
JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, NO.1, 2021. 17

A Survey of LoRaWAN Simulation Tools in ns-3
Jéssika C. da Silva, Daniel de L. Flor, Vicente A. de Sousa Jr., Níbia Souza Bezerra, Alvaro A. M. de Medeiros

Abstract—The Internet of Things (IoT) paradigm gains more
importance every day, as the number and variety of connected
devices grows. To answer the specific needs of IoT, many wireless
network standards have been developed. An example is the LoRa
Wide Area Network (LoRaWAN), which has gained popularity
thanks to the affordable costs of its devices and gateways, as
well as wide range, low energy consumption and flexibility.
Considering the challenges that exist with testing and researching
on real LoRaWAN systems, the development of accurate network
simulators is invaluable. Therefore, this work presents a survey of
the available tools for simulating LoRa networks in ns-3 network
simulator. We present how those simulators were implemented
and their main features and limitations. We also showcase how
those simulators are being used in the literature to evaluate the
performance of LoRA networks. Finally, we compare the modules
to highlight what scenarios each of them is more suited for.

Index Terms—LoRa, LoRaWAN, ns-3, LPWAN, IoT, network
simulators.

I. INTRODUCTION

The IoT, a paradigm in which an enormous number of
devices can be interconnected, has drawn the attention of
many researchers and investors through the years. The IoT
is set to have a significant impact on our lives, as more
and more devices are added to a smart network capable
of connecting everything we want. Applications exist in a
wide range of scenarios, from smart buildings to smart cities,
enabling important changes on the production and manufacture
process in the form of the Industry 4.0 [1].

The importance of IoT for today and for future networks is
evidenced by the technical requirements of the International
Mobile Telecommunications-2020 (IMT-2020) systems, the
next generation (5G) of mobile services. The International
Telecommunications Union (ITU), the organization
responsible for creating standards and recommendations
to enable world-wide information and telecommunications
systems, has stated through its technical reports [2] that the
evolution of mobile systems must go beyond the increase in
data rates. 5G is expected to work not only in smartphones,
but in smart things. The report in [2] specifies three major
scenarios for 5G networks: mobile broadband, mission-critical
communication, and massive-machine communications.

Jéssika C. da Silva, Daniel de L. Flor and Vicente A. Sousa Jr. are with
the Federal University of Rio Grande do Norte, Natal, RN, Brazil (e-mails:
{jessie,danielflor,vicente.sousa}@ufrn.edu.br).

Níbia Souza Bezerra is with the Luleå University of Technology, Skellefteå,
Sweden (e-mails: nibia.souza.bezerra@ltu.se).

Alvaro A. M. de Medeiros is with Federal University of Juiz de Fora
(e-mail: alvaro@engenharia.ufjf.br.).

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The
proof of concept simulations provided by this paper was supported by High
Performance Computing Center (NPAD/UFRN).

Digital Object Identifier: 10.14209/jcis.2021.2

The latter is known as Massive Machine-Type
Communications (mMTC). This scenario requires a system to
support a connection density of one million devices per km2,
with relaxed data rates and latency demands. Energy efficiency
is also of concern, as mMTC-enabled devices should have a
battery life of 10 to 15 years. These requirements show a great
overlap between some IoT applications and mMTC systems.
Given how ubiquitous massive machine communications are
becoming, it is important to understand what are the current
technologies that could support those scenarios, and what
tools are available to evaluate them.

A. mMTC Enablers

The specific requirements of mMTC systems impose
technical challenges on the Physical (PHY) and Medium
Access Control (MAC) layers. There are different standards
and protocols that can fulfill some of those requirements.
However, there is not yet a single technology capable of fully
supporting the wide range of IoT applications. In general,
as shown in Table I, the enabling wireless communication
technologies can be grouped in three types:
• Low-Rate Wireless Personal Area Networks (LR-WPANs)

have a short range and low data rates, reducing power
consumption of devices. LR-WPANs are focused on
applications that connect a relatively small amount of
devices in a small area;

• Low-Power Wide-Area Networks (LPWANs) are
characterized by wide area coverage. Since they
were conceived with IoT applications in mind, the
design choices in LPWANs take into account the battery
restraints.

• Cellular-based networks are LPWANs that leverage
the infrastructure of the already well-established
mobile systems, such as Global System for Mobile
Communications (GSM) and Long Term Evolution
(LTE). They are adapted versions of the traditional
cellular networks, in order to support massive connection
and low power requirements;

TABLE I
DIFFERENT TYPES ENABLING WIRELESS TECHNOLOGIES.

Type Key Aspects Examples

LR-WPAN
Low data rates and range, small
number of devices, established

technology

Bluetooth,
Zigbee,

6LoWPAN

LPWAN
(cellular-based)

Uses mobile network
infrastructure, high cost to implement

LTE-M,
NB-IoT,

EC-GSM-IoT

LPWAN Long range, low power consumption
SigFox,

LoRaWaN,
Weightless

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, NO.1, 2021. 18

The main competitors in the LPWAN category are Sigfox
and LoRaWAN, both based on proprietary technologies.
Sigfox utilizes Ultra Narrow Band (UNB) technique, and
allows for very small messages (up to 12 bytes in size) using
very low bandwidth (100 Hz) and a low data rate (100 bps).
These configurations, along with the low signaling overhead
of the protocol, allow for a wide coverage with little energy
consumption [3].

LoRaWAN is a standard based on the LoRa radio
technology. LoRa uses a spread spectrum technique to enable
a receiver with high sensitivity, allowing for a trade-off
between range and data rate. Most of the control functions
of the protocol are located in central nodes, thus enabling
the devices to be cheaper and simpler. This also helps with
reducing energy consumption. LoRa and LoRaWAN have
gained a lot of attention recently. Many studies assessing its
capabilities and limitations have been published [4]–[7]. Thus,
with the purpose of attaining a survey on prototyping tools
for IoT features, we adopt LoRaWAN as our target enabling
technology.

B. Network Simulation Tools

Network simulators are very important tools for network
research and development. They allow us to study scenarios
that are difficult or expensive to investigate in real systems or
to obtain data from in a controlled and reproducible way. A
particular example is the study of LPWANs, which may have
thousands of devices connected in a single network. Table II
presents five of the most popular simulators for wireless
networks. All five simulators have support for different
wireless standards (such as the 802.11 family) and models for
traffic generation, mobility, channel propagation and energy
consumption. Table II also shows the programming languages
used to build each simulator, their type of license (open-source
or proprietary) and if they have or not a Native GUI Support.
Of the five tools presented, only ns-2, ns-3 and OMNeT++ are
open-source. More information on these and other simulators
can be found in [8].

Several LoRaWAN tools have been developed based on
these discrete-event network simulators, and others were
developed specifically for LoRaWAN networks. Table III
presents the main publicly available simulators, along with
the code language used and links to their website.

Despite the OMNet+ and LoRaSIM environments being
accessible alternatives, this work focus on the ns-3 simulator
options due to a number of reasons. LoRaSIM is a simulator
developed only for LoRaWAN networks, which limits the tools
available for creating simulations campaigns and exploring
different aspects of the network. OMNet+ has incomplete
support for wired and wireless network simulation, and it
requires significant background work, since very few protocols
have been implemented [8]. On the other hand, the ns-3
is the most flexible choice [8]. It has continuous support
and documentation, and includes implementations for many
protocols and standards. Due to these advantages, many
ns-3-based tools for LoRaWAN were developed, as shown in
Table III.

The ns-3 is a discrete-event network simulator primarily
used for research and educational purposes [15]. The
simulator’s main code is written in C++, with Python being
used for bindings. In its core there is a set of libraries (models)
that can simulate many aspects of a packet-based network,
such as:
• Traffic, packet error, channel propagation and mobility

models;
• Detailed PHY/MAC layers of systems like LTE and

Wi-Fi, following their respective standards;
• Upper-MAC layer protocols such as IPv6 and TCP,

emulating a real Ethernet protocol stack.
Many researchers have developed LoRaWAN network-level

simulation tools based on ns-3, in order to evaluate the
performance of the technology in several scenarios. This work
aims to be a reference for a first comparison between ns-3
LoRaWAN modules for ns-3 users. It also provides relevant
information about the LoRaWAN standard and on the use of
the modules, allowing other researchers to easily and quickly
start their own studies with the simulators.

