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Abstract—Intrusion Detection Systems (IDS) figure as one of
the leading solutions adopted in the network security area by
preventing intrusions and ensuring data and services security.
A current approach to detect network intrusions is IDS devel-
opment by employing Machine Learning (ML) techniques. Due
to a variety of strategies used, the IDS project needs to be
assertive and has an efficient processing time. Undersampling
techniques allow ML classifiers to be evaluated from smaller
dataset subsets in a representative manner, aiming for high
assertive metrics. There are several literature solutions for
IDS conception, but there is a lack of some criteria such as
replicability. In this work, we evaluated three undersampling
methodologies: Random, Cluster-centroids, and NearMiss1 in
two novel unbalanced datasets (CICIDS2017 and CICIDS2018).
We evaluated Nearest Centroid, Naive Bayes, Random Forest,
K-Nearest Neighbor, and Support Vector Machines classifiers
using 5x2-Fold cross-validation and Wilcoxon signed-rank sta-
tistical test. Our results indicated that distance-based classifiers
performed well when applied to the undersampled datasets by
the Cluster centroids technique. Moreover, the adoption of the
undersampling schemas allows the evaluation of cost-processing
classifiers into a competitive time.

Index Terms—Intrusion Detection Systems, Undersampling,
CICIDS2017, CICIDS2018.

I. INTRODUCTION

INTRUSION Detection Systems (IDS) are responsible for
detecting network anomalies that firewalls cannot handle,

such as unauthorized access and malicious traffic. IDS moni-
tors traffic in real-time for anomalies and, if so, alerts network
administrators to take appropriate counter-measures. These
actions can be, to name a few: (i) blocking specific ports or
IPs, (ii) rejecting services to a node that is sending malicious
requests, and (iii) flooding services commonly used for attacks
[1].

Therefore, networks that do not have any traffic analysis
mechanism can not ensure security to them who use it because
they have no guarantee that they can operate efficiently.
Also, unmonitored networks are subject to functionality loss
or even to be successfully attacked by a malicious network
agent [1]. These mechanisms aim to detect malicious activity
through classifiers, distinguishing traffic in two ways: binary
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or multi-class classification. In the former, the IDS classifies
the network traffic as normal or abnormal. On the later, with
multiple classes, the system detects the type of attack in
question.

Machine learning techniques allow a computer to learn
about specific rules and infer unseen data in the learning phase.
Thus, machine learning-based IDS provide a learning-based
methodology for discovering attacks according to the behavior
trained in the system [2].

IDS designers deal with several challenges in adopting
machine-based approaches to IDS. For example, its perfor-
mance depends on the quality, size, and generalization of
knowledge databases used for training and testing. Another
issue is the classifier’s choice for the network traffic standards
recognition. For this, the trade-off between the intrinsic clas-
sifier’ computational cost, the amount of available data, and
the desired model’s generalization capacity must be taken into
account.

The designers have additional issues related to data
unbalance-factor. Unbalancing in datasets is a condition in
which the proportion between each class’s samples, e.g.,
normal and abnormal, is unequally distributed. This condition
influences the classifier’s behavior due to a disproportional
number between one or more categories. Therefore, undersam-
pling techniques have been used to narrow this gap in the class-
imbalance learning area [3]. With undersampling techniques,
one can only take part of the data in the evaluation process
while maintaining the model representativeness and general-
ization. In this way, it is possible to consider characteristics
such as the number of records in the databases, time needed
for training/testing the classifiers, and the computational cost
used in its evaluations [4].

Several literature works adopt different approaches to eval-
uating classifiers in the IDS project. Some recent works have
been published using obsolete datasets NSL KDD, DARPA,
and CAIDA [5]–[11]. However, such bases have no recent
attacks, such as SQL Injection and Heartbleed, which are
common in modern scenarios.

Silva Neto et al. [12] evaluated the performance of eight
machine learning-based intrusion detection algorithms in CI-
CIDS2017 database [13]. The authors applied two sampling
techniques to represent two scenarios and Mean Decrease Im-
purity to select the most relevant features. However, by using
the whole database in their evaluation, it was impossible to
evaluate computationally complex algorithms such as Support
Vector Machine (SVM) in a time-efficient way.
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The work in [14] used Principal Component Analysis (PCA)
for feature reduction to evaluate computationally complex
algorithms.

In this same direction, Liu et al. [15] used 10% of KDD99
database, maintaining different proportions between classes.

Moreover, D’hooge et al. [16] conducted a recent study
on the NSL-KDD, CICIDS2017, and CICIDS2018 databases,
but the undersampling approach used, as well as the flow
of experiments performed, need more details for replication
purposes. Thus, none of these works systematically uses
undersampling, with different techniques to evaluate subsets’
generalization.

Therefore, this work aims to evaluate IDS machine learning-
based on subsets generated from different undersampling
techniques found in the literature. Afterward, we compare the
performance of the classifiers for different scenarios using
Wilcoxon’s statistical test. We also discuss the trade-off be-
tween assertiveness, classifiers’ computational cost, and time
spent to train/test the models for intrusion detection.

Our main contributions in this work are:
• We present an exploratory analysis and performance

evaluation of two up-to-dated IDS datasets: CICIDS2017
and CICIDS2018;

• We present sub-bases from three different undersam-
pling techniques applied in CICIDS2017 and CI-
CIDS2018 datasets, namely, Random, Cluster Centroids
and NearMiss; and

• We compare the performance of five machine learning
approaches, namely, Nearest Centroid, Naive Bayes, Ran-
dom Forest, K-Nearest Neighbors, and Support Vector
Machines, between the all-data schemas and each of the
undersampled datasets.

This work is organized as follows: Section II presents the
related works. We detail the experiments’ methodology in
Section III. In Section IV, we present the results and discus-
sions of experiments. Finally, in Section V, we synthesize the
conclusions, contributions, and future work.

II. RELATED WORKS

In the IDS machine learning-based design, the classification
algorithm decision-making is a crucial activity that involves a
specific set of criteria. In this process, systems must handle
data efficiently because, in an ideal scenario, training time,
testing, and the computational load of processing for intrusion
detection must be minimized. Different approaches have been
used to evaluate the trade-off between IDS processing time and
assertiveness in this context. There are works in the literature
that addresses the design of machine learning IDS, in which
techniques are adopted to optimize the selection process of
classification algorithms. We describe some of these works
below.

Another approach using 20% of the NSL-KDD can be found
in work done by Aljawarneh et al. [17]. The authors use binary
classification in the database. Thus, the class labels referring to
attacks were unified, representing an abnormal traffic pattern.
Also, a voter-based detection model among seven classical
algorithms was proposed, and the use of the Information Gain

algorithm to reduce the number of characteristics from 41 to 8.
The results obtained by the authors indicate that the proposed
model has high accuracy rates, between 90% and 99%, and low
false-positive rates, between 0.003% and 0.102%. However,
in real scenarios where there are processing restrictions, this
model is computationally complex, requiring seven different
algorithms to perform the voting.

The work proposed by Bhaskar et al. [18] proposes a feature
selection technique to evaluate in the NSL-KDD database,
seeking to minimize false positive and negative rates, as
well as maximize the detection rate. However, no evaluation
methodology has been applied, either by evaluation algorithms
or metrics. Also, the experiments were performed using an ob-
solete database and did not evaluate IDS in their methodology.

