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Heuristic for Hardware Dimensioning
Considering Tidal Effect
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Abstract—The recent increase in the volume of services and
applications, in addition to the accelerated growth in demand for
wireless access, represent significant challenges for the fifth gener-
ation (5G) of mobile networks. The daily large-scale migration of
people to urban centres is another aspect of this trend, as it entails
what is known as the “tidal effec”. This effect leads to natural
fluctuations in traffic throughout the day and makes it difficult to
conduct network dimensioning, control, and management, thus
resulting in the inefficient use of network resources. A heuristic
with two approaches for provisioning resources (one based on the
aggregate throughput and the other on the number of connected
users) is proposed in this paper. This is based on data extracted
from the mobile subscriber movement in the current network
architecture, where a database with geolocation information from
the city of New York is used. The aim of this heuristic is to meet
the imminent network demands of the future in light of the
expected lack of available hardware resources in future mobile
networks. Our results suggest that the network provisioning
strategy meet the requirements of traffic variability by reducing
the number of active antennas by 13% and the network-blocking
probability by 3.7%, as well as by maximizing the efficiency of
the baseband unit (BBU) and quantifying the small cells (SCs)
needed to meet network demands.

Index Terms—5G, Tidal Effect, Heuristic, BBU.

I. INTRODUCTION

IN recent years, data traffic has risen sharply due to the
performance of applications and their increasingly stringent

requirements in terms of latency and data rates [1]. According
to the Cisco VNI (Visual Networking Index), the monthly rate
of global mobile data traffic will be on the order of 49 exabytes
by 2021, including a significant proportion of tidal traffic,
since the annual traffic flow will exceed half a zettabyte [2]
and have a compound annual growth rate of 24% during the
period from 2016 to 2021 [3]. It is also predicted that mobile
network connection speeds will increase more than threefold
by 2022, reaching 28.5 megabits per second this year, and this
underlines the need for mobile operators to adapt their services
to future networks [4].

In the current architecture, the daily movement of people in
large urban centres [5] causes a disruption of the continuous
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communication flow across different network topologies. This
phenomenon is known as the “tidal effect” [6] and can result
in the inefficient use of network resources, the overloading of
the network in places of high demand or the deployment of
underutilized devices, thus increasing the costs of deployment
and maintenance.

As network traffic is no longer distributed uniformly, there
can be a huge gap between the maximum and minimum
volume of traffic. This scenario poses a problem for the
operation and management of networks. In countries such as
China, India, and Brazil, intense urbanization has resulted in
megalopolises with over 10 million people. In developed cities,
such as Paris or London, metropolitan areas also have high
population densities. Thus, the growth in mobile traffic com-
bined with metropolitan overcrowding intensifies tidal traffic
congestion, making it one of the key factors that influences
the dimensioning and control of telephone operators [7].

However, the tidal effect is a consequence of predictable
patterns of human movement along with their mobile devices,
and in view of this, it is essential for operators to be able to
recognize these patterns so they can take the measures required
to reduce congestion during periods of idleness [8]. Related to
this, an architecture that can efficiently handle network load
fluctuations is necessary, and this is one of the goals of the
centralized radio access network (C-RAN).

By splitting base station (BS) hardware into a remote radio
head (RRH) and a baseband unit, the C-RAN also increases
flexibility and enables mobile network operations to be more
dynamic than network operations without the C-RAN. In a C-
RAN, resources can be dynamically allocated and redistributed
across a given geographical area while being adjusted to a
time-varying traffic load, and the C-RAN thus benefits from
the statistical multiplexing gain achieved by adapting it to
traffic fluctuations [9]. In traditional RANs, baseband capacity
is statically assigned to each cell, meaning that the resources
are allocated regardless of the users’ movements.

Network operators are preparing the ground for the mi-
gration from the distributed radio access network (D-RAN)
to the C-RAN as a means of exploiting the benefits of this
new architecture, and this migration should be carried out in
a way that is transparent to the users of the network. Since
the D-RAN remains the dominant deployment architecture,
research endeavours should seek to ensure a smooth transition
towards the 5G ecosystem [10]. The migration between these
architectures naturally imposes physical constraints on the new
hardware, which must be dimensioned effectively so that it can
meet the needs of new applications.