C. Related Work

Many surveys or review papers about LoRa are available
in the literature. The survey [16] presents a complete
literature review and analysis of the research published from
2015 to September 2018 that are accessible via Google
Scholar and IEEE Explore databases. It covers a wide range
of papers and categorizes them in aspects like designing
network-level simulators, deployed LoRaWAN testbeds,
application studies, LoRaWAN improvements, mathematical
and empirical LoRaWAN network models. Additionally, it
brings an overview of LoRa and LoRaWAN technologies,
discusses challenges that still need to be addressed in
LoRaWAN, and compile all the knowledge considered
providing a Strength, Weakness, Opportunity, and Threat
(SWOT) analysis of LoRaWAN. The work in [17] has a similar
purpose as the work in [16], although there is a more compact
literature review.

Paper [18] is an overview paper that brings analysis and
discussions about the performance evaluation done via a
test-bed and simulations. The paper [19] contextualizes
the LoRaWAN protocol on the IoT scenario highlighting
obstacles, challenges, open issues, use cases, and research
opportunities, with a brief comparison with other standard
protocols. Similarly, the survey [20] validates LoRa
technology as a good candidate to fulfill IoT requirements.

Although the survey [16] has brief comments about several
LoRaWAN system-level simulators on one of their categories,
some of the existing simulators are missing. No work until
now has tested and analyzed all the different implementations
of LoRaWAN modules in ns-3. In this paper, we present a
survey of these simulators, along with their key features and
limitations. We labeled them as Module I through IV, in order
of the date they were made publicly available. Most of these
modules were already extended with additional LoRaWAN
features and improvements after their first release, which are
also presented in this article.

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, NO.1, 2021. 19

TABLE II
POPULAR SIMULATION TOOLS FOR WIRELESS NETWORKS.

Simulator Language License Native GUI Support URL
ns-2 C++ and OTcl Open source No http://nsnam.sourceforge.net/wiki/index.php/Main_Page
ns-3 C++ and Pyhton Open source No https://www.nsnam.org

OMNeT++ C++ Open Source Yes https://omnetpp.org
OPNET C and C++ Proprietary Yes https://www.riverbed.com/products/steelcentral/opnet.html
NetSim C and Java Proprietary Yes https://www.tetcos.com

TABLE III
POPULAR SIMULATION TOOLS FOR LORAWAN.

Simulator Language URL
Module I - ns-3 [9] C++ and python https://github.com/signetlabdei/lorawan

Module II - ns-3 [10] C++ and python https://github.com/networkedsystems/lora-ns3
Module III - ns-3 [11] C++ and Python https://github.com/imec-idlab/ns-3-dev-git/tree/lorawan
Module IV - ns-3 [12] C++ and python https://github.com/drakkar-lig/lora-ns3-module

FLoRa - OMNeT++ [13] C++ https://flora.aalto.fi/
LoRaSim - SimPhy [14] Python https://www.lancaster.ac.uk/scc/siteelcentral/opnets/lora/lorasim.html

The remainder of this work is organized as follows. Section
II briefly describes the major technical details of LoRa and
LoRaWAN. Section III presents our survey of the available
modules for ns-3. Section IV presents our experiences when
testing the modules. Finally, Section V concludes with our
comments on the different implementations.

II. LORA AND LORAWAN TECHNOLOGY

The term LoRa (meaning Long Range) is commonly used
to refer to three distinct aspects of the technology. The first
and correct aspect is the modulation scheme employed by the
transceivers. In this case, it refers to the proprietary PHY-layer
technology developed by French company Cycleo, which was
acquired in 2012 by Semtech Corporation, the sole supplier
of LoRa-enabled Radio Frequency (RF) chips. LoRa can also
be wrongly used to refer to two other aspects: the network of
end-devices and gateways that employ LoRa modulation, or to
the MAC-layer specification of these networks. Both of these
are actually related to the LoRaWAN standard.

The LoRaWAN standard is maintained by the LoRa
Alliance, a group of research institutions and companies
that are interested in the development and expansion of
LoRa-based LPWAN IoT networks. Despite being based on
a patented PHY implementation, the LoRaWAN standard is
open-source and described in [21]. It defines physical layer
parameters, frame formats, classes of devices and security and
network protocols.

The remainder of this section examines the key aspects
of the LoRa PHY-layer and LoRaWAN MAC-layer
specifications.

A. LoRa Physical Layer

The LoRa modulation is based on a spread spectrum
technique called Chirp Spread Spectrum (CSS). Like the
Direct Sequence Spread Spectrum (DSSS) technique, CSS
spreads a signal across a bandwidth wider than the minimum
required for its data rate. Thus, the resulting transmission is
robust against narrowband noise. This characteristic allows
LoRa to improve the receiver’s sensitivity and extend the range

of communication, at the cost of a lower spectral efficiency
when compared to narrowband transmissions [22].

In DSSS, a signal is spread by means of an operation with
a pseudo-random sequence. A bit on the original signal is
represented by a certain number of “chips”. Since the chip rate
is higher then original signal’s rate, the resulting spectrum is
wider.

In contrast, CSS utilizes a carrier signal whose frequency
varies continuously over the entire bandwidth to obtain the
spread effect. This signal is called a chirp.

Each chirp transmitted corresponds to a single symbol, thus
the symbol period is equal to the chirp duration, Ts .

The number of possible starting frequencies and therefore
the number of symbols a chirp can code depends on the
Spreading Factor. The Spreading Factor (SF) is a parameter
of the LoRa modulation, and is defined by the relation:

2SF = BW · Ts, (1)

where SF also determines the number of code words as 2SF .
Therefore, each chirp can carry SF bits, and the interval ∆ f
is

∆ f =
BW
2SF
. (2)

The spreading factor can vary from 7 to 12. It is also related
to the chirp duration. This is because the chip rate Rc , defined
as

Rc =
2SF

Ts
= BW, (3)

is always constant and equal to the bandwidth BW. Therefore,
the chirp duration doubles with each increment of the SF. This
results in the expression for the raw bit rate Rb , which is

Rb =
SF
Ts
= SF

BW
2SF
. (4)

Table IV shows different data rates computed using
Equation (4). The bandwidth in LoRa transceivers can be set
to 125, 250 or 500 kHz. Other expressions and details on the

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, NO.1, 2021. 20

LoRa modulation can be found in a document provided by
Semtech in [23].

TABLE IV
DATA RATES (IN KBPS) FOR DIFFERENT COMBINATIONS OF BW AND SF

(BEFORE FEC IS APPLIED).

SF ↓ 125 kHz 250 kHz 500 kHz

7 6.835 13.671 27.343

8 3.906 7.812 15.625

9 2.197 4.396 8.793

10 1.220 2.441 4.8823

11 0.671 1.342 2.685

12 0.366 0.732 1.464

Increasing SF allows more bits per symbol, as well as a
chirp of longer duration, meaning that the signal is more robust
to interference or noise. This, however, lowers the data rate of
the communication, as seen in Equation 4.

At reception, demodulation is performed my multiplying
the signal with an un-shifted down-chirp signal of same BW
and SF. The resulting signal is sampled at the chip rate, i.e.,
BW Hz. Then, the Fast Fourier Transform (FFT) is computed,
creating a signal with a peak shifted by the shifting value used
to encode the symbol. More details about the demodulation
process can be found in [24]. Since the Lora Technology
is patented and there is not a publicly available description
of the signal processing equations, the paper [25] gives the
first rigorous mathematical signal processing description of
the modulation and demodulation processes and a theoretical
derivation of the optimum receiver.

In addition to multistate CSS, LoRa employs some
encoding schemes before modulation and transmission to
further improve its robustness and reliability [26]. Data
whitening, Forward Error Correction (FEC), Interleaving and
Grey Mapping are applied to the data before modulation
and transmission. By adjusting its transmission power, SF,
bandwidth and FEC coding rate, LoRa is able to adapt to
different conditions to ensure a good link quality, or to
optimize energy consumption and data rate. For example, if
the battery life of the device is critical, SF and BW can be set
in their lower values to minimize the time on air of packets
and noise degradation over the bandwidth.

B. LoRaWAN MAC Layer

The architecture of a LoRaWAN is represented in the
Fig.1. It follows a star-of-stars topology. The End-Devices
(EDs), typically sensors and actuators, can only send/receive
messages to/from Gateways (GWs), using a LoRa link. The
gateways forward EDs messages to the Network Server (NS)
via a high capacity link (like a cellular, Ethernet or optical
link). The NS can process the information received from the
ED and run a customer’s application locally or remotely. It can
also send downlink messages to the EDs via the gateways, if
necessary.

As shown in the Fig. 1, an ED is not explicitly paired
with a single GW. It simply sends its packets to any available
gateway in its range, which then receives and forwards these

Fig. 1. Basic topology of a LoRaWAN. Reproduced from [26].

messages to the NS. It is the server’s responsibility to filter
duplicate packets and decode them. The NS also assigns the
best gateway to deliver a packet to an ED. The NS and ED
are logically linked and the GW is just a bidirectional relay,
transparent to the application running in the ED and NS.