Gao et al. [19] used the NSL-KDD database1 as a research
object to propose a combined learning algorithm, similar to
the work discussed above. They evaluated five classifiers for
the composition of the voting system. The experiments were
performed using 2-Folds in cross-validation, obtaining results
between 73% and 79% for accuracy and sensitivity, 80%, and
84% specificity, and 69% and 80% F1. Moreover, to deal
with database unbalance, the random undersampling technique
was used. However, the number of randomly undersampled
databases was not explicited. It may lead to the belief that the
data are unrepresented because of the randomness of only one
sub-base generated.

In this same direction, Bedi et al. [11] used the NSL-KDD
database to evaluate Siamese Neural Network to deal with the
imbalance problem in intrusion datasets. The authors do not
compare different strategies for undersampling in the design
of their experiment. Moreover, the authors’ solution covers
only some attacks, namely, Remote to Local (R2L) and User
to Root (U2R).

A feature selection algorithm based on two objective func-
tions called MOEDAFS was proposed by Maza et al. [20].
The experiments were conducted by creating different sub-
databases with a number of characteristics between 5 and 22,
using the NSL-KDD as the study’s object and seven machine
learning algorithms. The results presented in terms of accuracy
vary between 81% and 98%.

Liu et al. [15] performed a 10% undersampling in the
KDD99 database in the evaluation of algorithms for smart
home IDS based on the Convolutional Neural Network (CNN)
classifier and Principal Component Analysis (PCA) for feature
selection. However, the number of randomly undersampled
databases was not made explicit. It may lead to the belief that
the data are not well represented because of the randomness
of only one sub-base generated.

Ullah et al. [21] presented a framework for IDS with a
focus on Internet of Things (IoT) scenarios applied to Smart-
Grid, in which there are resource constraints such as power
and processing capacity. The authors used an undersampling
approach to evaluate machine learning algorithms to detect
attacks in this environment. Thus, 20% of ISCX2012 [22]
was used for training, and 80% for testing, varying different
values of K-Fold cross-validation. Note that the approach

1https://www.unb.ca/cic/datasets/nsl.html
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is unrecommended in evaluating algorithms that have high
computational cost in their testing phase.

Sharafaldin et al. [13] applied a feature selection technique
called Mean Decrease Impurity (MDI) in the CICIDS2017
dataset for evaluation of seven machine learning algorithms.
This technique allowed selecting the best features for each
of the 15 traffic types, reducing the amount of data used for
training and testing the classifiers in the algorithm selection
process. The experiments’ results were from 77% to 98% for
accuracy, 4% and 98% for recall, and 4% and 94% for F1.
However, only selecting the best characteristics still resulted in
a significant amount of information and high time for training
and testing of the classifiers.

Silva Neto et al. [12] evaluated the performance of eight
machine learning-based intrusion detection algorithms in the
CICIDS2017 database [13], using different sampling tech-
niques. Besides, the MDI technique was used to reduce the
number of database characteristics, achieving high detection
rates in terms of accuracy, recall, F1, and processing time.
The experiments’ results were from 75% to 99% for precision,
55% and 98% for recall, and 63% and 99% for F1. However,
because the whole database was employed in its evaluation, it
was hard to evaluate algorithms with high computational load,
such as Support Vector Machines (SVM).

The work presented by D’hooge et al. [16] evaluates 12 ma-
chine learning algorithms in four databases comprehensively:
NSL-KDD, ISCX2012, CICIDS2017, and CICIDS2018. The
experimental design at work consisted of vertical (samples)
and horizontal (feature) reduction, obtaining expressive results
(up to 99% accuracy) using 1% of data for training and 99%
for testing. However, the work is difficult to replicate for some
reasons:
• undersampling technique used was not made explicit, it

is unknown which samples were selected by the authors;
• characteristics were reduced based on empirical methods,

i.e., the characteristics removed were justified in work.
They contaminated the results or were redundant or
even problematic; it was not specified details about this
”contamination”;

• codes of the experiments and the CSV files of the
databases used were made available for consultation.
However, it is noted that: the database CICIDS2018 is
not complete, and techniques not explained in the article,
such as Principal Component Analysis (PCA), are used.

A brief comparison between the related papers and this work
is found in Table I. We highlight that none of these works
presented a systematic and replicable comparison among un-
dersampling techniques in the IDS project design.

III. METHODOLOGY

Fig. 1 shows a high-level overview of the methodology
employed. The pre-processing phase followed the methodol-
ogy proposed by Silva Neto et al. [12], which resulted in the
concatenation of all dataset files, followed by the removal of
records containing invalid values, as well as the removal of
characteristics with mean and zero standard deviation for all
samples. In the undersampling phase, the main objective is

to reduce unbalance. To achieve this, we consider that given
a number n of desired sub-dataset samples, a pre-selection
is needed to preserve the minority classes. Tables II and III
present the comparison between original and undersampled
datasets in terms of the number of samples, class percentage,
and unbalanced Ratio (UR).

We used three undersampling techniques to evaluate the
classifiers: Random, Cluster Centroids, and NearMiss1. More-
over, the choices of techniques were based on the following
reasons:
• The Random undersampling is the standard approach

widely used in the literature.
• The Cluster centroid undersampling uses the concept

of selection of samples based on each class’s centroid,
seeking a grouping among the samples selected

• The NearMiss1 technique uses the concept of borderline
among the classes to select the most representative sam-
ples.

Such techniques are used in the literature in different contexts
such as voice [25], financial [26], among others.

In the random technique, we generated ten Random under-
sampled datasets. Stability is aimed at sample selection, which
explains the random technique context. Therefore, we consider
that performance evaluation is the average of all trained/tested
sub-datasets. We used the centroid analysis in the second
approach for the generation of the other undersampled base.
Thus, each class calculates the centroid to all samples. The
n samples, which have the smallest distances to the centroid,
will be selected. It is worth mentioning that n is the size of
the desired base; in this case, the same size as the previous
base. NearMiss1 selects from the majority class in the third
approach, the instances in which the average distances to the
three closest minority instances are the smallest. Thus the
instances selected by NearMiss-1 are close to some of the
minority class instances [27].

In the scaling-change phase, the technique called Min-
max scaler proposed by [28] is used based on the following
formula: Let X = [X1,X2,...,Xn] be a sample described
b n features, Y = [y1, y2,...,yk] the set of k classes and
Ŷ = [ŷ1,ŷ2,...,ŷn] the set of k classifier predicted classes.
XMinMax = X−Xmin

Xmax−Xmin
, where XMinMax is the vector with

scale between 0 (zero) and 1 (one), X is the original vector,
Xmin and Xmax are the smallest and largest elements of the
vector X , respectively.

After that, the performance evaluation of Naive-Bayes (NB),
KNN, Nearest-Centroid (NC), Random Forests (RF), and
Support Vector Machine (SVM) classifiers is performed. We
choose these classifiers following three criteria: three distance-
based algorithms - NC, linear, while SVM and KNN non-
linear, Naive Bayes, which is probability-based and Random
Forests, which handles well with unbalanced bases, disadvan-
taging more balanced subsamples.

