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Cascade of Linear Predictors for Deconvolution of
Non-Stationary Channels in Sparse and Antisparse

Scenarios
Renan D. B. Brotto, Kenji Nose-Filho, Romis Attux, João M. T. Romano

Abstract—This work deals with adaptive predictive de-
convolution of non-stationary channels. In particular, we
investigate the use of a cascade of linear predictors in the
recovering of sparse and antisparse signals. To do so, we
first discuss the behavior of the ℓ? Prediction Error Filter
(PEF), with ? ≠ 2, showing that it can better attenuate the
effects of non-minimum phase channels in comparison with
the classical ℓ2 PEF, although the ℓ? PEF, with ? ≠ 2, still
presents intrinsic limitations in compensating the channel
distortions, due to its direct forward structure. Hence,
the cascade of linear predictors, i.e., one forward filter
followed by a backward one, emerges as a possible solution
to circumvent the structure limitation addressed. We apply
the proposed cascade structure in the deconvolution of non-
stationary channels, with minimum, maximum-, mixed-
and variable-phase responses, and also in noisy scenarios.
From the simulation results we observed that, besides
the duality relation between the ℓ1 and ℓ∞ norms, they
present different algorithmic behavior: a cascade adjusted
by minimizing the ℓ1 norm of the error attains a fast
convergence, enhancing the cascade tracking capacity, but
is more sensitive to noise. Adjusting the cascade by mini-
mizing the ℓ4 norm of the error (a smooth approximation
of the ℓ∞ norm), on the other hand, leads to a filter
more robust to noise, but presents slower convergence and
tracking capability.

Index Terms—Predictive deconvolution, ℓ? norms, cas-
cade of linear predictors, non-stationary channels.

I. INTRODUCTION

The problem of deconvolution consists in recovering
a signal of interest B(=) that has been distorted by
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a channel, with impulse response ℎ(=), generating the
distorted signal G(=) [1], as depicted in Fig. 1a.

The objective in this problem, as illustrated in Fig. 1b,
is to design a deconvolution filter, with impulse response
F(=), able to compensate the distortions introduced by
the channel and to produce an estimate of the original
signal B̂(=).

When we consider the unsupervised version of the
problem, we must adjust F(=) without access of the
samples of B(=) and without the explicit knowledge of
the channel. In this case, the deconvolution is carried
out in order to recover a property of B(=) that is no
longer present in G(=). This property is referred to as a
prior information of B(=) and its recovery is equivalent
to recovering the signal of interest.

A possible prior information to be employed is the
independence among the samples of B(=) [1], [2], [3],
[4]. Since we are modeling the channel as a time-
invariant linear system, we have

G(=) = ℎ(=) ∗ B(=) =
!−1∑
:=0

ℎ(:)B(= − :), (1)

where * denotes the discrete-time convolution and ! >

1 is the channel order. Due to the above convolution
operation, it is evident that the independence property is
no longer verified in the signal G(=) at the output of the
channel when it presents a non-flat magnitude.

Once we have access to the distorted signal, we must
adjust the deconvolution filter in order to eliminate the
statistical redundancy in G(=). One possible way to do
this is using the prediction error filter (PEF) [1], [2]. We
illustrate this filter structure in Fig. 2.

Classically, PEF parameters are adjusted in order to
minimize the mean squared error (MSE). The obtained
filter presents two interesting properties [1], [5]:

1) It is a whitening filter, i.e., a sufficient long PEF
provides an error signal 4(=) so that

E[4(=)4(= − ;)] = 0, for ; > 0, (2)
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(b)

Fig. 1: (a) In the deconvolution problem, the original signal B(=) is distorted by a channel with impulse response
ℎ(=), originating the signal G(=). (b) Once the signal of interest has been distorted, we can adjust another filter,
with impulse response F(=), to compensate the channel distortions and produce an estimate B̂(=).

where the operator E[·] is the statistical mean and
we are considering a zero mean signal [1].

2) It is a minimum-phase filter, i.e., all of its zeros
lay inside the unit circle [1].