The LoRaWAN standard specifies several MAC commands
that the NS can use to exchange information and control the
behavior of an ED [18], [21]. The NS can, for example:
• Request reports on the battery life or configuration of EDs

(DevStatusReq);
• Report to EDs on their link quality by replying the

received power at the GW (LinkCheckReq);
• Issues limitations to the ED’s transmit time to regulate

network traffic or to comply with Duty Cycle regulations
(DutyCycleReq);

• Set the transmission parameters of an ED, thus enabling
Adaptive Data Rate (ADR) algorithms (LinkADRReq);

LoRaWAN also specifies three classes of end-devices. Each
class has different behaviors and features in their MAC layer:
• Class A is the basic class. All LoRaWAN EDs are

required to support its features. Class A devices allow
asynchronous, bi-directional transmissions, initiated by
the ED. A packet is scheduled to be transmitted according
to the device’s needs, on a random basis (an ALOHA-like
protocol). Two short downlink windows are opened after
an uplink transmission, allowing the NS to send data
or commands. The windows are opened on different
frequency channels previously agreed by the NS and
ED. Class A is intended for devices that require low
power consumption and do not need to receive downlink
messages often;

• Class B devices can open scheduled downlink slots in
addition to the random Class A receive windows. To
do so, Class B devices can synchronize with the NS
using beacon signals periodically broadcasted by Class
B-enabled gateways. It is intended for devices that need

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, NO.1, 2021. 21

to receive downlink messages or commands in some
frequency from an application running remotely;

• Class C devices are always available to receive downlink
packets, if they are not transmitting. Therefore, it is
intended for devices that do not have energy constraints
and need short latency in their communication.

It is worth mentioning that LoRaWAN also supports
Acknowledge (ACK) messages, allowing the NS to confirm
a packet’s arrival to an ED, and vice-versa. However, this
feature is not mandatory, so as to allow end-devices to be
as simple as possible. Additionally, despite its ALOHA-like
behavior, studies [12], [26] show that the packet loss rate in
LoRaWAN networks for each spreading factor is lower than
that expected of pure ALOHA. This is due to the capture
effect, since one of two packets sent at the same time on the
same SF and band can be correctly received when there is
a minimum power difference. Another factor that influences
LoRaWAN’s packet loss behavior is that transmissions in
different spreading factors are not perfectly orthogonal, as
showed in [22]. However, most of the simulators wrongly
consider that signals sent in different spreading factors never
interfere with each other.

LoRaWAN also defines several regional parameters that
comply with different regulatory standard for the Industrial,
Scientific, and Medical (ISM) bands worldwide [27].
Aspects like frequency bands, channel planning, maximum
transmission power, duty cycle, preamble formats and payload
sizes are specified. In Europe, for example, LoRaWAN
networks are expected to operate with a bandwidth of 125 kHz,
on the 433.175 - 433.575 MHz or 868 - 870 MHz range, and
with a maximum duty cycle of 1%.

Finally, the standard specifies many other aspects of the
protocol such as frame and header formats for the PHY
and MAC messages, device activation and join procedures,
encryption schemes and more. LoRaWAN also allows
non-standard messages formats that are used exclusively
within a private network.

C. The ADR Mechanism

The transmission adaptation mechanisms (ADR) enable
better leverage of the LoRa PHY layer advantages. It is
possible to drastically increase the network capacity when
smartly adapting the SF and transmission power in each ED.

The LoRaWAN ADR standard is divided in two parts: one
occurs in ED and the other in the NS. The first happens
when the connection to the server is lost. In this case, the
transmission power value, followed by the SF, are increased
until the connection is reestablished. On the NS side, the
ADR algorithm receives the SNR and RSSI value of the
last transmissions of each device. With these values, the
transmission parameters values for each ED can be set by
some method of decision. When ADR is activated, the server
sends the SF and transmission power chosen values for each
ED through MAC commands.

The adaption algorithm greatly influences the network
efficiency and the capacity. The Semtech Corporation provides
a sample ADR algorithm, although it is not an optimal

solution [28]. In this method, the NS keeps in memory the
SNR values of the last 20 frames received from each ED.
The transmission power and SF values are chosen in order
to establish a pre-configured margin between the SNR of the
future transmitted packets (with the new power and SF values)
and the receiver’s minimum sensitivity [28]. With this method,
coverage is guaranteed with energy efficiency and adequate
data rates for each ED [28].

III. LORA AND LORAWAN PROTOTYPING IN NS-3

We now present a survey of the implementations of
LoRaWAN in ns-3. These are mostly available as modules that
can be added to an ordinary ns-3 installation. As previously
mentioned, we labeled them as Module I through IV, in order
of date they became publicly available. At the end of this
Section, Table V presents an overview of the features discussed
for each module.

While Module I was tested in ns-3 version 3.27 and 3.29,
the other ones were tested in ns-3 version 3.28. It is also
worth mentioning that despite the paper [29] adding class B
devices to Module III, all four modules originally implement
only Class A devices, since it is the mandatory class on
LoRaWAN’s protocol.

Another important general information is that only modules
I, II and III have a LoRaWAN power consumption model
implemented, which are based on a simple state machine built
only with data provided by LoRa’s datasheet. The authors
in [30] used real data analyses of energy consumption from
the most common LoRa transmitter (SX1272)) together with
data provided by LoRa’s datasheet for the implementation of
a new LoRaWAN energy consumption model in ns-3, which
was validated by comparison with an analytical model [6].
They integrated it with modules I, II and III and made them
publicly available in [31], [32], [33].

A. Module I

Module I was developed in 2016 as a part of the Masters
Thesis of D. Magrin [26], in The University of Padova, Italy.
It is available for download in [34]. The authors developed
their simulator by simplifying the transmission chain in two
main models. A very detailed description of those models
is provided in [26]. The first, a link measurement model, is
used to compute the effects of propagation that affect signal
strength at reception. It takes into account the path loss and
building penetration loss. It also features a Correlated Shadow
Model that considers the correlation between the shadowing
experienced by devices that are physically close.

The received power computed by the link measurement
model is used by the link performance model to evaluate if
a transmission was successful and, if otherwise, what caused
the packet loss (e.g. low Signal-to-Interference-plus-Noise
Ratio (SINR) at the reception). To accomplish this, the
model considers the receivers sensitivity (based on the
datasheet of the SX1301 chip [35], employed in gateways)
and the interference introduced by overlapping packet
arrivals, considering the non-orthogonality between symbols
of different spreading factors and the capture effect. The

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, NO.1, 2021. 22

authors choose to use the SINR threshold matrix T presented
in [22] to decide whether a packet can survive interference
from other LoRa transmissions or not, which is given by

T =



6 −16 −18 −19 −19 −20
−24 6 −20 −22 −22 −22
−27 −27 6 −23 −25 −25
−30 −30 −30 6 −26 −28
−33 −33 −33 −33 6 −29
−36 −36 −36 −36 −36 6


. (5)

Each element Ti j of the matrix has the minimum value of
SINR margin required for a packet of SF i to not collide
with an interferer packet of SF j, where i and j represent
the row and column of the matrix respectively, and start from
the lowest SF value (SF 7) to the highest (SF 12).

The matrix main diagonal in Equation (5) represents the
capture effect. For instance, one of two overlapping packets
at the same SF and frequency can be received correctly if
one packet is received at least 6 dB above. The rest of
the matrix shows the received power difference between two
overlapping LoRa packets of different SFs, in order to be
considered orthogonal. Therefore, the higher is the packet’s
SF, the more resistant it is to the interference of other LoRa
signals. The matrix elements were calculated considering
complete overlapping between signals. To compensate that,
the authors estimate the equalized interfering signal taking
into consideration the real overlapping time. One important
result of this is that two out of the two overlapping packets
with the same SF and similar received power can be correctly
decoded when the overlapping time is sufficiently small, so
that the equalized SINR is above 6 dB. This fact was actually
observed in practical LoRa experiments [36].

Many of these models were implemented by leveraging
the already established models in ns-3. For instance, the
Propagation Loss Model is implemented using the default
LogDistancePropagationLossModel class in ns-3. The code is
well documented, and a file describing the module is provided.
All of this makes it easier to understand and to integrate the
code with other ns-3 modules. Finally, the module does not
alter existing ns-3 code and can be added to any installation.

One of the main drawbacks of this module is the inability
to account for interference of other systems in the ISM
band and the simple implementation of the NS, which has a
direct link to the gateways. Although the simple NS does not
implement all MAC commands, it already has all the structure
to allow the implementation of additional MAC commands.
The implementation of LinkADRReq is the only completed one
in the most recent version of the module. The NS also handles
the header formats, the addressing of EDs, the logical channel,
and the duty cycle management, like the other modules.