In the classification phase, we train and test each algorithm
10 (ten) times using the cross-validation technique. The data
is separated into two mutually exclusive folds repeating five
times: one for training and one for testing. We adopt this
procedure according to Dietterich et al. [29], which recom-
mends experiments with five repetitions of two folds in cross-
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TABLE I: A summary of related works

Work Dataset Sampling
technique

Undersampling
technique

Evaluated
classifiers

Evaluation
metrics

Statistical
test

[17] NSL-KDD 10-Fold CV 20% NSL-KDD
train portion

J48, Meta Pagging,
RandomTree, REPTree,

AdaBoostM1, DecisionStump and
Naive Bayes

Accuracy, FPR,
FNR,
TP,
TN

None

[18] NSL-KDD None None None None None

[19] NSL-KDD 2-Fold CV Random
Undersampling

DecisionTree, RandomForest,
KNN, LR, SVM, DNN,

AdaBoost

Accuracy, Precision,
Recall and F1 None

[20] NSL-KDD 80/20 Train
Test Split None Naive Bayes, MLP, SVM,

KNN, DecisionTree
Accuracy, Precision,

Recall and F1 None

[11] NSL-KDD 50/50 Train
Test Split None Siamese Neural Network Precision,

Recall None

[15] KDD99 Not clear Not clear (10%) CNN
Accuracy,

MRR
Processing time

None

[21] ISCX2012

80/20,
3-Fold CV,
5-Fold CV,

10-Fold CV,
15-Fold CV,
20-Fold CV

None J48, JRip, Naive Bayes,
SVM, MLP

Precision,
Recall and F1 None

[13] CICIDS2017 Not clear None
KNN, RandomForest,
ID3, AdaBoost, MLP,

Naive-Bayes, QDA

Precision,
Recall, F1 and execution

time
None

[12] CICIDS2017 10-Fold CV,
10-Fold Stratified CV None

Nearest Centroid, NaiveBayes,
AdaBoost, MLP, Decision Tree,

KNN, Random Forest and
QDA

Precision,
Recall, F1 and Test

time
Wilcoxon

[23] CICIDS2017 67/33 Train/Test Split None DNN and SVM Accuracy, Precision,
Recall and F1 None

[24] CICIDS2017 70/30 Train/Test Split None RF, Naive Bayes,
LDA, QDA

False Alarm Rate,
Accuracy, Detection Rate,

Precision, Recall, F1
None

[16]

NSL-KDD,
ISCX2012,

CICIDS2017,
CICIDS2018,

1/99,
10/90,
20/80,
30/70,
40/60,

50/50 Stratified
Train/Test Split

Not clear

DecisionTree, Bagging,
AdaBoost, Gradient

Boosted Trees, Regularized
Gradient Boosting,

RF, ExtraTrees,
KNN, Nearest Centroid,
Linear SVM, RBF SVM,

Logistic Regression

Accuracy, Precision,
Recall, F1 and ROC None

This work CICIDS2017,
CICIDS2018 5x 2CV

Random,
Cluster Centroids,

Near Miss

Nearest Centroid,
Naive Bayes, Random Forest,

KNN, SVM

Precision,
Recall, F1 and processing

time
Wilcoxon

CV - Cross Validation.
NC - Nearest Centroid, NB - Naive Bayes, KNN - K-Nearest Neighbor, RF - Random Forest, SVM - Support Vector Machines, LR - Logistic Regression,
DNN - Deep Neural Networks, MLP - Multi Layer Perceptron, CNN - Convolutional Neural Networks, QDA - Quadratic Discriminant Analysis, LDA -
Linear Discriminant Analysis, RBF - Radial Basis Function.
FPR - False Positive Rate, FNR - False Negative Rate, TP - True Positive, TN - True Negative, ROC - Receiver Operating Characteristic, MRR - Missing
Report Rate.

validation, aiming at statistical tests such as Wilcoxon and
Friedman.

A. Environment

The experiments were executed on a computer with a
Linux operating system, Ubuntu 16.04 LTS distribution, Intel
Core i7-6700-K processor (8 cores), and 48GB of RAM. The
Python3 programming language and the scikit-learn package
[28] were used to implement the classifiers. The imbalanced-
learn package [30] was used for the undersampling techniques.

B. Evaluation metrics

In this section, the metrics used in this work are presented.
In this work, the datasets contain 14 malicious traffic and

one normal in an unbalanced way, as previously discussed.
Therefore, it is necessary for an evaluation that considers the
assertiveness among all types of network flow in a weighted
way. According to [31] and [32], the unbalance between
classes can ”mask” the results and consequently lead to
precipitate conclusions. Thus, the following weighted metrics
are presented.

1) Accuracy (AC): It is the most intuitive metric of clas-
sifiers’ evaluation because it represents a measure of the
proportion of correct predictions without considering false
positives or negatives. Given X as a set of test elements for
each label of the classes that were predicted and corr(.), a
function that counts the number of correct predictions, the
accuracy can be defined by Acc(X) = corr(X)

|X|
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Fig. 1: High-level experiments workflow.

TABLE II: Original and undersampled datasets comparison for
CICIDS2017 dataset

Class Samp. CL / UR # of Sub. CL / UR
Benign 2273097 80.3 / 1:1 33526 19 / 1:1
DoS Hulk 231073 8.1 / 9:1 33526 19 / 1:1
PortScan 158930 5.6 / 14:1 33526 19 / 1:1
DDoS 128027 4.5 / 17:1 33526 19 / 1:1
GoldenEye 10293 0.36 / 220:1 10293 5.9 / 1:3
FTP-Patator 7938 0.28 / 286:1 7938 4.5 / 1:4
SSH-Patator 5897 0.20 / 385:1 5897 3.3 / 1:5
Slowloris 5796 0.20 / 392:1 5796 3.3 / 1:5
SlowHTTPtest 5499 0.19 / 413:1 5499 3.3 / 1:16
Bot 1966 0.069 / 1156:1 1966 1.1 / 1:17
Brute Force 1507 0.053 / 1508:1 1507 0.8 / 1:22
XSS 652 0.0023 / 3486:1 652 0.3 / 1:52
Infiltration 36 0.00012 / 63141:1 36 0.2 / 1:931
SQL Injection 21 0.000074 / 108242:1 21 0.1 / 1:1596
Heartbleed 11 0.000038 / 206645:1 11 0.06 / 1:3047
Total 2830743 100 173707 100

CL - Percentage of class label, UR - Unbalanced ratio: proportion of minority
class with respect to majority ones.

2) Recall: Is the proportion of positive cases correctly
identified. The following formulas are required:

• y is the set of samples predicted by the model
• ŷ is the set of test labels
• L is the set of labels
• yl is the subset of y with label l

Rweighted(y, ŷl) =
1∑

l∈L |ŷl|

max∑
l∈L

|ŷl|R(yl, ŷl), (1)

where R(yl, ŷl) =
|yl∩ŷl|
|ŷl|

TABLE III: Original and undersampled datasets comparison
for CICIDS2018 dataset

Class Samp. CL / UR # of Sub. CL / UR
Benign 13609917 83.20 / 1:1 16006 9.2 / 1:1
HOIC 686012 4.19 / 19:1 16006 9.2 / 1:1
LOIC-HTTP 576191 3.52 / 23:1 16006 9.2 / 1:1
DoS Hulk 461912 2.82 / 29:1 16006 9.2 / 1:1
Bot 286191 1.74 / 47:1 16006 9.2 / 1:1
FTP-Brute 193354 1.18 / 70:1 16006 9.2 / 1:1
SSH-Brute 187589 1.14 / 72:1 16006 9.2 / 1:1
Infiltration 160639 0.98 / 84:1 16006 9.2 / 1:1
SlowHTTPTst 139890 0.85 / 97:1 16006 9.2 / 1:1
GoldenEye 41508 0.25 / 327:1 16006 9.2 / 1:1
Slowloris 10990 0.067 / 1238:1 10990 6.3 / 1:1
LOIC-UDP 1730 0.0105 / 7867:1 1730 0.99 / 1:9
Brute-Force 611 0.0037 / 22274:1 611 0.35 / 1:26
XSS 230 0.0014 / 59173:1 230 0.13 / 1:69
SQL-Injection 87 0.00053 / 156435:1 87 0.05 / 1:183
Total 16356851 100 173708 100

CL - Percentage of class label, UR - Unbalanced ratio: proportion of minority
class with respect to majority ones.