A policy for resource management is needed to maximize
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the gains that can be obtained by installing a C-RAN, and
this policy should be able to deal with tidal effect scenarios,
since these are the main causes of network load imbalance and
wasted resources (energy and hardware), both of which affect
the network at both the metro and core levels [11].

Therefore, this paper establishes a heuristic for the selection
and quantitative determination of antennas to meet the capacity
requirements of a predetermined scenario. The heuristic em-
ploys real user mobility data (collected from a database) by
adopting two approaches; the first is based on the throughput
rate of small cells (SCs), while the second depends on the
number of users connected to the SCs.

The paper is structured as follows: Section II outlines the
related work with regard to the aforementioned research area.
Section III discusses the system model and key information
regarding the subject, architecture, evaluation methodology,
formulation of the research problem and designed heuristic.
In Section IV, the results are shown and discussed. Finally,
Section V summarizes the conclusions of this study and makes
recommendations for further research in the field.

II. RELATED WORK

Predictions about the 5G network suggest that there will
soon be traffic that is five times higher than that of the current
generation, and this traffic will require more efficient man-
agement [12]. To meet these requirements, processing units
must be centralized and implemented in the C-RAN, since
this facilitates the dynamic sharing of resources and makes the
network adaptable. In this architecture, resource provisioning
can be implemented with demand recognition, which involves
the resources (radio or hardware) being employed to meet the
mobile load in the network, or by maximizing the efficiency
of the BBU pool and minimizing the effects of variability in
traffic monitoring data caused by the tidal effect [13] and [14].

Some authors have employed methods for network sizing by
dynamically adapting it to the capacity required by varying
network demands, as seen in [15]. In this study, a self-
organizing C-RAN is proposed, where the BBU pool and RRH
are scaled semi-statically based on the concept of cell differ-
entiation and integration (CDI), while dynamic load balancing
is formulated as an integer-based optimization problem with
constraints.

The authors in [16] relied on a) handover indicators to
dimension the number of active cells and lower the frequency
of cell-state changes (active and inactive) and b) a genetic
algorithm to assist in reducing the costs and minimizing the
number of active cells. Minimizing the active cells lowers
the operating costs of a heterogeneous centralized radio ac-
cess network (H-CRAN), which is a combination of HetNets
(heterogeneous networks) and a C-RAN. This allows for the
installation of dense and heterogeneous networks that can
perform cooperative signal processing when there is a high
load imbalance.

In the 5G network, the distribution and mobility of users
have an increasing influence on the distribution of traffic in
metropolitan elastic optical networks (EONs). The tidal effect
in this context represents the distribution of traffic when there

is a significant imbalance in the dimensions of time and space.
In view of this, the authors of [6] studied dynamic mapping
algorithms for the RRH-BBU combination in the C-RAN
architecture based on spectrum allocation, resource allocation
in frequency slots in EONs and maximization of bandwidth.
A simulation was carried out to assess the performance of the
allocation scheme and the blocking probability.

In [18], it was assumed that technologies that proliferate
with 5G, such as HetNets, are necessary to ensure load
balancing without leading to a decline in the network’s quality
of service (QoS). However, the authors designed a solution to
obtain an effective utilization model for hardware, which can
alleviate the problem of having a shortage of spectrum in the
wireless network. This involved scaling the number of access
points capable of handling the heavy traffic of users in the
LTE-A (long term evolution-advanced) network. The method
relies on the available capacity of the channels to estimate the
number of antennas needed to support the requirements of the
LTE network for efficient traffic.

By leveraging the full potential of the C-RAN architecture,
the authors in [17] carried out a novel elastic resource pro-
visioning strategy to reduce power consumption both at the
cell sites and in the cloud while addressing the problem of
fluctuations in demanded per-user capacity. In their planned
model, the RRHs and their corresponding BSs were divided
into clusters, within which the active RRH densities, trans-
mission powers, and sizes of virtual machines (VMs) were
adjusted dynamically. The performance gain achieved by the
elastic model obtained from their experiment over that of the
traditional installation is notable in terms of energy efficiency
and the use of radio resources.