Downlink transmissions were absent in the first release of
Module I [37], but that feature was later added to the module
by its authors. The improved Module I is publicly available in
[34], which also was updated with a LoRaWAN energy model
and ADR algorithm.

The authors used Module I in [9], where they evaluate
throughput and packet loss in scenarios with a single,

central gateway. They also analyzed the effects of duty cycle
limitations and SF distribution in the network performance.
The improved version of Module I, where the authors
implemented ACK messages, was used in [38] to study the
impact of confirmed traffic in LoRa networks, concluding
that it can negatively impact the system performance if
not restricted. For the analysis in [39], they improved their
module to make it more configurable and appropriated to
test network configurations different from the standard. They
have obtained significant performance gains when properly
setting their proposed configuration parameters, like change
in transmission/reception priority, number of parallel reception
paths, number of allowed retransmissions, and others.

Other researchers have also used the module. In [40], it
was proposed a Multi-User ACK-Aggregation Method. They
perform simulations using Module I and showed that the
method could improve throughput from 10 % to 30%. In [41],
ns-3 was used to validate the proposed analytical mathematical
model, which considers SF orthogonality and the capture effect
included in downlink and uplink transmissions.

In [42], the authors used ns-3 to compare the capacity of
LoRaWAN with IEEE 802.11ah, another LPWAN standard.
The result shows that the former performs better regarding
this aspect. In [43], the authors evaluated the improvement
in the scalability of LoRa networks when persistent-Carrier
Sense Multiple Access (p-CSMA), a contention-based medium
access strategy, is used as the MAC mechanism instead of the
ALOHA-like LoRaWAN standard.

In [44], the module is used to assess the behavior
of LoRaWAN in a typical industrial monitoring scenario.
The authors used a different model of interference and
implemented energy consumption models that interface with
the energy framework in ns-3. However, they did not make
them available. An energy consumption model was also
added for the studies in [45], which is based on the
existing ns-3 Wi-Fi energy consumption model and LoRa
energy specification, but also not publicly available. The
authors tested different configurations of SF distribution
for network slicing. Two proposals are made: an adaptive
dynamic inter-slicing and an intra-slicing resource allocation
algorithms. Resources are distributed between slices based on
urgency and reliability, and on each slice, resource allocation
is optimized based on QoS features.

B. Module II

The Module II was developed by Brecht Reynders and
other researchers from KU Keven University, in Belgium. It
is available for download at [46]. The authors stated in [10]
that their module has been in use for two years in LoRaWAN
research.

The module is coded in a similar style to ns-3 default
modules. It connects to ns-3 callbacks frameworks, and
features “helpers” objects to configure the network. For this
reason, despite the lack of documentation and few comments,
it is possible to understand the code. The module was
submitted to The Workshop on ns-3 (WNS3, 2018) and was
accepted for publication [10].

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, NO.1, 2021. 23

The physical layer is implemented in the Loraphy
and Loragwphy, for ED and GW, respectively. The class
spectrumsignalparameters is used to set up parameters like
SF and bandwidth. The PHY implementation does not take
into consideration SINR thresholds due to non-orthogonality
between transmissions of different SF as Module I. Still,
the interference caused by these transmissions is taken into
account, modeled as noise when calculating Signal-to-Noise
Ratio (SNR). The probability of bit error (Pe) is given by

Pe =
1
2

Q

(
1.28 ∗

(
k

SNR ∗ B
RB(S)

)1/2
− 1.28 ∗ k1/2 + 0.4

)
, (6)

where k means the number of bits per symbol, RB(S) is the
bit rate, B is the bandwidth, and Q(·) is the tail distribution
function of the standard normal distribution. Equation (6)
was obtained through LoRa physical layer simulations in
Matlab [10]. An interesting observation of these simulations
is the demodulation process of LoRa symbols, which occurred
through correlation and not by FFT.

Module II assumes that a packet was not received correctly
when five or more bits are received incorrectly. The decision
whether a bit is received successfully or not is made by
calculating the probability of bit error. The bit error rate
is instantly recalculated for all packets being transmitted
whenever a new package is arriving simultaneously.

The capture effect is also implemented, but it is assumed
that at least one of the packets is lost when two
packets with the same SF are transmitted simultaneously.
That occurs regardless of the time interval in which the
packets coincide on the channel. This is a disadvantage
of Module II over Module I, since its implemented
physical layer becomes more rigid in this aspect. The
MAC layer is implemented in classes LoRaNetDevice,
LoRagwNetDevice, MacHeader, LoRaMacCommand, and
LoRaRadioEnergyMode. More information about how these
classes work can be found in the original article [10].

One of the advantages of Module II is its IP network
implementation for communication between GW and NS,
whereas in the other modules, GW and NS are directly linked,
or the NS is not present at all. It can also simulate interference
from other protocols, a feature that Module I lacks. Other
features of the module include the support for ACK commands
and slot time reservation for Downlink (DL) messages, a
behavior of Class B devices. It also supports MAC commands
and has the functionality to increment the SF of an ED after
unsuccessful ACK messages. This is an example of an ADR
algorithm that has been proposed in the literature. Finally, it
supports the energy framework from ns-3.

The authors have published three works using their module.
In [10], where they also introduced the module, they proposed
different scenarios to evaluate the performance of LoRaWAN.
They simulate 100, 500, and 1000 EDs distributed in a circle
around a central gateway, without ACK messages. Then, they
repeat the simulation with seven GWs, spread in a hexagonal
grid, and then with a single GW again, but with ACK
messages. By evaluating the Packet Error Ratio they concluded
that LoRaWAN networks poorly scale when ACK messages

are used, and that the use of multiple GWs greatly improves
network performance.

In [47], the authors present RS-LoRa, a novel MAC protocol
to improve reliability and scalability of LoRaWAN. By using
a lightweight scheduling scheme, the GWs guide the EDs
in their range to use different SF, enabling simultaneous
transmission and reducing packet error. In [48], they use the
module to propose a scheme for power and SF allocation in
long-range networks.

C. Module III

Module III was developed by researchers from University
of Ghent, Belgium, and is available at [49].

For the PHY implementation, the authors developed an
error model based on a series of Matlab simulations that
measured bit error rate for various LoRa PHY configurations
over an Additive White Gaussian Noise (AWGN) channel.
Then, they used the ns-3 class SpectrumPhy to build the
PHY layer, thus allowing for inter-protocol interference. They
modeled the execution flow of the devices as a finite state
machine and chose to not differentiate the physical layers
of ED and GW. This means differences in their transceiver
design are not taken into consideration. The MAC layer,
however, is different for ED and GW, as they operate in a
very different way. The MAC class handles packet queuing,
receive windows, acknowledge messages and re-transmissions.
They also implemented a simplistic model of the NS, which,
like in Module I, is directly connected to the GW and does
not receive packets through an IP network.

Further details on how the module was conceived and how
it works can be found in [11]. In this work, the authors used
the module to evaluate the scalability of LoRa networks. First,
they studied how to best assign the SF to EDs, arriving in a
solution based on Packer Error Ratio (PER) thresholds. They
used a scenario with a single central gateway and a varying
number of EDs.

Then, they evaluate the impact of confirmed messages in the
Uplink (UL) and DL. Results show that while the use of ACK
messages severely hinders the packet delivery ratio on uplink,
the difference in performance is negligible for confirmed data
in downlink.

In [50] the module is used to study a new algorithm for
assigning SFs. Results show that the probability of uplink
data delivery increases by 20% to 40% while the cost of
power consumption increases only by 1% to 8%. With the
same purpose of improving scalability, [51] shows that a new
method of synchronization and window scheduling for class
A devices increases the packet delivery ratio by 7% to 30%
with no bad influences on power consumption.

Finally, the first implementation and simulation of
LoRaWAN class B were made by extending Module III.
In [52], the authors show their simulations and present an
evaluation of the scalability limits of Class B. The module is
also used in [53] to simulate a strategy of data gathering of
air pollutants in an urban environment. The authors compare
different IoT solutions, such as Bluetooth, Wi-Fi, Zigbee,
cellular networks, and LoRaWAN, concluding that the latter

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, NO.1, 2021. 24

is the best for combining long-range and low costs. Then,
they implemented the proposed system in ns-3, showcasing
its performance in terms of packet delivery ratio.

D. Module IV

The final and most recent module was created by researchers
from the Université Grenoble Alpes, in France. It is available
at [54]. In their article [12], the authors state that their module
was developed based on an open-source code of LoRa Physical
layer and LoRaWAN. They also leveraged existing ns-3 code,
using and modifying the classes related to ALOHA access
method, the spectrum module and the energy framework.