3) Precision: This metric represents the fraction of correct
positive predictions. It is a complementary metric to the
previous one. The equation 2 presents its formulation:

Prweighted(y, ŷl) =
1∑

l∈L |ŷl|

max∑
l∈L

|ŷl|P (yl, ŷl) (2)

where P (yl, ŷl) =
|yl∩ŷl|
|ŷl| .

4) F1: Aiming to evaluate the trade-off between the two
metrics mentioned above, the efficiency measurement, also
called Fβ , is used.
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Fβweighted(y, ŷl) =
1∑

l∈L |ŷl|

max∑
l∈L

|ŷl|Fβ(yl, ŷl), (3)

where,

Fβ = (1 + β2)
P (A,B) ∗R(A,B)

β ∗ P (A,B) +R(A,B)
(4)

According to [31], the parameter β can be any positive value
but is usually set to 1. In this case, the metric is simplified and
is given by F = 2.Pr.R

Pr+R , which is the harmonic mean between
Precision and Recall.

Each metric, except the accuracy, has its weight calculated
based on the number of samples. Besides, precision and Recall
are complementary metrics. Fig. 2 illustrates this behavior,
where one notices that the Recall is calculated by the ratio
between the number of true positives and the total of triangles.
At the same time, the precision takes into account the amount
of triangle for the sum of true and false positives.

Fig. 2: Precision x Recall

Precision =  Recall = 

False negative True negative

True
positive

False
positive

Thus, precision is the ratio between the number of elements
of a class correctly predicted by the classifier (true positives),
by the sum of the quantities of elements of a class correctly
predicted and the number of elements of other classes wrongly
predicted as elements of it (false positives). The Recall is the
ratio between the number of elements of a class correctly
predicted by the classifier (true positives) and the sum of the
rate of true positives and the number of elements of the same
class wrongly predicted (False negatives). Thus, precision can
be used in situations where False positives are considered more
harmful than False negatives. In the case of Recall, it is used
when false negatives are more harmful than false positives.
This work uses metrics weighted according to the number of
samples of each class according to the Equations 1, 2 and 3.

C. Wilcoxon Signed-Ranks Test

The comparison between classifiers using the statistical non-
parametric Wilcoxon test aims to evaluate differences between
the pairs of metrics the same classifier in each sub-sample.
This statistical test is an alternative to the paired T-test, which
ranks the differences ignoring the signs [33]. In this work,
we compare each classifier in pairs of sub-sampling different
scenarios A and B. There are two hypotheses to be evaluated
for classifier given sub-sampling scenarios A and B:
• Null hypothesis: Is the default assumption for the test

and means that there is no difference between a classifier
metric in A and B sub-sample scenarios.

• Alternative hypothesis: The classifier scores in the B
scenario are higher than the A ones.

The T and z values represent the minimum value of the
sum of the ranks used and the test’s value. Suppose the T
value is lower than the critical T according to the chosen
significance level, and the absolute value of z is higher than the
critical value. In that case, we can reject the null hypothesis.
Consequently, the alternative hypothesis becomes valid. In the
latter, the samples are statistically different, and we can infer
that the classifier B metrics have higher medians than the A
ones.

IV. RESULTS

This section presents the results concerning the employ-
ing of undersampling techniques for IDS. We also show
an exploratory analysis of the databases considered in this
study. Moreover, we compare results for each undersampled
sub-bases from Random, Cluster centroids, and NearMiss1
techniques. We applied the Wilcoxon statistical test to assert
the inter-classifiers performances. In this way, we can find
statistical differences between the metric pairs, as described
in the previous section. At the same time, we give specific
discussions for each result and general critical comments about
classifiers’ characteristics and undersampled datasets.

Exploratory analysis of CICIDS2017 and CICIDS2018
datasets

We present an analysis of the CICIDS2017 and CI-
CIDS2018 as follows. The analysis of the CICIDS2017 dataset
shows that for benign traffic, there are 53,788 unique ports in
use where the most employed ports were 53 (DNS) and 443
(HTTPS). On the other hand, for attacks, there existed 1,686
ports in use were the most employed was 53 (DNS) and 443
(HTTPS).

Table IV shows the mean, minimum, and maximum values
on a feature subset of CICIDS2017. We can note that some
predictors such as flow duration and flow bytes/s presents am-
plitude variations along with the samples, evidencing the need
for scaling to a given range. Furthermore, some features such
as bwd psh flags, bwd urg flags, and fwd avg bytes/bulk
have zero values, indicating that there is no variation between
them along the flow traffics. We also present the data skew
in the dataset. Thus, we can note that most features have the
distribution of predictors shifted to the right of the mean. Such
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TABLE IV: A CICIDS2017 fragment of the feature set de-
scription

Feature Mean Min Max Skew
Total fwd packets 9.36 1 2.1× 105 244.25
Total backward packets 10.40 0 2.0× 105 244.55
Total length of fwd packets 549.85 0 1.2× 107 805.16
Subflow fwd bytes 549.84 0 1.2× 107 803.19
Bwd psh flags 0 0 0 0
Bwd urg flags 0 0 0 0
Fwd avg bytes/bulk 0 0 0 0
Fwd avg packets/bulk 0 0 0 0
Fwd avg bulk rate 0 0 0 0
Bwd avg bytes/bulk 0 0 0 0
Bwd avg packets/bulk 0 0 0 0
Bwd avg bulk rate 0 0 0 0

TABLE V: A CICIDS2018 fragment of the feature set descrip-
tion

Feature Mean Min Max Skew
Flow iat std 1.2× 106 0 4.7× 1011 1,213.0
Pkt len var 4.1× 104 0 5.1× 108 1,866.9
Idle mean 5.1× 106 0 3.9× 1011 1,266.3
Idle min 4.7× 106 0 2.3× 1011 3,335
Bwd psh flags 0 0 0 0
Bwd urg flags 0 0 0 0
Fwd avg bytes/bulk 0 0 0 0
Fwd avg packets/bulk 0 0 0 0
Fwd avg bulk rate 0 0 0 0
Bwd avg bytes/bulk 0 0 0 0
Bwd avg packets/bulk 0 0 0 0
Bwd avg bulk rate 0 0 0 0

behavior may interfere with probability-based classifiers, such
as Naive Bayes.

The analysis of the CICIDS2018 dataset shows that for
benign traffic, there are 64,665 unique ports in use where the
most employed ports were 53 (DNS) and 443 (HTTPS). On
the other hand, for attacks, there existed 8,374 ports in use
were the most employed was 80 (HTTP) and 21 (FTP).

Table V, presents the mean, maximum, and minimum values
of a feature subset on the CICIDS2018 dataset. Note that
the same features found in the previous dataset have all
zero values, requiring dropping these predictors. In respect to
skewness, note that the features have right-shifted asymmetry
for both attacks and benign traffics.