From the two properties of the classical PEF we can
note the main limitations of this structure optimized by
means of the MSE criterion. Because it is a whitening
filter, it can only perform decorrelation in 4(=) samples,
which can be understood as a “weak independence”. And
from the PEF phase response, we can observe that this
filter is as suitable structure only for the deconvolution
of minimum-phase channels, which is a very restrictive
condition [6]. Therefore we must seek a criterion and
a suitable structure able to promote independence and
generic phase response.

In [6] and [7] we have shown that the ℓ? 1 PEF, with
? ≠ 2, performs the nonlinear decorrelation, i.e., the
error signal produced has the property

E

[
5
(
4(=)

)
6
(
4(= − :)

) ]
= 0, : ≥ 1, (3)

for all odd, nonlinear functions 5 (·) and 6(·) [1].
We also investigated in [7] the phase-response of the

ℓ? PEF, with ? ≠ 2, verifying that it can present a non-
minimum phase response. However, we also observed
that the ℓ? PEF was not able to compensate the distor-
tions of a channel with a generic phase response. This
limitation of the ℓ? PEF, with ? ≠ 2, is supported by
the work of Knockaert [8], which shows that all of the
zeros of this type of filter lay inside a circle of radius 2.
This result shows that the ℓ? PEF, with ? ≠ 2, is more
general than the classical one, since it provides non-
linear decorrelation and presents a non-minimum-phase
response, but still has a restriction due to its forward
linear structure.

One possible way to circumvent this limitation is using
a cascade of linear predictors: a forward linear predictor
followed by a backward one, as we did in [9]. The use
of a series of deconvolution filters has been addressed in
previous works as [10], [11], [12] and [13]. Compared

1Here, we use ℓ? for the p-norm of a vector.

to the mentioned works, our approach here is to employ
a filter decomposition that preserves the filter linearity,
leading to a simpler parameter adjustment, and that is
also suitable for non-stationary channels.

The present paper further studies the potentialities of
the cascade of linear predictors by applying it distinctly
in two well-defined scenarios: for the blind deconvolu-
tion of antisparse signals, we propose to implement an
MFE (Mean Fourth Error) cascade and for the blind de-
convolution of sparse sources the MAE (Mean Absolute
Error) cascade. We define a sparse signal as a signal that
concentrates most of its information in a few samples
(in this case, zeros or very small values do not carry
significant information). In this work, we have used a
Bernoulli-Gaussian distribution to model such signal. An
antisparse signal, in a dual manner of the sparse one,
is a signal that spreads the information equally among
its samples and therefore is suitably modeled by an
uniform distribution. An example of this kind of signal
is a BPSK, which assumes the values +1 and -1 with
equal probability, and can be considered an antisparse
signal for our purposes in this work.

The MFE criterion is used as a smooth approxi-
mation of the ℓ∞ norm, allowing the implementation
of a stochastic descendent algorithm and the handling
of non-stationary channels. The proposed structure is
adapted by the LMF (Least Mean Fourth) algorithm,
which can be directly derived from the MFE criterion.
For the MAE criterion, the structure is adapted by the
sign-error LMS algorithm. Simulation results show that
this improved solution accomplishes efficiently the blind
deconvolution task for non-stationary and non-minimum-
phase channels.

The present work is organized as follows: in Section II
we detail our approach and present suitable algorithms to
adjust the parameters of the predictors; in Sections III-A
and III-B we present the simulation results. Finally, in
Section IV, we state our conclusions as well as some
perspectives of future works.

II. PROPOSED STRUCTURE AND ALGORITHMS

Our approach here is to employ a cascade of linear
predictors, as depicted in Fig. 3.
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In Fig. 3, �(I) denotes the forward linear predictor,
with error signal given by:

4 5 (=) = G(=) −
 ∑
:=1

0:G(= − :), (4)

where 01, · · · , 0 are the parameters of the forward
prediction coefficients.

In its turn, �(I) denotes the backward predictor filter,
which has an error signal given by:

41 (=) = G(= −  ) −
 ∑
:=1

1:G(= − : + 1), (5)

where 11, · · · , 1 are the backward prediction coeffi-
cients.

Considering the structure in Fig. 3a and the equations
(4) and (5), we can write the error signal 4(=) as

4(=) = H1(= −  ) −
 ∑
:=1

1: H1(= − : + 1), (6)

where H1(=) = G(=) −
∑ 
:=1 0:G(= − :).