Then, the authors validated their module by comparing the
simulation results with their LoRa testbed data. The outcome
was very encouraging, as the simulation results are very
accurate to the measurements performed. They also compared
the module to the measurements reported in the literature, with
similar results.

Finally, the authors used the module to evaluate the
improvements in performance when contention based medium
access methods, such as Carrier Sense Multiple Access
(CSMA), are used instead of LoRaWAN standard method. In
CSMA, when a device needs to send data, it uses the Listen
Before Talking (LBT) principle to assess whether the channel
is already in use at the time. If positive, it backs off, going
to sleep mode for a random time window before trying again.
If the channel is clear, it can start its transmission. This can
reduce packet collisions at reception, improving the packet
delivery rate, at the cost of more energy consumption due to
the listening operation.

The authors implemented in their simulator the CSMA
protocol, along with a variant called CSMA-x. In CSMA-x,
the device listens to the channel for x ms before transmitting.
If it detects occupancy, it backs off similarly to regular CSMA.
The authors evaluated the packet delivery ratio for a network
with LoRaWAN, CSMA and CSMA-10. The results show that
for denser networks, CSMA and CSMA-10 performs better,
since a high number of devices results in many collisions in an
ALOHA-like protocol. They also evaluated the impact of these
methods on energy consumption, showing that the contention
based strategies actually achieve a better energy performance
as the networks become denser.

Despite this, the module available in [12] lacks their
implementation of CSMA and CSMA-x, as well as any
sample code on how to interface with the energy framework.
Furthermore, no additional documentation is provided, and the
code is not didactically commented. These are some of the
reasons for our problems in using Module IV.

IV. MODULE INSTALLATION AND TESTING

In this Section, we describe our experiences when testing
the four modules. Simulations were performed in almost all
modules for scenarios with a fixed SF 7, fixed SF 12, and
SF distribution methods already available in each module.
Curves of Packet Delivery Ratio (PDR) in function of the
distance from the GW were obtained for each scenario in
every module, except for module IV, as we could not repeat

the simulations due to issues with the available code. Table
VI shows the parameters of the general scenario, remained the
same in each module. EDs are uniformly distributed randomly
around a single gateway. The average time between packets
was defined as 10 minutes in the first three modules. The
EDs sends its packets at a random time and each module uses
a different distribution model. Module I uses a model based
on specification TR 45820 [56]. Modules II and III follow
a Poisson-like model. The only scenario characteristic that
changes from one module to another is the propagation model.
In each module, we choose the most complex propagation
model (in terms of shadowing, penetration loss and fading
model) available in their code. Table VII shows the differences.

A. Module I

Installation of Module I is accomplished by cloning
the repository [34] into the src directory of an ordinary
ns-3 installation, and performing configure and build
commands. The module provides a text file that briefly
describes the PHY and MAC layer models. It also explains
some of the module’s features and limitations, and provides a
list of available trace sources. This is very useful for users who
need to keep track of different events through the simulation.
A class diagram of the module is provided, as well. It aids
in understanding how the code is structured. Additionally, the
authors created a chat in Gitter [57], where anyone can ask a
question about the module’s usage.

The code itself is well organized, and most of the classes
have some comment explaining their function. The module
closely follows ns-3 coding style [58], using “helpers” objects
to setup and configure the network. This makes Module I the
most user-friendly of all implementations.

Module I comes with six example files
showcasing how to setup a simulation. The first,
simple-lorawan-network-example.cc, illustrates what steps
should be done to send one packet from an ED to a gateway.
This example follows the usual ns-3 steps for a simulation
of a wireless network. First, the channel models are created
using “helpers” classes. Then, a network topology is formed
by creating “nodes”. A PHY and MAC behavior is assigned to
these nodes, as well as an application that allows generating
data. Finally, the simulation is started.

While very simple, since a network composed of a single
ED and GW is created, this example is useful to understand
what classes are involved in the process of generating and
sending a packet. Logging is enabled by default, which
means that the user can see each of the methods and classes
being called by the program during execution. Overall, the
example can be used to acquire a better understanding of
the module’s inner workings. This network is used on the
energy-model-example example to show how the Lora energy
model works, in which the only output is the device’s
remaining energy.

The second example, complete-lorawan-network-example.cc,
showcases how to configure a more complex network, with
thousands of EDs and multiple GWs. EDs and GWs are
placed randomly in a circle of a defined radius. Each ED is

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, NO.1, 2021. 25

TABLE V
NS-3 MODULES FOR LORA.

Module URL Used in energy
Framework ACK

Support

Multiple
GW

Network
Server Documentation Other

Features

I [34] [9], [30], [38],
[40], [42]–[45],

[55]

Yes Yes Yes//Under
development Simple Excellent

Great support
by developers,

correlated
shadowing model

I* [31] [9], [30], [38],
[40], [42]–[45],

[55]

Yes No No Simple Excellent
Energy framework

based on
real measurements

II [46] [10], [30], [47] Yes Yes Yes Through IP Good

Provides base class
to implement

applications, highly
configurable NS

II* [32] [10], [30], [47] Yes Yes Yes Through IP Good
Energy framework

based on
real measurements

III [49] [11], [30],
[50]–[53]

No Yes Yes Simple Good Provides many
tracing examples

III* [33] [11], [30],
[50]–[53]

Yes Yes Yes Simple Good
Energy framework

based on
real measurements

IV [54] [12] Yes No No None Poor Module validated
with measurements

TABLE VI
SYSTEM-LEVEL PARAMETERS FOR SIMULATIONS WITH ALL MODULES.

Parameter Value
Cell radius (meters) 100 - 19000

Number of End-Devices 100 - 500
Number of Gateways 1
Packet Size (bytes) 51

Time between Packets (minutes) 10
Simulation Time (hours) 10

Transmit power (pm) 14dBm
Frequency carrier 868.1MHz
Bandwidth (B) 125kHz

TABLE VII
PROPAGATION MODEL USED WITH THE MODULES

Parameter Module I
Propagation Loss Model L = 120.5 + 10 ∗ 3.76 ∗ log10R

Building Penetration Loss Yes
Shadowing Yes
Parameter Module II

Propagation Loss Model Okumura Hata + Nakagami
Building Penetration Loss No

Shadowing No
Parameter Module III

Propagation Loss Model L = 46.6777 + 10 ∗ 3 ∗ log10R
Building Penetration Loss No

Shadowing No

assigned an SF based on the received power level computed
by the link measurement model described in Section III-A.
A channel model considering only path loss is instantiated,
although the option of building propagation loss is already
implemented, but it is disabled by default. The EDs are setup
with an application that periodically sends messages, and the
simulation is started. The metrics examined are the packets
sent and packets received by at least one gateway. Although
the module can create a network with multiple GWs, some

metrics will not be easily obtained correctly, since the packet
tracking system public available is not meant to be used with
multiple gateways. The authors claim that for some cases like
data about MAC layer performance, the module will work
properly; in other cases, the user can write its own packet
tracking system [57]. Despite these issues, the authors affirm
they are working on a packet tracking system available for
multiple gateways [57]. Meanwhile, the example is useful
since it presents how to build a more complex network
and how to obtain certain metrics. The aloha-throughput.cc
example creates a similar network, but some configurations
are changed to analyze the network performance if the system
uses a ALOHA protocol, when collisions imply the loss of
both packets.

Another example is network-server-example.cc. It creates a
network composed of one ED, GW, and NS that introduces
how to setup these components to interact with each other.
Similarly to the first example, it showcases the step-by-step
process that the simulation takes to generate and transmit
a packet from the ED through the GW, and how the NS
interprets it.

The adr-example.cc creates a simple network with fixed
and mobile EDs. Through a server-side application, an ADR
algorithm sets up the Spreading Factors of EDs. The examined
output are the packets sent and packets received by at least one
GW. Some files are also generated, which display essential
metrics obtained periodically during the simulation: general
MAC performance (globalPerformance.txt), PHY performance
per GW (phyPerformance.txt) and position, data rate and TX
power of every ED (nodeData.txt). Through these files, we
can see changes in the network over time due to the ADR
algorithm.

We modified the parameters of the second example to obtain
the curves presented in Fig.2 and Fig.3. In each module, we

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, NO.1, 2021. 26

choose one example to parameterize and generate the curves
with SF 7, SF 12 and the available ADR mechanism. Other
parameters for each module are presented in Table VI.

