the spectral efficiency without
performance loss over all analyzed channels. As expected,
Polar code improved the BER performance, showing that
the MLSE can be seamlessly integrated with the Polar code.
Considering the reference BER values, performance gains are
approximately 1.5 dB for the AWGN channel, 2.5 dB for
FSC, and 2.3 dB for TVC.

Fig. 6 shows the coded and uncoded BER performance
considering the rect prototype filter. Once again, the simulation
results for uncoded BER match the theoretical curves, showing
that FTN-GFDM can increase the data rate and improve the
spectrum efficiency without any BER penalty for different
pulse-shapes. Also, the polar code provides a considerable
improvement in the BER performance. The gain was approx-
imately 3.5 dB for the AWGN channel, 4 dB for the FSC
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Fig. 6: BER for FTN-GFDM BPSK with rect pulse. Assuming
uncoded and coded cases with MLSE detection.

and 3.5 dB for the TVC. This shows that the Polar code
performance also depends on the correlations introduced by
the prototype pulse. The rect filter causes less ICI to the
system, since the amount of energy that flows to neighboring
symbols, evaluated by

Eint =

N−1∑

m=0

N−1∑

n=0
n 6=m

|Gm,n|
v̄fN

, (37)

is smaller with the rect filter. To ensure that the comparison
is made with equivalent levels of interference, the energy is
normalized so that the sum of the main diagonal of G is equal
to 1. Thus, the energy spent with ISI and ICI is Eint = 0.9843
for rect prototype filter and Eint = 1.5374 for Dirichlet,
explaining the difference in coded BER performance.

Figs. 5 and 6 also bring the BER performance for con-
ventional GFDM using the same parameters employed for
the FTN-GFDM, showing that the later does not introduces
performance loss when compared with the former. Therefore,
the simulated GFDM system has M = 3 and K = 5, and the
prototype filters are Dirichlet and rect. These parameters were
obtained by making vf = 1, leading to M = P .

Thus, the proposed FTN-GFDM scheme can be used in
scenarios where high robustness and efficiency are required
and high number of transmit and receive antennas cannot
be employed. The MLSE complexity is prohibitive in most
practical situations, but it shows that the system proposed
in this paper achieves higher spectrum efficiency without
introducing BER performance losses.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 356

VII. CONCLUSION

The FTN-GFDM system proposed in this paper combines
the main advantages of FTN with GFDM. This solution is
interesting in scenarios where high spectrum efficiency are
necessary, but the number of transmit and receive antennas
cannot be high, such as eRAC operating in VHF and UHF
bands in remote areas. The FTN-GFDM BER performance
matches the performance of orthogonal signaling. It has also
been shown that Polar code can be seamlessly integrated
with the FTN-GFDM system, further improving the overall
performance. The MLSE detector used in this paper has very
high complexity, but it shows that that the proposed scheme
does not introduces BER performance losses. The MLSE
performance also can be used as a benchmark for sub-optimal
detector, with lower complexity and more practical appeal.
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