Due to the commutative property (Fig. 3b), we can
also write 4(=) as follows:

4(=) = H2(=) −
 ∑
:=1

0: H2(= − :), (7)

where H2(=) = G(= −  ) −
∑ 
:=1 1:G(= − : + 1).

One of our interests in this work is to perform unsuper-
vised deconvolution in order to recover telecommunica-
tion signals, which usually follow a uniform distribution
[14], and, hence, present an antisparse structure [15].
Therefore, as we discussed in [7], the most suitable
measure for this property is the ℓ∞ norm, which is
equivalent to the Maximum Likelihood estimator for a
uniform distribution. However, we will employ here the
ℓ4 norm as a smooth approximation for the ℓ∞ one.

G(= − 1) F1

G(= − 2) F2
...

G(= − !) F!

Σ
Ĝ(=) −1 Σ

G(=)

4(=)

Fig. 2: Scheme of the predictor and the prediction error
filters.

G(=) �(I)
H1(=)

�(I) 4(=)

(a) Forward PEF �(I) followed by a backward one �(I).

G(=) �(I)
H2(=)

�(I) 4(=)

(b) Backward PEF �(I) followed by a forward one �(I).

Fig. 3: The predictive cascade structures.

From (6), we can express the Mean Fourth Error
(MFE) by:

� [|44(=) |] = �

�����
(
H1(= −  ) −

 ∑
:=1

1: H1(= − : + 1)
)�����4 ,

(8)
or, from (7), by:

� [|44(=) |] = �

�����
(
H2(=) −

 ∑
:=1

0: H2(= − :)
)�����4 . (9)

Since we are using a smooth cost function, we can
derive a gradient adaptive algorithm to optimize the
cascade parameters. Hence, the update rule for the LMF
[16] is simply given by:

08 (=) = 08 (= − 1) + 4`(43(= − 1))H2(= − 1 − 8),
18 (=) = 18 (= − 1) + 4`(43(= − 1))H1(= − 8), (10)

where ` is the learning rate. For simplicity, we con-
sidered real signals in the derivation of (10) but these
adaptation rules can be easily extended for complex
signals [9].

Our second objective here is with respect to sparse
signals, as those typically found in seismic deconvolution
[17]. For this case, we must minimize the Mean Absolute
Error (MAE), which can be written as:

� [|4(=) |] = �
[�����
(
H1(= −  ) −

 ∑
:=1

1: H1(= − : + 1)
)�����
]
,

(11)
or, from (7),

� [|4(=) |] = �
[�����
(
H2(=) −

 ∑
:=1

0: H2(= − :)
)�����
]
. (12)



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 36, NO.1, 2021. 93

For the minimization of this cost function, we can
adapt our structure by means of the sign-error LMS [16]:

08 (=) = 08 (= − 1) + `sign
(
4(= − 1)

)
H2(= − 1 − 8),

18 (=) = 18 (= − 1) + `sign
(
4(= − 1)

)
H1(= − 8). (13)

In the following sections, we will present our simu-
lations results of unsupervised deconvolution of non-
stationary channels with a cascade of linear predictors,
considering the recovery of antisparse (Section III-A)
and sparse signals (Section III-B).

III. SIMULATION RESULTS

A. Antisparse Deconvolution

In this section, we consider a BPSK input signal [14],
the samples of which assume the values ±1. We consider
a second order non-stationary channel, the real-valued
zeros of which evolve with the following update rule:

I1(=) = I1(0) + =_1,

I2(=) = I2(0) + =_2,
(14)

with

_1 =

(
I1() − 1) − I1(0)

)
)

,

_2 =

(
I2() − 1) − I2(0)

)
)

,

(15)

where ) denotes the total of available samples. In our
first experiment, we considered:

I1(0) = 0.1→ I1() − 1) = 0.5
I2(0) = 0.5→ I2() − 1) = 0.9

To provide a stability condition for the algorithm,
we considered a stationary channel for the 1.104 first
and last samples, i.e., we have a channel with zeros at
I1 = 0.1 and I2 = 0.5 for the initial samples and a
channel with zeros at I1 = 0.5 and I2 = 0.9 for the final
ones. For the 5.104 intermediary samples, we have a non-
stationary channel, with its zeros updated as (14) and
(15). The objective of this initialization is to show that
once the proposed method has converged to a solution
of a stationary channel, it can track the solution to a
non-stationary one.