In the opinion of [19], small cell deployments cause serious
electromagnetic interference and energy efficiency problems
for the traditional RAN model, especially when there is a
temporal fluctuation in the demand for network capacity. As
a result of C-RAN virtualization technologies, new reconfig-
urable solutions can be found, and the access network must
dynamically adapt to them. In this study, the authors set out
to form an adaptation mechanism in which a new elastic
framework for resource utilization is able to take advantage of
the software-defined wireless network (SDWN) paradigm and
adjust the height of virtual BSs (VBSs) and the transmission
power.

The potential for resource virtualization in a C-RAN was
investigated by [20], and their study included the following:
a) wireless interface virtualization through an algorithm, b)
traffic-aware joint scheduling, which is responsible for the
contracts between the virtual operators (VOs) and infrastruc-
ture providers (InPs), and c) the application of collective pro-
gramming to maximize spectral efficiency. Interface resources
are dynamically allocated between different VOs by means of
hyper-vision, which takes the impact of the schemes for the
transmission/data plan into account.

With regard to hardware resource provisioning at the level of
the RRH-BBU combination in the 5G network, several papers
have provided solutions that are also focused on the QoS, the
amount of blocked calls and the number of physical resource
blocks (PRBs) [21]. In [22], a dynamic mapping algorithm for
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the RRH-BBU combination in the C-RAN architecture was
studied, and a simulation was carried out to determine the
performance of the allocation scheme. The authors of [23]
sought to solve the problem of RRH mapping and optimization
so that the network power consumption could be reduced in a
user-centred C-RAN based on a multiple-input and multiple-
output (MIMO) system.

As discussed in this section, several papers have been
concerned with load balancing in both centralized and de-
centralized architectures, data flow fluctuation and the dimen-
sioning models of the network. However, there are still gaps
in the scientific literature, and several areas have still not
been fully investigated. These include resource constraints in
hybrid architectures, the management of radio resources in
the baseband unit and the dynamic provisioning of resources
(in the literature, this is characterized by the shutdown of
antennas, especially with regard to network traffic flexibility
in an area of varying flow with RRHs).

The main research contribution of this paper is to de-
sign a heuristic for dimensioning hardware resources in the
current network architecture, where the efficiency of BBU-
level resources is maximized and the blocking probability is
reduced by provisioning resources in accordance with user
demand. The heuristic is evaluated through simulations that are
carried out with real data to ensure that the method is suited
to scenarios with high data traffic variability. In addition, it
is able to implement efficient resource provisioning through
redistribution between adaptive antennas, thus mitigating the
effects of data load imbalance and the wasted resources in the
network caused by the tidal effect.

III. SYSTEM MODEL

It can be assumed that the fluctuation of data traffic
throughout the day is a natural phenomenon brought about
by user mobility over time; this means that it is a crucial
factor for studies on network load dimensioning and resource
provisioning. In this model, a tool that stores the locations
of users through social networks, or location-based social
networks [24], was used to store user check-in information in
New York and create a database with the fluctuations so that
traffic could be analysed at times of high/low data flow. The
collection was compiled from April 2012 to February 2013
and resulted in a sample of 227,428 positions (longitude and
latitude).

A. System Topology

The mobile network load gives rise to a fluctuation in the
BS throughout the day (as seen in Fig. 1). The tidal effect can
be noted in any network architecture, including the C-RAN.
Since the BBU pool concentrates processing power, it must
be located in a position where the number of RRHs that can
be served by it is maximized, thus ensuring that the use of
the hardware resources is optimized by reducing the number
of idle processing units.

The dynamic behaviour of data traffic in the network
depends on a set of distributed resources that meets all the
network requirements. These include the operation of RRHs

Fig. 1. Architectural Model.

to cover extensive territorial areas, as well as small areas where
there is a minimum amount of resources wasted, to maximize
the dynamic allocation process and reduce offloading in the
BS.