In Fig.2, it can be seen that for SF 7, the packet delivery
ratio (PDR) starts slightly better than SF 12, but PDR declines
much faster with distance from the GW for SF 7. The best
performance is reached by the ADR mechanism available in
Module I, where the SFs are assigned to the EDs by the
network server based on the SNR of past packets. For 500 EDs,
the difference between SF 7 and SF 12 is much more evident.
With SF 7, PDR starts high but declines quickly as the distance
increases, very similar to the 100 EDs scenario. With SF 12,
PDR starts much smaller, but its value continues similar when
ranging the distance, different from the 100 EDs scenario.
Since SF 12 provides a long range, a lot of interference will
occur when many EDs are spread in a small area. As distance
from the GW increases, less interference happens, but more
EDs will be out of range. Since SF 12 has a long range, these
two effects combined a more stable tendency, as shown in
Fig.3. Finally, for the ADR mechanism, PDR is almost the
same with 100 and 500 EDs.

Fig. 2. Module I - Packet Delivery Ratio for different SF assignment schemes
with 100 EDs.

Fig. 3. Module I - Packet Delivery Ratio for different SF assignment schemes
with 500 EDs.

B. Module II

Module II installation is accomplished in the same way as
the previous module, except for some line codes that have to be
added for the correct building of the module. The most recent
version of the module requires compiler support for the ISO
C++2014 standard, while ns-3 uses ISO C++2011 as default.
That can be changed by modifying the wscript of ns-3. The
repository is found in [46].

Unlike Module I, there is no documentation explaining the
main features of the module. The article that introduces it,
which presents a class diagram of the module, serves as the
best reference to understand the implementation. Besides that,
the code is well organized, most of the classes have some
commentary explaining their functionality, and the code is
compliant with ns-3 standards.

Three examples are provided. The first one, lora_battery.cc,
shows the step-by-step process to configure a network with
EDs and a GW, setup channel models, set mobility and
energy models on the nodes, and how to use the tracing
system to obtain some metrics. The simulation shows the
battery depletion of the devices as they transmit and also
some data related to packet transmissions and the number of
re-transmissions. Overall, it illustrates satisfactorily how to use
the module. A similar code is rs_example.cc, but the proposal
is to show data related to packet transmissions for a different
type of LoRa network, which allows beaconed scheduling.
The example lora.cc is a more general example, which allows
us to set some network configurations, like choosing one of
the server’s application options, if we use ACK messages,
LoRa or rs-LoRa MAC layer, add interference and monitor
power consumption. It illustrates properly how to use different
module functions.

We modified the parameters of the first example to generate
the curves of Fig.4 and Fig.5, which happen to be very
different from Module I. With 100 EDs and fixed SF 7, the
PDR already starts considerably low (at 60%) and declines
quickly as distance from GW increases. The interference is
higher, even for SF 7, since this module models the capture
effect differently. Since SF 7 has a low range, the curve
declines quickly as the distance ED-GW increases. For a fixed
SF 12, interference is occurring for small distances as well,
but more devices are in the coverage range, and it remains
almost constant as the distance increases. In contrast with the
Module I, for 100 EDs the SF 12 has a better result then
SF 7. With a different propagation model, the better coverage
of SF 12 has more influence than the smaller interference of
SF 7, even for shorter distances. With 500 devices, as shown
in Fig.5, too many devices in small distances produce more
interference with SF12 then SF 7 due to its long range, leading
to the low PDR values for both cases.

Module II provides an ADR mechanism, were all devices
start with SF 7, and then EDs SF are adjusted by the network
server based on the channel conditions. If a device sends 91
packets and does not receive a message from GW, the ED
automatically increases its SF. We call this ADR mechanism
“Fixed SF7 + ADR”. In Fig.4, we can see that the ADR
presents the best PDR for up to 6000 m, and it declines with

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, NO.1, 2021. 27

distance, but still performing better than the fixed SF 7 setting
at longer distances. Regarding the scenario with 500 EDs,
presented in Fig.5, the ADR mechanism performs better than
both Fixed SF 12 and SF 7 settings, showing its efficiency
regarding the PDR. The ADR proposal of Module II performs
better than the standard ADR mechanism implemented by
Module II e III.

Fig. 4. Module II - Packet Delivery Ratio for different SF assignment schemes
with 100 EDs.

Fig. 5. Module II - Packet Delivery Ratio for different SF assignment schemes
with 500 EDs.

C. Module III

Module III is available to download in [49]. Unlike the other
modules, this repository contains the entire ns-3 directory with
the module inside. This makes it more difficult to port the
Module III to different ns-3 installations, although we verified
that such porting is possible.

Module III includes a short text file with a brief explanation
about it. The module comes with many example codes.
However, most of those are broken and will cause ns-3 to
fail when trying to build the simulator. The only example
that compiles is lorawan-tracing-example.cc. The others must
be removed from the example folder, or examples must be

disabled in ns-3 configuration so that it can successfully be
built.

The authors state in their article [11] that this example was
used for all simulations in their work. The code is indeed
pervasive and seems to showcase almost all of the features of
the module. This makes it very hard to understand the code,
especially considering its minimal documentation.

Nevertheless, the example can be used as a reference to
elaborate one’s own simulation since it showcases how to
setup the network and the tracing sources. Upon execution,
the examples generate several files containing data from the
simulation. It is worth mentioning that this example uses some
functions available only in C++11. The default ns-3 code
avoids using these functions, so many ns-3 installations use
compilers incompatible with C++11. Version 5.0 or higher of
gcc is required to run the example.

We changed the example to generate the curves in Fig.6
and Fig.7. The graphics are similar to those of Module I,
however interference has more impact with SF 12. For SF 7,
the PDR tendency starts in a equal point to the ADR, but it
quickly decays in function of the distance from the GW due
to its low range in both scenarios. For fixed SF 12 and 100
EDs, as shown in Fig.6, the PDR starts at just around 70%
due to interference between devices closer to each other and
with long range. Also, up to approximately 7000 m the PDR
remains almost constant, then it starts to decay as distance
increases, remaining higher than SF 7 case. For 500 EDs,
shown in Fig.7, interference is even higher for the fixed SF 12
scenario, and the PDR starts around 30%, decreasing to 20%
around 6000 m. We can also observe the tendency of the PDR
for a random SF and the ADR mechanism implemented in
Module III, where it presents the best performance in both
100- and 500-ED scenarios.

Fig. 6. Module III - Packet Delivery Ratio for different SF assignment
schemes with 100 EDs.

D. Module IV

Module IV is found in [54]. It must be cloned to the
src directory of the ns-3 installation, and its folder needs
to be renamed to lora before ns-3 configure and build
commands are executed. The reason for renaming the folder is

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, NO.1, 2021. 28

Fig. 7. Module III - Packet Delivery Ratio for different SF assignment
schemes with 500 EDs.

because the repository’s name does not match the name given
to the module in the building scripts.

This module comes with a single example. This example, by
default, simulates a network with ten EDs and one GW, with a
simulation duration of 100 s. The EDs send messages, and the
number of messages that successfully reach the GW is shown.
The code defines a Loraexample to hold all methods to setup
and start the simulation, also some variables like the number
of nodes and simulation time. We found that no matter the
value assigned to the size member of the Loraexample class,
which represents the number of EDs, the number of packets
that are shown to be received is 10.

There is no user-friendly documentation about the code and
its configuration, hindering an easy simulation campaign setup.
A series of methods are defined and called on the example
instead of using helpers to configure the network. Finally,
the classes related to CSMA and the energy framework are
missing. Due to the issues listed above, we could not produce
results for this module.

V. CONCLUSION

In this paper, we presented an overview of the available
tools for simulation of LoRaWAN in ns-3. The development
of those simulators is essential to aid the community to better
understand and assess this LPWAN protocol.

In our survey, we found Module I to be the easiest to work
with, as an excellent documentation and organized code are
provided. Although many features are not available yet, such
as IP Network, complete NS implementation, and interference
with other protocols, the authors have shown they are still
working on the module, and provide excellent support to other
users. It is also the preferred module by the community, as it
is the most used outside of the authors’ works.

Module II provides the most LoRaWAN features, with
special mention to the more realistic implementation of the NS
and for addressing some shortcomings of the other modules. It
also allows for the implementation of algorithms on the server
side. However, its documentation is found only in research
papers.

Module III also lacks some features, since the NS
implementation is simple. Its original paper [11] provides a
detailed description of the module, although the code in the
repository requires some work to compile correctly.

Finally, Module IV was the only one validate through real
measurements. However, missing functions in the repository
and no additional documentation, as well as a broken sample
code, are factors that restrict the simulation campaigns.

Overall, we believe Module I is the most promising,
considering the continuous support from the authors and
popularity in other researches. However, if one wishes to
study inter-protocol interference, Module II and III are the
better choices. If multiple gateways are necessary, the use
of Module II and III could be easier, depending on which
metrics are required, although extending Module I is probably
the best approach. In addition, Module II is the better choice
for evaluating server-side algorithms, as its NS has the most
complete implementation of all modules.