A. CICIDS2017 dataset experiments

Table VI highlights the results from experiments concerning
the CICIDS2017 dataset. Note that for this database on the
all-data schema, the KNN algorithm achieved the best metrics
for assertiveness. However, their processing time achieved low
performance when compared to the other classifiers. The SVM
classifier was not evaluated on the all-data schema due to
algorithm inherent computational cost.

The all-data schema results show that despite both KNN
and Nearest centroid models was distance-based ones. These
models presented performance differing up to 43% for the
accuracy metric. The data geometry of the all-data schema is
sparse and impairs the class’s representativity by its centroid.

Regarding accuracy and recall of the Naive Bayes algorithm,
the poor performance is justified by the skewness in the

entire database since the classifier uses probability as its basis
for model recognition and prediction. Further investigations
concerning data preprocessing is a promising way.

The Random Forest model achieved good performance on
the all-data schema. Here, we highlighted the relationship be-
tween model training time and assertiveness. In this scenario,
the most appropriate classifier would be the Random Forest,
which has a lower assertiveness than KNN, but their training
time has attractive values.

Concerning the Random undersampling scenario, the NC
classifier presents a lower assertiveness. Thus, indicating that
the undersampled dataset has overlapping centroids. On the
other hand, the NB algorithm presented better assertiveness
metrics into Random schema than the all-data one. We also
evaluated the SVM classifier in this scenario. This model
achieved intermediate performance and higher processing
time. The Random Forests model obtained less assertiveness
than all-data due to the lower number of samples in the
undersampled base.

On Cluster centroids undersampled schema, we note that
the classifiers have greater assertiveness than the previous
scenarios, indicating that the undersampling technique has
better representativity than the previous ones. Note that the
NC, NB, and SVM algorithms increased up the performance
metrics. Moreover, we highlight that those distance-based
algorithms performed well in terms of the evaluation metrics.

In the results of the experiments using the NearMiss1 un-
dersampling approach, the classifiers’ performance is generally
higher than in the Random and lower than Cluster centroids
undersampling scenario, except for the KNN and SVM clas-
sifiers, which have similar performance on assertiveness and
time.

Comparison of classifiers under different undersampling tech-
niques

In this sub-section, we present a comparison between the
classifiers under different undersampling techniques. We fur-
ther supported our results with statistical tests. The results of
the experiments are presented in Table VI. We discuss two
metrics for scenario comparison: accuracy, which represents an
overview of the classifier, and F1 score, which is the harmonic
mean between recall and precision.

The comparison between the sub-sets and the entire CI-
CIDS2017 dataset for the NC classifier was made initially
by accuracy metric. The undersampling by Cluster centroids
presented the best metric for this classifier, followed by
NearMiss1, indicating that these techniques applied to the
evaluated dataset selected the most representative samples.
We can observe that the Random undersampling has similar
results to the all-data schema for this classifier, indicating that
centroids in a Random sub-sampling scenario do not represent
the generated data.

Concerning the F1 metric, the cluster centroid undersam-
pling technique is the most suitable for the NC classifier,
above to 80%. In contrast, Random undersampling is the least
suitable since the classifier produced a higher false-positive
rate than in an entire base scenario.
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TABLE VI: CICIDS2017 - performance evaluation

Algorithm Accuracy
mean/std

Precision
mean/std

Recall
mean/std

F1
mean/std

Time (sec.)
mean/std

Entire dataset

NC 0.55 1.30× 10−3 0.85 5.19× 10−4 0.55 8.23× 10−4 0.64 1.30× 10−3 4.55 3.33× 10−2

NB 0.44 7.64× 10−2 0.96 1.28× 10−3 0.44 7.64× 10−2 0.57 8.46× 10−2 5.15 6.10× 10−2

KNN 0.98 5.56× 10−4 0.98 5.55× 10−4 0.98 5.56× 10−4 0.98 5.54× 10−4 1625.54 8.30× 101

RF 0.88* 1.87× 10−4* 0.82* 3.13× 10−4* 0.88* 1.87× 10−4* 0.85* 2.56× 10−4* 64.03* 1.60× 10−1*
SVM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Random undersampling

NC 0.57 1.08× 10−2 0.64 5.29× 10−3 0.57 1.08× 10−2 0.56 1.51× 10−2 0.36 4.59× 10−3

NB 0.84 5.08× 10−3 0.94 4.18× 10−3 0.84 5.08× 10−3 0.88 4.40× 10−3 0.42 5.03× 10−3

KNN 0.98 3.26× 10−4 0.98 3.17× 10−4 0.98 3.26× 10−4 0.98 3.25× 10−4 3.21 2.66× 10−1

RF 0.70 6.13× 10−3 0.55 2.28× 10−3 0.70 6.13× 10−3 0.61 5.08× 10−3 3.04 2.73× 10−2

SVM 0.88 1.82× 10−2 0.86 1.77× 10−2 0.88 1.82× 10−2 0.86 1.82× 10−2 198.76 1.69× 101

Cluster Centroids undersampling

NC 0.81 8.47e-03 0.85 8.78× 10−3 0.81 8.47× 10−3 0.82 8.36× 10−3 0.28 5.14× 10−3

NB 0.96* 5.83× 10−4* 0.97* 7.41× 10−4* 0.96* 5.83× 10−4* 0.96* 6.54× 10−4* 0.31* 2.43× 10−3*
KNN 0.99 1.09× 10−4 0.99 1.23× 10−4 0.99 1.09× 10−4 0.99 1.09× 10−4 2.85 1.20
RF 0.76 2.37× 10−3 0.60 1.53× 10−2 0.76 2.37× 10−3 0.67 4.96× 10−3 3.23 1.36× 10−2

SVM 0.93 4.81× 10−3 0.93 4.68× 10−3 0.93 4.81× 10−3 0.92 5.82× 10−3 92.60 1.45

NearMiss1 undersampling

NC 0.71 9.42× 10−3 0.78 1.62× 10−2 0.71 9.42× 10−3 0.70 1.27× 10−2 0.28 3.71× 10−3

NB 0.89 2.01× 10−3 0.95 1.83× 10−3 0.89 2.01× 10−3 0.91 2.19× 10−3 0.32 1.87× 10−2

KNN 0.99 1.50× 10−4 0.99 1.65× 10−4 0.99 1.50× 10−4 0.99 1.47× 10−4 3.41 9.04× 10−1

RF 0.78 3.59× 10−3 0.65 1.47× 10−2 0.78 3.59× 10−3 0.70 7.05× 10−3 3.07 6.43× 10−3

SVM 0.93 1.45× 10−3 0.93 1.19× 10−3 0.93 1.45× 10−3 0.92 1.31× 10−3 77.04 1.25

NC - Nearest Centroid, NB - Naive Bayes, KNN - K-Nearest Neighbor, RF - Random Forest, SVM - Support Vector Machines

The results for the Naive Bayes classifier in the evaluated
scenarios reveal some aspects of the classifier and the dataset.
We observe that the NB classifier performance in the all-
data schema is less than the undersampled schemas and
produces the most significant variation around the mean for
all metrics. We believe that such behavior is due to the
database’s skewness and unbalance factors since the classifier
is a probabilistic one. A large number of the majority class
elements make the model inaccurate in its predictions. In
this sense, the undersampling approach tends to mitigate this
effect since reducing the samples occurs in the majority
classes, making the model calculate the probabilities better
and consequently be more assertive. The Cluster centroid and
NearMiss1 approaches stand out concerning Random strategy
for accuracy metric because selecting the samples in the
undersampled datasets is more criterion than the latter. The
same behavior occurs to the F1 metric. The classifier does not
deal well with a large amount of data of the entire base, and
the solution by undersampling presents significant differences
in precision and recall.