The purpose of the model is to provide resources to all the
urban centres in New York City by responding to user demand;
moreover, the model is based on the required data flow, and
it dynamically allocates resources. The hardware adaptation
layer is a mechanism that optimizes network functions in the
sense that the infrastructure is adapted to meet the demands
of high/low traffic density, avoid bottlenecks and optimize the
use of resources. Each sector has features, such as areas that
have a great volume of users (commercial centres, food courts,
shopping centres, among others), that affect the number of
users throughout the day (Fig. 1).

B. Evaluation Methodology

In radio access networks, a dense deployment of RRHs
provides a possible means for the network to adapt to traffic
demand. By centralizing processing units in the BBU pool,
there can be reductions in power consumption and RRH
complexity that significantly reduce infrastructure costs and
increase network capacity [25]. This study includes data on
the positioning of UE (user equipment) in 24 periods, and
by converting the data units into hours of the day, a more
meaningful sample can be obtained than that from the data
in units of days, and accurate information about demographic
density can be provided, as seen in (Fig. 2).

Fig. 2 represents the average number of connected users in
New York over 24 hours during the evaluated period. The
objective of the survey is to evaluate the variation in the
number of users in the network and, based on this variation, to
assess the provisioning of resources. The demand for resources
in certain regions and at peak times is high, resulting in many
active antennas, while in less dense regions, fewer BSs need
to be activated, and thus, the use of idle resources can be
avoided.
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Fig. 2. User Distribution.

C. Formulation

The path loss can be defined as the difference between
the transmitted signal strength and received signal strength
at varying distances between the transmitting antenna and the
receiving antenna. One of the main failings of propagation is
that due to the increase in the distance between transmission
nodes, the signal power may be reduced (depending on the
type of environment in which the network is deployed [26],
such as cities with large buildings, shade and cell interference).

In mobile network planning, the path loss for the deploy-
ment should be estimated, while the cell coverage can be
determined on the basis of macro BS, micro BS, effective
isotropic radiated power, radio frequency modulation and
coding techniques [27]. Large-scale path loss can be estimated
with the aid of the Stanford University Interim (SUI) model
[28] for carrier frequencies above 2 GHz [29]. The downlink
signal-to-interference-plus-noise ratio (SINR) for a given sub-
carrier N assigned to user k in the SC to which it is connected
is expressed as:

SINRk =
Pk,b(k)

σ2 + Ik
(1)

Where Pk, b(k) is the power received in the subcarrier N
of user k by the BSb(k) that serves it, σ2 is the thermal noise
power and Ik is the intercellular interference of the SCs. It
is assumed that all the SCs are transmitted with maximum
power P . The power received by the user k of the BSb(k)
can be calculated by means of Equation 2, which expresses
the transmitted power and the fading of the signal.

Pk,b(k) =
10

Potb(k)−LSUI

10

1000
(2)

In Equation 2, the value of Pk, b(k) is a function of the
three values calculated by the following equations:

LSUI = A+ 10γ log
d

do
+ S, d > d0, (3)

A = 20 log
4πdo
λ

, (4)

γ = a− bhb +
C

hb
(5)

In Equation 5, d is the distance from the antenna to the
measured point in metres (do is equal to 1 metre according
to [23]); λ is the wavelength in metres; γ is the path loss
exponent; hb is the height of the base station, which can be
between 10 and 80 metres; A, B and C are constants that
depend on the type of terrain used in the scenario (C was
used; A = 3.6, B = 0.005 and C = 20); S is the shading
effect, which can be between 8.2 and 10.6 dB.

Ck = B log2(1 + SINRk) (6)

In Equation 6, B is the system bandwidth. It is assumed
that each user reaches the Shannon capacity limit, that is, the
data rate for user k as expressed in [23].

D. Heuristic

The selected heuristic is divided into 3 algorithms. The
first (Algorithm 1) carries out a UE-RRH assignment with
a channel capacity calculator. The second stage (Algorithm 2)
shows the quantification of the ports (equivalent to the average
number of RRHs needed for offloading), which is required to
cover the aggregate throughput established by Algorithm 1.
Based on this information, Algorithm 3 displays the allocated
UEs, the aggregate throughput, and the number of UEs covered
by the macro.