Finally, we provide a list of open issues that are important
to the development of more realistic simulations. Module I
does not cover inter-protocol interference and needs a better
implementation of the Network Server to better simulate
advanced features like different Adaptive Data Rate (ADR)
algorithms, to support device joining procedures and to
respond to the ED’s MAC commands. Module II is the most
complete of all modules, but still lacks some MAC commands,
since only the LinkAdrReq and LinkAdrAns commands are
implemented. Module III still need integration with an energy
framework and also needs a more realistic implementation
of the Network Server. Unavailable features in all modules
includes integration with more realistic propagation models,
implementation of classes B and C devices, and the modeling
of interference between partially overlapping channels. Since
the modules presented are open-source, we believe those
issues can be explored by the academic community to greatly
improve the available tools for LoRaWAN simulation.

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” IEEE Communications Surveys and
Tutorials, 2015, doi: 10.1109/ITST.2015.7377400.

[2] ITU-R, Report ITU-R M.2410-0 Minimum requirements related to
technical performance for IMT - 2020 radio interface(s), International
Telecommunication Union Std., 2017.

[3] F. Montori, L. Bedogni, M. Di Felice, and L. Bononi,
“Machine-to-machine wireless communication technologies for
the Internet of Things: Taxonomy, comparison and open issues,” 2018,
doi: 10.1016/j.pmcj.2018.08.002.

[4] K. Staniec and M. Kowal, “LoRa Performance under Variable
Interference and Heavy-Multipath Conditions,” Wireless
Communications and Mobile Computing, vol. 2018, pp. 1–9, 04
2018, doi: 10.1155/2018/6931083.

[5] J. Petäjäjärvi, K. Mikhaylov, A. Roivainen, T. Hänninen, and
M. Pettissalo, “On the coverage of LPWANs: Range evaluation
and channel attenuation model for LoRa technology,” in 2015 14th
International Conference on ITS Telecommunications, ITST 2015, 2016,
doi: 10.1109/ITST.2015.7377400.

[6] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez,
J. Melia-Segui, and T. Watteyne, “Understanding the Limits
of LoRaWAN,” IEEE Communications Magazine, 2017, doi:
10.1109/MCOM.2017.1600613.

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, NO.1, 2021. 29

[7] M. Bor, U. Roedig, T. Voigt, and J. M. Alonso, “Do LoRa low-power
wide-area networks scale?” in MSWiM 2016 - Proceedings of the 19th
ACM International Conference on Modeling, Analysis and Simulation
of Wireless and Mobile Systems, 2016, doi: 10.1145/2988287.2989163.

[8] M. Kabir, S. Islam, M. Hossain, and S. Hossain, “Detail comparison of
network simulators,” International Journal of Scientific & Engineering
Research, 2014.

[9] D. Magrin, M. Centenaro, and L. Vangelista, “Performance evaluation
of LoRa networks in a smart city scenario,” in IEEE International
Conference on Communications, 2017, doi: 10.1109/ICC.2017.7996384.

[10] B. Reynders, Q. Wang, and S. Pollin, “A LoRaWAN module for
ns-3: Implementation and evaluation,” in ACM International Conference
Proceeding Series, 2018, doi: 10.1145/3199902.3199913.

[11] F. Van Den Abeele, J. Haxhibeqiri, I. Moerman, and J. Hoebeke,
“Scalability Analysis of Large-Scale LoRaWAN Networks
in ns-3,” IEEE Internet of Things Journal, 2017, doi:
10.1109/JIOT.2017.2768498.

[12] T. H. To and A. Duda, “Simulation of LoRa in NS-3: Improving
LoRa Performance with CSMA,” in IEEE International Conference on
Communications, 2018, doi: 10.1109/ICC.2018.8422800.

[13] M. Slabicki, G. Premsankar, and M. Di Francesco, “Adaptive
configuration of lora networks for dense IoT deployments,” in
IEEE/IFIP Network Operations and Management Symposium:
Cognitive Management in a Cyber World, NOMS 2018, 2018, doi:
10.1109/NOMS.2018.8406255.

[14] M. Bor, U. Roedig, T. Voigt, and J. M. Alonso, “Do LoRa low-power
wide-area networks scale?” in MSWiM 2016 - Proceedings of the 19th
ACM International Conference on Modeling, Analysis and Simulation
of Wireless and Mobile Systems, 2016, doi: 10.1145/2988287.2989163.

[15] ns-3. (2016) ns-3 website (http://code.nsnam.org). [Online]. Available:
http://code.nsnam.org/

[16] J. Haxhibeqiri, E. De Poorter, I. Moerman, and J. Hoebeke, “A survey
of LoRaWAN for IoT: From technology to application,” 2018, doi:
10.3390/s18113995.

[17] M. Saari, A. Muzaffar Bin Baharudin, P. Sillberg, S. Hyrynsalmi,
and W. Yan, “LoRa - A survey of recent research trends,” in 2018
41st International Convention on Information and Communication
Technology, Electronics and Microelectronics, MIPRO 2018 -
Proceedings, 2018, doi: 10.23919/MIPRO.2018.8400161.

[18] A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A study of Lora:
Long range & low power networks for the internet of things,” Sensors
(Switzerland), 2016, doi: 10.3390/s16091466.

[19] J. De Carvalho Silva, J. J. Rodrigues, A. M. Alberti, P. Solic, and
A. L. Aquino, “LoRaWAN - A low power WAN protocol for Internet
of Things: A review and opportunities,” in 2017 2nd International
Multidisciplinary Conference on Computer and Energy Science, SpliTech
2017, 2017.

[20] A. Lavric and V. Popa, “Internet of Things and LoRaTM

Low-Power Wide-Area Networks: A survey,” in ISSCS 2017 -
International Symposium on Signals, Circuits and Systems, 2017, doi:
10.1109/ISSCS.2017.8034915.

[21] LoRa Alliance Technical Committee, LoRaWANTM1.1 Specification,
LoRa Alliance Std., 2017.

[22] C. Goursaud and J.-M. Gorce, “Dedicated networks for iot:
Phy / mac state of the art and challenges,” EAI Endorsed
Transactions on Internet of Things, vol. 1, p. 150597, 10 2015, doi:
10.4108/eai.26-10-2015.150597.

[23] S. Corporation. (2015) AN1200.22 LoRaTM Modulation Basics.
[Online]. Available: www.semtech.com/uploads/documents/an1200.22.
pdf

[24] M. Knight. (2016) Decoding LoRa: Exploring Next-Generation
Wireless. [Online]. Available: https://github.com/matt-knight/research

[25] L. Vangelista, “Frequency Shift Chirp Modulation: The LoRa
Modulation,” IEEE Signal Processing Letters, 2017, doi:
10.1109/LSP.2017.2762960.

[26] D. Magrin. (2016) Network level performances of a LoRa system.
[Online]. Available: http://tesi.cab.unipd.it/53740/1/dissertation.pdf

[27] LoRa Alliance Technical Committee Regional Parameters Workgroup,
LoRaWAN 1.1 Regional Parameters, LoRa Alliance Std., 2018.

[28] S. Corporation, “Lorawan-simple rate adaptation
recommended algorithm,” https://www.google.com/
url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=
2ahUKEwi515OEsYXsAhWxBtQKHW2OBTEQFjADegQIAxAB&
url=https\%3A\%2F\%2Fwww.thethingsnetwork.org\%2Fforum\
%2Fuploads\%2Fdefault\%2Foriginal\%2F2X\%2F7\
%2F7480e044aa93a54a910dab8ef0adfb5f515d14a1.pdf&usg=
AOvVaw3ke_sNL8JRR1Rj49-S1kKt, acessed on em 25/09/2020.

[29] J. Finnegan, S. Brown, and R. Farrell, “Evaluating the Scalability of
LoRa WanGateways for Class B Communication in ns-3,” in 2018 IEEE
Conference on Standards for Communications and Networking, CSCN
2018, 2018, doi: 10.1109/CSCN.2018.8581759.

[30] ——, “Modeling the energy consumption of lorawan in ns-3
based on real world measurements,” in 2018 Global Information
Infrastructure and Networking Symposium, GIIS 2018, 2019, doi:
10.1109/GIIS.2018.8635786.