For the Random Forest classifier, their accuracy values per-
formed well in the entire database. When comparing with the
sub-samples schemas, the RF classifier evaluated in Random
sub-sampling has the lowest average accuracy. Concurrently,
for Cluster centroids and NearMiss1 scenarios, the algorithm
achieved similar assertiveness.

K-nearest neighbor’s classifier presented levels of around

99% on all metrics for all scenarios. However, the processing
time is higher than almost all classifiers since it is an instance-
based algorithm that suffers from the amount of data [12].

Regarding the SVM classifier’s accuracy for undersampled
datasets, the sub-samples by Cluster centroids and NearMiss1
show results above 90% accuracy for this classifier. However,
in the Random sub-base, the accuracy is lower than the ones.
Processing time is an issue for this algorithm because their
compute and storage requirements increase rapidly with the
number of training vectors [28].

Table VII illustrates the values found for the Wilcoxon
statistical test for evaluated classifiers concerning all under-
sampling techniques.

Concerning Random and Cluster centroids / Random and
NearMiss1 undersampling scenarios comparisons, the values
of T and z absolute found are, respectively, lower and higher
for all classifiers in all metrics with the significance of 99%,
statistically evidencing the feasibility of using undersampling
by Cluster centroids and NearMiss1 compared to the Random
approach.

When comparing the sub-bases by NearMiss1 and Cluster
centroids through the Wilcoxon test, we can note that the later
sub-base metrics are statistically different. The T and z values
in the table correspond to the rejection of the null hypothesis
and adoption of the alternative hypothesis, which indicates
that the median of the NC’s metrics, NB classifiers are higher
than those of the other subsample. However, for the KNN
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TABLE VII: Wilcoxon statistical test for all
undersampling techniques considering
CICIDS2017 dataset

Values of T and z for n = 10.

Algorithm Accuracy
T / z

Precision
T / z

Recall
T / z

F1
T / z

Random and Cluster centroids / Random and NearMiss1 comparisons
NC 0 2.8 0 2.8 0 2.8 0 2.8
NB 0 2.8 0 2.8 0 2.8 0 2.8

KNN 0 2.8 0 2.8 0 2.8 0 2.8
RF 0 2.8 0 2.8 0 2.8 0 2.8

SVM 0 2.8 0 2.8 0 2.8 0 2.8
Cluster centroids and NearMiss1 comparison

NC 0 2.8 0 2.8 0 2.8 0 2.8
NB 0 2.8 0 2.8 0 2.8 0 2.8
RF 0 2.8 0 2.8 0 2.8 0 2.8

SVM 0 2.5 10 1.78 0 2.5 21 0.66
Entire dataset and Cluster Centroids/NearMiss1 comparison

NC 0 2.8 0 2.8 0 2.8 0 2.8
NB 0 2.8 0 2.8 0 2.8 0 2.8

KNN 0 2.8 0 2.8 0 2.8 0 2.8
RF 0 2.8 0 2.8 0 2.8 0 2.8

Entire dataset and Random comparison
NC 0 2.8 0 2.8 0 2.8 0 2.8
NB 0 2.8 0 2.8 0 2.8 0 2.8
RF 0 2.8 0 2.8 0 2.8 0 2.8

critical T = 5, critical z = 2.33 and 0.001 of significance

classifier, no numerical or statistical differences were found for
the number of decimal precision equal to three. Therefore it is
not possible to reject the null hypothesis. Also, the precision
and F1 score metrics in the SVM classifier are statistically
equal for both sub-bases.

Concerning comparisons between the all-data schema and
sub-bases by Cluster centroids, Random and NearMiss1, the
test indicates the following behaviors:

• When comparing the Random with Cluster centroid and
NearMiss1 scenarios, the latter presented the best medi-
ans of all classifiers’ metrics.

• For Cluster Centroids and NearMiss1 comparison, the
former scenario presented the best medians of metrics
for all classifiers, except KNN.

• Concerning the comparison between the entire dataset
and Cluster centroids/NearMiss1 scenarios, we highlight
that the latter presented the best medians of metrics for
all evaluated classifiers.

• Regarding the all-data schema and Random scenario,
the latter presented the best medians of metrics for all
evaluated classifiers, except KNN.

Therefore, we can infer that the use of undersampling
techniques favors most classifiers’ metrics in all scenarios.

B. CICIDS2018 dataset experiments

We present the experiments’ results of CICIDS2018
database in Table VIII. We observed that the Nearest centroid
classifier does not perform well on the all-data schema,
indicating that the centroids do not represent the classes.
Moreover, by comparing both CICIDS2017 and CICIDS2018
experiments, the latter is five times larger than the former, and
the unbalance factor is more evident in CICIDS2018.

The metrics for the Naive Bayes classifier performed well
in CICIDS2018 than the previous one. Moreover, we suggest
caution when using the results. The high imbalanced factor
aligned with the amount of data has some drawbacks con-
cerning weighted metrics usage. The Naive Bayes classifier
has, for CICIDS2018, the most significant weight for the
legitimate traffic class. In the test portion, these samples
category possibly occur more often due to their large number.
Thus, it requires more experimental analysis to give us insights
into the data imbalance factor.

On the all-data schema, we observe that the Random Forests
classifier performed well. The results differ from the previous
ones. Here the most suitable classifier is Naive Bayes, which
has acceptable assertiveness in less time. The SVM and KNN
classifiers were not evaluated in this scenario due to the high
computational complexity needed to execute the experiments
into a dataset five times higher than CICIDS2017.

Concerning the Random sub-base, we discuss the results by
relating the assertiveness with the all-data schema as follows:
The NC classifier maintained the low assertiveness by com-
paring the results with all-data schema. Despite an increase
of 21% into accuracy, their low performance in precision and
recall still indicating that the undersampled dataset has poor
representation by the centroid of each class.

The NB algorithm presents lower results than in the all-
data schema in terms of the evaluated metrics. It reveals a
behavior on the entire dataset: we adopted weighted metrics by
the number of elements in the class. Thus, the classifier that is
assertive for a specific majority class obtains acceptable results
in assertiveness for the overall results. In this case, the entire
CICIDS2018 data’s undersampling technique reduced their
imbalance factor and indirectly impacted the classification
assertiveness.

The Random Forests algorithm obtained less assertiveness
concerning the all-data scenario, maintaining the same behav-
ior in the CICIDS2017 experiments. On the other hand, the
KNN and SVM classifiers obtained results close to each other.

Regarding Cluster centroid undersampled sub-base, the clas-
sifiers present greater assertiveness concerning the previous
scenarios. It is worth noting that the NC, NB, and SVM algo-
rithms presented the best assertiveness concerning the other
scenarios presented above. We observed that the distance-
based algorithms such as NC, KNN, and SVM, performed
well within the Cluster-centroid undersampling technique.

For the NearMiss1 undersampling technique, the complete
classifiers’ set achieved overall performance higher than in the
Random scenario. On the other hand, Nearmiss1 assertiveness
is lower than the cluster-centroid schema. Thus, indicating that
the cluster-centroid undersampling approach has representa-
tiveness than their counterparts.