Algorithm 1: UE-RRH Assignment
Require: List of RRHs (St), User (u);

1: for all r ∈ St do
2: Allocate UE in the nearest r;
3: end for
4: for all u ∈ UE do
5: Updates SINRu and

calculates Data Rate (Shannon)
of u according to [23];

6: end for
7: for all r ∈ St do
8: Calculate Aggregate Throughput Ar;
9: end for

10: return Aggregate Throughput A for each Ar|r∈ St

The method for allocating the RRHs (St) and users (u), and
the maximum capacity of each UE when noise interference is
taken into account can be seen from lines 1 to 3 of Algorithm
1. The distribution of users is incorporated into the algorithm
based on the behaviours of the users of New York, and this
distribution characterizes the tidal effect on the network. At
the end of this stage, the available resources in each RRH (the
PRBs) are distributed equally between all the UEs connected
to that RRH, which is adjusted according to the propagation
model.

Following this, the values of the SINR and the data rate
(DR) are calculated for all RRHs and UEs in (lines 5 to 6)
of Algorithm 1. The aggregate throughput (Ar) calculated for
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this scenario can be seen in (lines 7 to 8). At the end of
this stage, a list is of the available RRHs and their aggregate
throughputs are compiled (line 10). The data output from
Algorithm 1 serves as an input parameter for Algorithm 2,
which is described below.

Algorithm 2: Defines the Maximum Number of Ports
Require: Maximum Aggregate Throughput (A), Available

RRHs (St), Number of RRHs supported by the BBU
(NUM-RRH), Number of Ports (NUM-PORTS);

1: repeat
2: Sort St by A in descending order or
3: Sort St by the number
4: of UEs in descending order;
5: while RRH AggregateThroughputTEMP <

DefinedAggregateThroughput(%) do
6: NUM-RRH = NUM-RRH + 1;
7: AggregateThroughputTEMP = RRH

AggregateThroughputTEMP + RRH
AggregateThroughputTEMP(St);

8: end while
9: until NUM-PORTS is equal to NUM-RRH

10: return Output

In Algorithm 2, the list of RRHs (St) is provided again,
together with (A). Then, two heuristic approaches are adopted,
one of which is based on the SC transfer rate (the throughput
rate approach) and the other on the number of users connected
to the SCs (the user approach), in lines 1 to 4.

Different positions for the UEs are tried out, and the
number of RRHs needed to cover a certain capacity scenario
is evaluated. The tests are repeated until the mean number of
ports is obtained (equivalent to the average number of RRHs
required for the data traffic). The criterion is established by
the condition expressed in lines 5 to 8.

Algorithm 3: RRH Selection
Require: Available RRHs (St), Number of Ports

(NUM-PORTS);
1: repeat
2: Generate UE distribution, UE-RRH Detection (St);
3: for all RRH in St do
4: Calculate Aggregate Throughput
5: end for
6: Sort St by Aggregate Throughput (Max);
7: Sort St by Number of UEs (Max);
8: Select RRH (St, NUM-PORTS);
9: UE-RRH-Macro Detection (St, Sm);

10: until All UEs are allocated
11: return Output

Two criteria are adopted to determine which RRHs must
be connected: (i) the approach in which the RRHs with the
highest aggregated throughputs are prioritized; and (ii) the
approach where the RRHs with the largest numbers of users
are prioritized. Both approaches must respect the boundaries
of the PRBs in each RRH available in the scenario.

Fig. 3. Flowchart of the Heuristic Action Execution.

In Algorithm 3, the number of ports and the scenario that
is being studied are taken as inputs. Here, all the RRHs are
deployed, and the UEs can be allocated to any of these RRHs;
at this stage, network dimensioning is carried out on the basis
of user demand (lines 1 to 2). The aggregate throughput is
calculated again since a new distribution has been generated
(lines 3 to 5).

The RRHs with the highest numbers of users or with the
highest aggregated throughputs are selected on the basis of the
number of ports taken as input. Then, the RRHs are eliminated,
and a new allocation of UEs and RRHs is carried out (lines 6
to 9). The UEs not covered by RRHs must be covered by the
macro BS (line 10). After the execution of all the algorithms
that make up the heuristic, the cycle ends in a way that is
displayed in the flowchart shown in Fig. 3.