[31] (2018) ns3 lora module. [Online]. Available: https://github.com/
ConstantJoe/signtlabdei-lorawan-with-energy-model

[32] (2018) ns3 lora module. [Online]. Available: https://github.com/
ConstantJoe/ku-leuven-lorawan-with-energy-model

[33] (2018) ns3 lora module. [Online]. Available: https://github.com/
ConstantJoe/imec-idlab-lorawan-with-energy-model

[34] D. Magrin, M. Capuzzo, S. Romagnolo, and M. Luvisotto. (2017)
LoRaWAN ns-3 module. [Online]. Available: https://github.com/
signetlabdei/lorawan

[35] Semtech. (2017) Sx1301 datasheet. [Online]. Available: https:
//semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/44000000MDnR/
Et1KWLCuNDI6MDagfSPAvqqp.Y869Flgs1LleWyfjDY

[36] M. Bor, J. Vidler, and U. Roedig, “LoRa for the Internet of Things,”
in Proceedings of the 2016 International Conference on Embedded
Wireless Systems and Networks, 2016.

[37] D. Magrin, M. Capuzzo, S. Romagnolo, and M. Luvisotto. (2017)
LoRaWAN ns-3 module. [Online]. Available: https://github.com/
DvdMgr/lorawan

[38] M. Capuzzo, D. Magrin, and A. Zanella, “Confirmed traffic in
LoRaWAN: Pitfalls and countermeasures,” in 2018 17th Annual
Mediterranean Ad Hoc Networking Workshop, Med-Hoc-Net 2018,
2018, doi: 10.23919/MedHocNet.2018.8407095.

[39] D. Magrin, M. Centenaro, and L. Vangelista, “Performance evaluation
of LoRa networks in a smart city scenario,” in IEEE International
Conference on Communications, 2017, doi: 10.1109/ICC.2017.7996384.

[40] Y. Hasegawa and K. Suzuki, “A Multi-User ACK-Aggregation Method
for Large-Scale Reliable LoRaWAN Service,” in IEEE International
Conference on Communications, 2019, doi: 10.1109/ICC.2019.8761253.

[41] M. Capuzzo, D. Magrin, and A. Zanella, “Mathematical Modeling of
LoRa WAN Performance with Bi-directional Traffic,” in 2018 IEEE
Global Communications Conference, GLOBECOM 2018 - Proceedings,
2018, doi: 10.1109/GLOCOM.2018.8647351.

[42] Y. Oukessou, M. Baslam, and M. Oukessou, “LPWANIEEE 802.11ah
and LoRaWAN capacity simulation analysis comparison using NS-3,”
in Proceedings of the 2018 International Conference on Optimization
and Applications, ICOA 2018, 2018, doi: 10.1109/ICOA.2018.8370592.

[43] N. Kouvelas, V. Rao, and R. R. Prasad, “Employing p-CSMA on a LoRa
Network Simulator,” 2018.

[44] M. Luvisotto, F. Tramarin, L. Vangelista, and S. Vitturi, “On
the Use of LoRaWAN for Indoor Industrial IoT Applications,”
Wireless Communications and Mobile Computing, 2018, doi:
10.1155/2018/3982646.

[45] S. Dawaliby, A. Bradai, and Y. Pousset, “Adaptive dynamic network
slicing in LoRa networks,” Future Generation Computer Systems, 2019,
doi: 10.1016/j.future.2019.01.042.

[46] (2017) ns3 lora module. [Online]. Available: https://github.com/
networkedsystems/lora-ns3

[47] B. Reynders, Q. Wang, P. Tuset-Peiro, X. Vilajosana, and S. Pollin,
“Improving reliability and scalability of LoRaWANs through
lightweight scheduling,” IEEE Internet of Things Journal, 2018,
doi: 10.1109/JIOT.2018.2815150.

[48] B. Reynders, W. Meert, and S. Pollin, “Power and spreading factor
control in low power wide area networks,” in IEEE International
Conference on Communications, 2017, doi: 10.1109/ICC.2017.7996380.

[49] Floris Van den Abeele, Jetmir Haxhibeqiri, Ingrid Moerman, and
Jeroen Hoebeke. (2017) Lorawan ns-3 module. [Online]. Available:
https://github.com/imec-idlab/ns-3-dev-git/tree/lorawan

[50] A. Tiurlikova, N. Stepanov, and K. Mikhaylov, “Method of Assigning
Spreading Factor to Improve the Scalability of the LoRaWan
Wide Area Network,” in International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops, 2019, doi:
10.1109/ICUMT.2018.8631273.

[51] J. Haxhibeqiri, I. Moerman, and J. Hoebeke, “Low overhead scheduling
of LoRa transmissions for improved scalability,” IEEE Internet of Things
Journal, 2019, doi: 10.1109/JIOT.2018.2878942.

[52] J. Finnegan, S. Brown, and R. Farrell, “Evaluating the Scalability of
LoRa WanGateways for Class B Communication in ns-3,” in 2018 IEEE
Conference on Standards for Communications and Networking, CSCN
2018, 2018, doi: 10.1109/CSCN.2018.8581759.

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, NO.1, 2021. 30

[53] H. Rahim, C. Ghazel, and L. A. Saidane, “An Alternative Data
Gathering of the Air Pollutants in the Urban Environment using LoRa
and LoRaWAN,” in 2018 14th International Wireless Communications
and Mobile Computing Conference, IWCMC 2018, 2018, doi:
10.1109/IWCMC.2018.8450329.

[54] D. M. M. C. R. M. Luvisotto. (2017) LoRaWAN ns-3 module. [Online].
Available: https://github.com/drakkar-lig/lora-ns3-module

[55] A. D. Prajanti, B. Wahyuaji, F. B. Rukmana, R. Harwahyu, and
R. F. Sari, “Performance Analysis of LoRa WANTechnology for
Optimum Deployment of Jakarta Smart City,” in 2018 2nd International
Conference on Informatics and Computational Sciences, ICICoS 2018,
2018, doi: 10.1109/ICICOS.2018.8621803.

[56] iTecTec. 3gpp tr 45.820 – cellular system support for ultra-low
complexity and low throughput internet of things (ciot). [Online].
Available: https://itectec.com/archive/3gpp-specification-tr-45-820

[57] Module I gitter char. [Online]. Available: https://gitter.im/ns-3-lorawan
[58] ns-3 Coding Style Guidelines. [Online]. Available: https://www.nsnam.

org/develop/contributing-code

Jéssika C. da Silva received her degree in Eletrical
Engineering from the Federal University of Rio
Grande do Norte (UFRN), Brazil, in 2018. Since
2016 she has participated in research on wireless
networks, network simulation and signal processing.
She is currently pursuing her M.Sc Electrical and
Computer Engineering degree at UFRN, researching
improvements to ADR algorithms in LoRaWAN
networks.

Daniel de L. Flor received his degree in Electrical
Engineering from the Federal University of Rio
Grande do Norte (UFRN), Brazil, in 2018. Since
2017 he has participated in research on wireless
networks, network simulation and signal processing.
He is currently pursuing his M.Sc Electrical and
Computer Engineering degree at UFRN, researching
the characteristics of acoustic noise in intra-vehicle
environments.

Vicente A. de Sousa Jr. received his B.S., M.S and
Ph.D. degrees in Electrical Engineer from Federal
University of Ceará (UFC), Fortaleza, CE, Brazil, in
2001, 2002 and 2009, respectively. Between 2001
and 2006, he developed solutions to UMTS/WLAN
interworking for UFC and Ericsson of Brazil.
Between 2006 and 2010, he contributed to WIMAX
standardization and Nokia’s product as a researcher
at Institute of Technological Development (INDT).
Dr. Sousa is now a professor at Federal University
of Rio Grande do Norte (UFRN), Brazil.

Níbia Souza Bezerra received the B.Sc. degree
in Computer Engineering from Amazonas State
University in 2008 and her M.Sc. in Teleinformatics
Engineering from the Federal University of Ceará
in 2011. From 2008 to 2011 she worked for Nokia
Technology Institute (INdT) as a researcher, doing
research related to wireless communications. From
2011 to 2013 she was a researcher at the Wireless
Telecom Research Group (GTEL), Fortaleza, Brazil,
where she worked in projects in cooperation with
Ericsson Research. She is currently pursuing her

Ph.D. in Computer Sciences at Luleå University of Technology in Skellefteå,
Sweden. She currently works as Senior Software Developer at TietoEvry
AB in Skellefteå. Her research interests include mobility for machine-type
communication, smart cities, the Internet of Things (IoT) for current wireless
networks and future 5G and 6G.

Alvaro A. M. de Medeiros received the degree in
electrical engineering from the Federal University of
Rio Grande do Norte, Brazil, in 2000, and the M.Sc.
and Ph.D. degrees in electrical engineering from the
University of Campinas, Brazil, in 2002 and 2007,
respectively. From 2007 to 2010, he was a Research
Specialist at Nokia Institute of Technology, Brazil,
and Research and Development Center, Brazil.
He is currently an Associate Professor at Federal
University of Juiz de Fora, Brazil.