With respect to the cascade, we used 5 taps for the
forward predictor and 5 taps for the backward one,
both numbers determined by preliminaries studies. It is
important to highlight that our choice for the length of
the forward and backward filters assumes a symmetry
for the channel, i.e., it presents approximately the same
number of zeros inside and outside the unit circle. We
adjusted the structure by means of the LMF algorithm.

To measure the cascade performance in the equaliza-
tion task, we have adopted the Intersymbol Interference
Rate (ISI) of the combined response. We define the ISI
level, in dB scale, as follows:

ISIdB = 10 log10

∑
8 |68 |2 −max8 |68 |2

max8 |68 |2
, (16)

where 68 are the coefficients of the combined response
� (I) = � (I)�(I)�(I).

Ideally, the combined response would be a delayed
impulse, indicating the perfect channel inversion. Plug-
ging 6(=) = X(= − 3) into (16) we obtain an ISI level of
−∞. Therefore, the lesser the ISI obtained, the better is
the cascade performance in the equalization.

We show the ISI level evolution for the combined
response of our first experiment in Fig. 4a, considering
the mean performance over 200 Monte Carlo Simula-
tions. We considered four values for the learning rate,
i.e., ` ∈ {1x10−4, 5x10−4, 1x10−3, 5x10−3}.

For comparison purposes, we have also obtained the
Wiener solution for the channel, which is the best inverse
filter of the channel obtained through the minimization
of the MSE criterion by having access to the channel
coefficients.

For each delay : in the reference signal, we compute

w: = (HH) )−1H%(= − :), (17)

where H is the convolution matrix and % is a vector
with only the : th entry unitary and all the other are zero.
Therefore, we choose the filter that provides the minimal
MSE:

| |F: (=) ∗ ℎ(=) − X(= − :) | |2 (18)

We used the Wiener solution as a baseline, that repre-
sents the best result (in terms of the MSE criterion, with
a supervised algorithm) that we could obtain in terms of
Zero Forcing solution. In a noiseless case, the closer the
performance of a filter to the Wiener solution, the better.

In this work, we have considered a 6-tap filter and
a 11-tap one, and, after each new update of the channel
zeros, we obtained the channel convolution matrix H and
solved (17) for the best delay in the reference signal.
These two Wiener solutions give us the best performance
that can be achieved using 6 taps, as if only one of the
cascade filters were employed, and the best performance
for 11-tap filters, in which case both parts of the cascade
are in use.

From Fig. 4a we can see that as we increment the
learning rate, the cascade tracking capacity gets better,
as we can observe from the proximity of the continuous
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lines (which represent the combined response for differ-
ent values of `) and the dashed ones (representing the
Wiener solutions), especially in the initial samples. As
the cascade parameters converge (= > 3.104), the ISI
lines associated with different ` values become closer,
except for ` = 1.10−4.

For the second experiment, we considered a
maximum-phase channel, with its zeros specified by:

I1(0) = 10→ I1() − 1) = 2,
I2(0) = 2→ I2() − 1) = 1.1.

This choice of zeros gives us an equivalency between
the minimum- and maximum-phase channels in terms of
amplitude distortion [18].

Again we considered a 5-tap forward predictor and a
5-tap backward predictor for the cascade, with the same
learning rates as before, and we show the results for the
maximum-phase scenario in Fig. 4b.

As we observed for the minimum-phase channel, the
tracking capacity is very close related with the learning
rate: a bigger learning rate leads to a cascade with a
faster convergence rate. It is also interesting to note the
similarities from Fig.s 4a and 4b, due to the relationship
between the zeros of the channels considered.

In our third experiment with non-stationary channels,
we considered a mixed-phase one, with its zeros linearly
evolving as

I1(0) = 0.2→ I1() − 1) = 0.8,
I2(0) = 3.0→ I2() − 1) = 3.6.

We kept the other parameters, i.e., number of cascade
coefficients, learning rates and number Monte Carlo sim-
ulations, as in the previous simulations and we present
our results in Fig. 4c.