The flowchart illustrates how the various stages of the
heuristic are interconnected (Fig. 3). The process is divided
into 3 phases with specific steps starting with Algorithm 1,
where the scenario is created with all its specifications and
instantiated components. Step 2 corresponds to Algorithm 2,
which handles the processing and execution of the manage-
ment policies in the scenario, including the connection of
RRHs with the most active users or the higher aggregate
throughputs. After it has met the required conditions and
stayed within the limits of the PRBs, the process enters its
final phase (Algorithm 3), in which the RRHs are deployed
and the UEs are served.

IV. RESULTS

The dimensioning of hardware resources is assessed
through mathematical modelling, which is carried out using
MATLAB R© Software. A computer configured with an Intel
(R) Core (TM) i5-3210 M dual-core CPU @ 2.50 GHz
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(containing 4 logic processors) and 10 GB of RAM is used
for the simulations.

The baseline scenario is normalized to the 4km extension
and has the same percentage of users as that provided by the
New York City database. One hundred SCs are distributed
evenly across the scenario together with a macrocell (D-RAN)
and 500 UEs that share the same QoS requirements. Table
I shows the configuration of all the parameters used in the
modelling process.

TABLE I
MODEL PARAMETERS.

Parameter Value
System Bandwidth (B) 18 MHz

Path Loss for Smallcell User (Smallcell) SUI-TYPE C
Transmission Power (Macrocell) 43 dBm
Transmission Power (Smallcell) 33 dBm

Coverage Area (Small) 150 m
Coverage Area (Macro) 4 km

BS Heigth 16 m
Confidence Level 95%

Number of Simulation Experiments 30

This work is based on the movements of users and the
coverage of these users over a period of 24 hours, with each
hour representing an average period of the experiment. Since
the users find themselves constantly in motion in New York,
this means that the data flow is constantly changing as a result
of user migration.

A. Tidal Effect Approach

The tidal effect naturally leads to variability and fluctuations
in network traffic. A New York metadata assessment provided
an estimate of the average value of the number of UEs
connected over 24 periods by measuring the average value
of the number of UEs covered every hour (Fig. 4).

Fig. 4. Number of Connected Users (User Approach).

The thresholds representing the total capacity of the scenario
were weighted at 20%, 40%, 60%, 80%, and 100% of the
aggregated throughput. Fig. 4 shows the behaviours of the
users in terms of the user approach, where the number of
connected users fluctuated greatly throughout the day.

Fig. 5. Confidence Interval for User Approach.

A probabilistic analysis was conducted as a part of this
approach to determine the relation between the increase in
data traffic (the consequence of the tidal effect), with the
variation of the data rate in the worst case scenario (with 100%
aggregate flow) (see Fig. 5). A 95% confidence interval was
calculated, and on the basis of this, it was determined that in
times of high data traffic, there was a greater distance from the
average than in times of low data traffic, which means that the
traffic variation had been intensified along with the variability
of the data rate.

As shown in Fig. 6, between 8, 15, and 21 hours, there
was a significant increase in the number of active UEs in the
network. For the second approach, the same parameters were
adopted, and a similar variation was obtained, although fewer
users were included in each aggregate throughput.

Fig. 6. Number of Connected Users (Throughput Approach).

For the aggregate throughput approach case (Fig. 6), with
regard to the average behaviour of users over a period of 24
hours, it should be noted that the peak times remained the
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same as in the previous approach, although there was a fall
in the number of active UEs, specifically for the cases using
60%, 80% and 100% of the aggregate throughput. For this
approach, a probabilistic analysis was conducted to obtain a
confidence interval, as seen in Fig. 7. The results show that
the user approach serves the most subscribers and meets the
minimum QoS requirements.

Fig. 7. Confidence Interval for Throughput Approach.

The gap between the interval and the average in the figure
can be explained by the variation in the data rate of the
users connected during that period (Fig. 7). In the case of the
throughput approach, the behaviour of the confidence interval
was most accentuated at peak times, which means that the user
rate had high variability, reflected either in the service used or
in the tidal effect on the network.