Comparison between classifiers under sub-samples strategies

In this sub-section, we show a comparison between the
classifiers under different undersampling techniques and sup-
port our observations with statistical tests. The results of the
experiments are presented in Table VIII. The same metrics
of the previous scenario were chosen for comparison. Taking
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TABLE VIII: CICIDS2018 - performance evaluation

Algorithm Accuracy
mean/std

Precision
mean/std

Recall
mean/std

F1
mean/std

Time (sec.)
mean/std

Entire dataset

NC 0.26 7.74× 10−3 0.90 6.20× 10−3 0.26 7.74× 10−3 0.35 6.72× 10−3 3.75 1.35
NB 0.80 8.54× 10−5 0.86 1.68× 10−4 0.80 8.54× 10−5 0.81 1.30× 10−4 5.86 5.61× 10−1

RF 0.83 1.33× 10−4 0.69 2.21× 10−4 0.83 1.33× 10−4 0.75 1.87× 10−4 410.86 7.21× 101

KNN N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A*
SVM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Random undersampling

NC 0.47 5.64× 10−3 0.54 2.23× 10−2 0.47 5.64× 10−3 0.45 6.58× 10−3 0.39 3.52× 10−2

NB 0.76 1.52× 10−3 0.85 5.08× 10−3 0.76 1.52× 10−3 0.76 4.35× 10−3 0.39 3.15× 10−2

KNN 0.85 2.35× 10−3 0.83 8.40× 10−3 0.85 2.35× 10−3 0.82 5.75× 10−3 6.87 1.20
RF 0.74 4.15× 10−3 0.73 1.02× 10−2 0.74 4.15× 10−3 0.68 6.44× 10−3 2.58 8.15× 10−2

SVM 0.81 6.25× 10−4 0.84 7.55× 10−4 0.81 6.25× 10−4 0.79 8.13× 10−4 151.50 1.44

Cluster Centroids undersampling

NC 0.88 3.71× 10−3 0.89 4.42× 10−3 0.88 3.71× 10−3 0.87 3.00× 10−3 0.34 2.41× 10−2

NB 0.98* 5.37× 10−3* 0.98* 4.44× 10−3* 0.98* 5.37× 10−3* 0.98* 5.08× 10−3* 0.36* 2.41× 10−3*
KNN 0.99 1.67× 10−4 0.99 1.65× 10−4 0.99 1.67× 10−4 0.99 1.66× 10−4 6.70 3.26
RF 0.85 5.11× 10−3 0.82 2.06× 10−2 0.85 5.11× 10−3 0.80 8.02× 10−3 2.87 2.97× 10−1

SVM 0.97 6.95× 10−4 0.97 7.77× 10−4 0.97 6.95× 10−4 0.96 7.61× 10−4 68.98 7.10

NearMiss1 undersampling

NC 0.86 8.13× 10−4 0.88 6.44× 10−4 0.86 8.13× 10−4 0.86 8.12× 10−4 0.37 6.19× 10−3

NB 0.91* 3.86× 10−3* 0.92* 3.23× 10−3* 0.91* 3.86× 10−3* 0.90* 3.90× 10−3* 0.44* 2.35× 10−2*
KNN 0.92 1.64× 10−2 0.92 3.32× 10−2 0.92 1.64× 10−2 0.90 2.95× 10−2 9.17 3.73
RF 0.84 8.24× 10−3 0.85 8.91× 10−3 0.84 8.24× 10−3 0.81 8.17× 10−3 1.83 5.77× 10−2

SVM 0.84 6.66× 10−4 0.81 7.77× 10−4 0.84 6.66× 10−4 0.81 7.88× 10−4 73.24 6.85× 10−1

NC - Nearest Centroid, NB - Naive Bayes, KNN - K-Nearest Neighbor, RF - Random Forest, SVM - Support Vector Machines

the accuracy metric as parameter for comparison between
the sub-sets and the entire CICIDS2018 dataset for the NC
classifier. As the previous scenario, the classifier has lower
metrics for the all-data schema compared to the undersampling
approaches. The undersampling by Cluster centroids presented
the best metrics for this classifier, followed by NearMiss1,
indicating that these techniques provide higher representativity
to the database. However, the Random undersampling has a
different behavior from their counterparts due to its Random
characteristics.

As for F1 score metrics, Cluster centroids’ undersampling
is the most appropriate for this classifier, which has a score
above 87%. Simultaneously, the all-data approach presents the
worst F1 score values since the classifier produced a higher
false positives rate than in other scenarios. We highlighted the
metric recall in Table VIII to evidence this behavior.

Concerning the Naive Bayes classifier, the accuracy metric
performance in the Random sub-base is lower than in other
scenarios. This fact occurs due to the different UR in the entire
base and the sub-bases, causing the classifier to generate many
false positives. Thus, as occurred in the CICIDS2017 base,
the approaches by Cluster centroids and NearMiss1 stand out
concerning Random undersampling approaches because the
sample selection in this scenario has a well-defined sample
selection schema than in the latter.

The same behavior occurs to the F1 metric. The classifier
does not deal well with the large mass of data of the entire

database, and the solution by undersampling presents signifi-
cant differences in accuracy/recall.

Regarding the Random Forest classifier’s accuracy results,
the all-data schema achieved higher performance than the
Random undersampling strategy. This behavior is due to two
reasons: the Random Forest classifier, when dealing with
unbalanced data, favors the majority class for the prediction.
In the tests, the majority class appears more often. Therefore,
the Random sub-base schema does not have specific criteria
for sample selection, making it challenging to represent the
entire database for classification purposes.

When comparing the to other sub-samples schemas, the
Random Forest classifier reached assertiveness above 85%
for the Cluster centroids and NearMiss1 schemas. The first
presents higher metrics for this classifier. Concerning the
F1 score, the RF classifier maintained the same behavior as
explained regarding data representativity.

For the KNN classifier’s accuracy on each undersampling
schema, we can observe that the Cluster centroids approach
presents greater accuracy than their counterparts. Thus, indi-
cating that schema selects the most representative samples for
the CICIDS2018 dataset. Despite the feasibility of the KNN’s
processing time for an IDS project on subsampled datasets, the
testing time is too high in the all-data schema that considers
this classifier unfeasible in a real context. The same behavior
occurs for the F1 score.

Concerning the SVM classifier’s accuracy for the undersam-
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TABLE IX: Wilcoxon statistical test for
all undersampling techniques considering
CICIDS2018 dataset

T and z values for n = 10

Algorithm Accuracy
T / z

Precision
T / z

Recall
T / z

F1
T / z

NearMiss1 x Cluster Centroids
Random x NearMiss1 comparisons

NC 0 2.8 0 2.8 0 2.8 0 2.8
NB 0 2.8 0 2.8 0 2.8 0 2.8

KNN 0 2.8 0 2.8 0 2.8 0 2.8
RF 0 2.8 0 2.8 0 2.8 0 2.8

SVM 0 2.8 0 2.8 0 2.8 0 2.8
Entire dataset x Cluster centroids comparison

NC 0 2.8 0 2.65 0 2.8 0 2.8
NB 0 2.8 0 2.8 0 2.8 0 2.8
RF 0 2.8 0 2.8 0 2.8 0 2.8

critical T = 5, critical z = 2.33 and 0.001 of significance

pled datasets, the Cluster centroids and NearMiss1 schemas
show results above 84% accuracy for the SVM. At the same
time, in the Random undersample sub-bases, the accuracy is
lower. The sub-bases generated by Cluster centroids has the
best representativity, being possible to achieve rates of up to
97%. The same behavior occurs for the F1 score.