For the mixed-phase channel, we verify that for the
initial samples (= < 1.104) the best performance was
attained by the cascade adjusted with ` = 1.10−3; for
the next samples (up to = = 4.104) the best performance
was achieved with the biggest learning rate; finally, in
the final samples (= > 4.104), the cascade adjusted with
` = 5.10−4, 1.10−3, 5.10−3 had similar performances.

We can also see that the ISI lines associated with the
cascade are distant from the one associated with the 10-
tap Wiener solution, represented by the black dashed
line. This result suggests that the cascade needs a slower
transition for the channel zeros when it has a mixed-
phase channel than when the channel has minimum- and
maximum-phase responses. Conversely, for this kind of
channel we need a faster adaptation rule for the cascade.

Also, we considered a variable-phase channel, i.e.
a channel that starts with a maximum-phase response,
passes to a mixed-phase and, finally, turns into a

minimum-phase one, with its two zeros varying in the
intervals specified below

I1(0) = 3.0→ I1() − 1) = 0.1,
I2(0) = 5.0→ I2() − 1) = 0.7.

We repeated the same parameters as in the first three
experiments and we present our simulation results in Fig.
4d.

For this fourth channel, we observe that for 1.104 <

= < 3.104 the cascades adjusted with the biggest values
of ` presented better performances, relating again the
learning rate with the tracking capacity. In this particular
channel we can observe some ISI peaks, due to the
proximity of the channel zeros to the unit circle. When
we adjusted the cascade with the smallest learning rate
(` = 1.10−4), the proposed filter was able to track the
first observed peak; for the other ` values considered, we
can verify an ISI peak with a delay. For the second peak,
we observe in Fig. 4d that all the ` values considered
lead to cascades able to track this peak, again with some
delay. For the last samples, = > 4.104, we verify again
the effect of the learning rate: the bigger the value of
this parameter, the better was the performance of the
associated cascade.

Finally, we evaluated the cascade performance under
a noisy scenario. Here we considered the mixed-phase
channel, with an additive Gaussian noise. We present
our simulation results in Fig. 5a, for SNR = 20 dB,
and Fig. 5b, for SNR = 10 dB. When we are dealing
with a low level of noise (SNR ≥ 20 dB), the ℓ4
cascade performance is little affected, and the tracking
performance is almost the same of the noiseless case. On
the other hand, as the noise level increases, the cascade
performance gets poorer and its tracking capacity gets
lower, as we can observe from Fig. 5b, for all the
learning rates considered.

B. Sparse Deconvolution

Now we present our simulation results with sparse
signals and must adopt an ℓ? norm with 1 ≤ ? < 2.
For the sake of the simplicity of algorithm, we use the
ℓ1 norm, which gives raise to the following adaptation
rules

08 (=) = 08 (= − 1) + `sign
(
4(= − 1)

)
H2(= − 1 − 8),

18 (=) = 18 (= − 1) + `sign
(
4(= − 1)

)
H1(= − 8). (19)

We modeled the sparse signal by means of the
Bernoulli-Gaussian distribution: first we generate a
Bernoulli sequence [19], with a probability ?1 of getting
the value 1; then we multiply the sequence obtained
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Fig. 4: Deconvolution of antisparse signals. Combined response ISI of the cascade filter (CF) and Wiener Filter
(WF), in dB scale, considering 200 Monte Carlo simulations for: (a) the minimum phase system, (b) the maximum
phase system, (c) the mixed phase-system and (d) the variable phase system.
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Fig. 5: Antisparse deconvolution in a noisy scenario. We considered the same mixed-phase channel, 200 Monte
Carlo simulations and an SNR of (a) 20 db and (b) 10 dB.
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Fig. 6: Deconvolution of sparse signals. Combined response ISI of the cascade filter (CF) and Wiener Filter (WF),
in dB scale, considering 200 Monte Carlo simulations for: (a) the minimum phase system, (b) the maximum phase
system, (c) the mixed phase-system and (d) the variable phase system.
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Fig. 7: Sparse deconvolution in a noisy scenario. We considered the same mixed-phase channel, 200 Monte Carlo
simulations and an SNR of (a) 20 db and (b) 10 dB.
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by another random sequence, with values drawn from
a normal distribution, with zero mean and unit variance.
The parameter ?1 allows us to control the degree of
sparsity of the signal. In our simulations, we used
?1 = 0.1.