B. Provisioning Approaches

The aforementioned architecture was evaluated to determine
whether there is a need for increased investment in the
deployment of RRHs and thus to allow for the optimization
of the network planning process. This involved defining how
many SCs are necessary to support the dynamic traffic of
the network, since the network suffers from a high degree
of interference caused by the tidal effect and is therefore of
paramount importance. Fig. 8 shows the average number of
connected users per SC for each aggregate throughput level.

It should be noted that to cover the high capacity required
in this scenario, a large number of antennas were activated,
thereby reducing the average number of UEs per antenna. In
the scenarios with low aggregate throughputs (20%, 40%, and
60%), it was most significant that the user approach maintained
an average number of connected users per antenna.

When there was an increase in aggregate capacity (above
60%), the throughput approach achieved the best performance
because it had a higher average rate of users per antenna than
the user approach. With regard to the maximum load in the
network, the approaches obtained the same average number of
connected users and thus, all the antennas were activated.

Fig. 8. Average Connected Users by Small Cells.

The efficiency of the allocation scheme can be evaluated
based on a heuristic that has two provisioning approaches (user
and throughput). If their respective performances are analysed,
it can be seen that when seeking to obtain the same capacity
as that of the previous scenarios, the flow approach led to a
reduction of, on average, 3% of the number of active antennas
(Fig. 9).

Fig. 9. Number of Active Small Cells.

It should be noted that at the full load (100% of the
aggregate throughput), it was necessary to activate all the
SCs in the scenario in both approaches analysed (Fig. 9). In
general, the traffic load fluctuates over time, especially when
the network is operating under high traffic conditions. If there
is a reduced load, the dynamic reallocation of resources is
more efficient (through the adaptive allocation scheme for the
other RRHs with the highest traffic loads at that time), and
as a result, the problem of the load imbalance caused by the
tidal effect can be solved.
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C. Blocked User Probability (Disconnected Users)

The blocked user probability approach was adopted to
determine the percentage of users that were not served by
the C-RAN. For a more careful evaluation and comparison of
these approaches, the blocked user probability was estimated
(Table II) by analysing the performance of each approach with
regard to its effectiveness.

TABLE II
BLOCKING PROBABILITY (DISCONNECTED USERS).

Aggregated
Throughput

Approach
PB (User) PB (Throughput)

20% 43% 49%
40% 24% 29%
60% 9% 12%
80% 0.1% 0.9%

100% 0 0

As seen in Table II, the user approach was adopted in a way
that was satisfactory, since it showed an average reduction
of 3.7% compared with that of the throughput approach.
This shows that although both approaches aimed to offload
a percentage of the macro load (20%, 40%, 60%, and so on),
different users were chosen and, as a result, different average
data rates were obtained (as shown previously). For scenarios
with high densities or 100 % capacity, both approaches ob-
tained equal PB values due to various factors (such as having
all antennas active and covering a high number of covered
users).

V. CONCLUSION

The hardware dimensioning procedure in the migration pro-
cess from the D-RAN architecture to the C-RAN architecture
plays a key role in (and has a direct effect on) resource provi-
sioning for future mobile networks, especially in the planning
and operational phases. Therefore, this paper analysed the
behavior of network traffic in New York City and found that
traffic variability creates challenges for hybrid architectures.
A heuristic with two approaches (one based on the aggregate
throughput and the other on the number of connected users)
was recommended for the dynamic provisioning of hardware
resources in response to demand.

In scenarios with high density, the throughput approach was
most efficient and met the network demand with a reduction of
13% in the number of active antennas, while the user approach
needed more active antennas to serve the same percentage of
users. With regard to the blocked user probability, the user
approach was more efficient and achieved a reduction of 3.7%
in this analysis. This means that the probability of users being
blocked is lower when the number of users logged into the
network scenario is taken into account.

The results show that it is possible to dimension the number
of SCs to meet network demand by applying a dynamic
resource allocation scheme during times of low/high traffic
density. In future work, other approaches for developing the
resource provisioning scheme, such as a machine learning
heuristic, could be adopted to carry out the sizing rules in
accordance with user distributions. In addition, scenarios with

even wider traffic variability than the ones used in this study
should be investigated for future developments together with
other parameters, such as energy efficiency, and an operational
cost assessment.
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