We compare our experiments through Wilcoxon statistical
test. Table IX shows the test all scenarios.

The statistical test confirms that the metrics in NC, NB,
and KNN, RF, and SVM classifiers are superior in a scenario
of undersampling by Cluster centroids comparing to other
approaches.

Concerning NearMiss1 x Cluster Centroids / Random x
NearMiss1 undersampling scenarios comparisons, the absolute
values of T and z are, respectively, lower and higher for all
classifiers in all metrics with the significance of 99%. They are
statistically evidencing the feasibility of using undersampling
by Cluster centroids and NearMiss1 compared to the Random
approach.

When comparing the results between the all-data schema
and Cluster centroids undersampling through the Wilcoxon
test, we can note that the latter metrics are statistically dif-
ferent. The T and z values correspond to the null hypothesis
rejection and the alternative hypothesis adoption, indicating
that the median of all classifier metrics is higher than those of
the all-data schema.

Therefore, we can infer that the use of undersampling
techniques overcomes the all-data scenarios for most classi-
fiers, particularly the Cluster centroid schema overcomes all
counterparts.

Based on the obtained results, we can observe that the
use of representative undersampling techniques attempts to
deal with unbalanced databases and the use of cost-intensive
classifiers, aiming at increasing the assertiveness in classifiers
as the basis for Intrusion Detection Systems design. In our
experiments, KNN presented the best metrics. However, it is
observed some drawbacks on the trade-off with processing
time and assertiveness.

Our results indicate that the Cluster centroid approach
favored in all scenarios the distance-based classifiers as well as
the Naive Bayes one, significantly increasing the assertiveness

metrics and decreasing the model recognition time. The results
also showed that, through statistical testing, the classifiers’
metrics in their majority are higher in classifiers evaluated
under the undersampled dataset from this approach. In this
scenario, we recommend the use of Cluster centroid-based
undersampling when evaluating distance-based algorithms.
We employed five metrics to evaluate the classifiers for the
undersampling techniques.

To support the decision-making for the best classifier, the
IDS designer should use one of the evaluation metrics or a
combination. In this paper, we used five metrics to evaluate
machine learning algorithms. Two assertiveness metrics was
adopted as global decision-criteria: accuracy and F1-score. We
also used the processing time as an additional criterion for the
feasibility of IDS design.

In the complete and undersampled datasets, the KNN clas-
sifier obtained the highest assertiveness metrics. However,
the compromise between assertiveness and processing time is
observed, as discussed in previous sections. Our findings agree
with the work of Silva Neto [12], which obtains competitive
results for the KNN classifier. However, the testing time was
decisive for the choice of other classifiers for the IDS project.

Based on decision-criteria for classifiers choice, the all-data
schema for the CICIDS2017 database shows that the Random
Forest classifier obtained the best results, with average scores
of 88.6%, 85.0%, 64s for accuracy, F1, and time respectively.
For the all-data schema, the CICIDS2018 database shows
average results of 83.2%, 75.6%, and 410s for accuracy, F1,
and time respectively.

As for Random undersampling schema on CICIDS2017 and
CICIDS2018 datasets, the KNN classifier achieved the best
performance values of accuracy, F1 score, and processing
time, with scores equal to 98.7%, 98.7%, 3.2 seconds for
the sub-sampled CICIDS2017 and 85.5%, 82.8%, 6.8 seconds
for the sub-sampled CICIDS2018 dataset. Although the Naive
Bayes classifier obtained overall low assertiveness metrics in
each sub-base, we observe that it is 8 (eight) times faster for
undersampled CICIDS2017 and 12 (twelve) times faster than
the undersampled CICIDS2018 datasets in terms of processing
time.

In the undersampled datasets by Cluster centroids, in both
CICIDS2017 and CICIDS2018 datasets, the Naive Bayes
classifier obtained the best results by achieving up to 98% in
their scores and similar overall rates in each sub-base schema.

For sub-bases by NearMiss1, we observed that for the
undersampled CICIDS2017, the KNN classifier is considered
the best by achieving 99.4%, 99.4%, and 3.4 seconds for
accuracy, F1 score, and processing time. For the undersampled
CICIDS2018 dataset, we consider the Naive Bayes classifier
the best one. This classifier achieved performances of 91.1%,
90.5%, and 0.4 seconds for accuracy, F1 score, and training
time.

V. CONCLUSION

We presented an evaluation of three undersampling tech-
niques in two up-to-date IDS databases: the CICIDS2017
and CICIDS2018 [13]. The performance of Nearest Centroid,



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, NO.1, 2021. 42

Naive Bayes, Random Forests, K-Nearest Neighbors (KNN),
and Support Vector Machines (SVM) algorithms were evalu-
ated in the two complete datasets named as all-data schema,
as well as in sub-bases generated by the random selection,
Cluster centroids, and NearMiss undersampling techniques.

Our evaluation process aims to support the decision-making
for the best couple: classifier and undersampling technique,
into the IDS project lifecycle. Thus, the results obtained in
both for all-data schema and sub-bases from the KNN classi-
fier presented the best assessments except for the time metric.
However, based on the decision-criteria adopted for selecting
the best classifiers in the IDS project, for the CICIDS2017
and CICIDS2018 all-data schemas, the classifier Random
Forests obtains the best results. As for the sub-base generated
from the CICIDS2017 database by the random undersampling,
the KNN was considered the best classifier for its average
accuracy, efficiency, and training time. In the sub-base using
the Cluster centroids technique, generated from CICIDS2018,
the Naive Bayes classifier produced the best results. As for the
subbases generated from CICIDS2017 and CICIDS2018, using
the NearMiss1 undersampling technique, the best classifiers,
for their average metrics of accuracy, efficiency and training
time, were KNN and Naive Bayes, respectively.

The undersampling process presents sufficient conditions for
evaluating different classifiers, including those with high pro-
cessing time. Moreover, these techniques allow improving the
unbalance at the bases and consequently reduce the skewness
in them.

The results suggest that Cluster centroids’ undersampling
technique presents the best performance when applied to
distance-based classifiers. Our analysis indicated that the un-
dersampling techniques influence the decision-making for the
best classifier in the IDS design process.

The main contributions of this work are:

• The evaluation of undersampling techniques in a system-
atic way to support the IDS design decision-making for
the best classifier;

• Exploratory analysis of the CICIDS2017 and CI-
CIDS2018 datasets;

• An updated analysis of undersampling strategies in IDS
designer-domain;

• Production of ready-to-use undersampled datasets by
using CICIDS2017 and CICIDS2018 as a basis.

This work did not exhaust the possibilities of researching
undersampling techniques and the choice of classifiers in the
IDS design process. In future works, we recommend a cluster-
based exploratory analysis to understand data geometry. We
also suggest the evaluation of data preprocessing schemas
to leverage the performance evaluation. Since we evaluate
specific attack types, we also recommend further investigations
on binary classification schemas, in which one can merge
all the attacks to represent an abnormal behavior pattern and
reduce the effects of unbalance. There are open questions for
further investigations on real-time attack detection and a cross-
dataset evaluation among the studied databases. These future
works can leverage IDS design-domain.
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