As we did for the antisparse case, we used 5 taps
for the forward component and 5 taps for the backward
one, both structures adjusted by (19). We considered
the same channels and learning rates and measured the
performance by means of the ISI level.

We present our simulation results of deconvolution
with the minimum-phase channel (I1(0) = 0.1, I2(0) =
0.5, I1() − 1) = 0.5, and I2() − 1) = 0.9) in Fig. 6a.

In this first experiment, the result is very close to
the one obtained for the antisparse signal: the larger
the values for the learning rate, i.e., ` = 1x10−3 and
` = 5x10−3, the better the results, since the ISI levels
obtained with this parameters are close to the 5-tap
Wiener solution. For small values of `, the tracking
capacity of the cascade is reduced and, for ` = 1x10−4

and ` = 5x10−4, the performance of the sparse decon-
volution is worse than the performance of the antisparse
deconvolution with the same parameters.

Considering a maximum-phase channel (I1(0) = 10,
I2(0) = 2, I1() − 1) = 2, and I2() − 1) = 1.1), we
present our deconvolution results in Fig. 6b. For this
second experiment with sparse signals, the performance
is also very similar to the one of the antisparse case.
Again, we got the best performances, in the ISI level
sense, with the larger values of the learning rate.

For a mixed-phase channel (I1(0) = 0.2, I2(0) = 3,
I1() − 1) = 0.8, and I2() − 1) = 3.6) sparse decon-
volution, we present our simulation results in Fig. 6c.
For this channel, the best results were achieved when
we adopted ` = 5.10−4 and ` = 1.10−3. Comparing the
results in Fig. 6c with the ones in Fig. 4c, we observe
that for the sparse case, with the adaptation rule given
by (10), the ℓ1 cascade tracked better the channel than
the ℓ4 cascade.

Finally, we considered again a variable phase channel
(I1(0) = 3, I2(0) = 5, I1() − 1) = 0.1, and I2() − 1) =
0.7) and present our simulation results in Fig. 6d.

For this case, we see that the performance of the ℓ1
cascade is very similar to the performance of the ℓ4
cascade. For this scenario we observe that the ℓ1 cascade
can also replicate the observed ISI peaks, but with a
delay. As we verified with the ℓ4 cascade, when we have
the channel zeros close to the unit circle, we need to
speed up the cascade adaptation.

As we did for the antisparse deconvolution, we also
considered here a noisy scenario, as depicted in Fig. 7.
The cascade adaptation based on the ℓ1 norm was more

susceptible to the additive noise, even for an SNR = 20
dB, and the performance is very different than the one
obtained in the noiseless scenario. In addition, as we
increase the noise level, the tracking ability is reduced.

This result reinforces our previous comment about
the algorithmic differences of the cascade adaptation
based on the ℓ1 and ℓ4 norms: using the ℓ1 norm,
the cascade parameters present a fast convergence rate,
which improves the filter tracking capacity, but is more
susceptible to noise. On the other hand, using the ℓ4
norm to adjust the parameters, leads to a cascade with
a slower convergence and a lower tracking capacity, but
is more robust with respect to noise.

IV. CONCLUSION

In this work we extended our previous results in blind
deconvolution using a cascade of linear predictors. We
considered here the deconvolution of antisparse signals,
by means of the ℓ4 cascade, and sparse signals, using the
ℓ1 cascade, both for non-stationary channels.

We observed that for minimum- and maximum-phase
channels, both structures were able to track the channel
evolution. For the mixed-phase one, the ℓ4 cascade
presented an inferior performance than the ℓ1 cascade,
but in the presence of noise we observe the opposite.
This particular result shows that besides the norms
duality, different optimization criteria lead to different
algorithmic behavior: using the ℓ1 norm favors a fast
convergence, increasing the tracking capacity, but is
more susceptible to noise; using the ℓ4 norm yields a
slower convergence and less tracking capacity, but is
more robust with respect to noise.

Finally, for a variable phase channel, both structures
were not able to track the channel behavior, mostly when
the channel zeros were close to the unit circle. This
result makes patent the necessity to investigate methods
to speed up the cascade adjustment.
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