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Abstract—The network design is a well-known combinatorial 

optimization problem that is classified as NP-Hard. The main 
purpose of design is often the same, to allocate and size available 
resources in the most possible efficient way in terms of budget, 
considering optimization models oriented towards minimizing 
costs. In this paper, it is proposed to use a hybrid optimization 
method called Hybrid Firefly-Genetic Algorithm to solve the 
Integer Linear Programming (ILP) problem, for Optical 
Transport Network (OTN) planning, considering cost 
minimization. The method combines the discrete firefly algorithm 
with the standard genetic algorithm. To apply this method, first it 
is proposed a mathematical formulation for the optical network 
planning problem. Two other relevant novelties of the proposed 
model are: 1 - network modeling that considers a traffic interest 
matrix in which each predicted demand can be drained from its 
generating node (origin) to one of the possible network overflow 
nodes (different destination nodes); this modeling allows the 
dimensioning of a transport network capable of serving different 
service profiles at each of its nodes; 2 - network resources that are 
efficiently allocated with determination of the capacity of each 
transmission system according to the best solutions for the traffic 
flow links. This allocation process allows the model to value those 
solutions with better resource sharing to the detriment of the use 
of several parallel links operating opportunely with idleness in 
each one. The results show that the proposed algorithm 
outperforms other metaheuristics described in the literature. 
 

Index Terms—Algorithm Genetic, Algorithm Firefly, Network 
Optimization, Optical Network Design. 
 

I. INTRODUCTION 
HE emergence of new technologies and services has 
imposed substantial changes on telecommunication 

systems. [1–3]. The immediate impact of the deployment and 
use of these technologies arises with the need to have a 
telecommunications network with high capacity for data 
transmission. The Optical Transport Network/Dense 
Wavelength Division Multiplexing (OTN/DWDM) enables a 
flexible network infrastructure with high transmission capacity 
[4]. OTN also provides fault isolation management with  
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advanced techniques for solving any operational issues [5].  

Under these circumstances, the optical network is constantly 
being subjected to technological innovations in order to take 
better advantage of the current infrastructure for high 
transmission rates. On the other hand, as the network becomes 
more complex, the efficient use of its resources becomes a 
problem of great concern [6].  
The research on algorithms to optimize resource capacity is a 
promising direction to improve decision support systems 
designed to assist in network planning [7].  

In this scenario, it is natural that different optimization 
problems have been proposed in the literature for the design of 
optical transport networks. The applied methodologies in each 
case are extremely influenced by the network's coverage, the 
transmission technology to be used and the sources of available 
information [8] [9]. However, a common feature among these 
optimization problems is that they absolutely have a traffic 
matrix that needs to be routed from the source nodes to the 
destination nodes [10–11]. 

Nature-inspired metaheuristics are powerful tools for solving 
NP-hard combinatorial optimization problems. These methods 
are based on existing mechanisms in nature's biological 
phenomena [12]. For optical networks, it is possible to highlight 
the use of the genetic algorithm [13–15] and swarm-based 
algorithms [16–18], such as the Particle Swarm Optimization 
algorithm (PSO) [19], ant colony [20] and firefly algorithm 
[21–22]. 

With the explosive growth of demands, from various service 
sources, the performance of the transportation network in the 
face of possible failures has become a field of study of great 
relevance. In [23], a heuristic algorithm based on Integer Linear 
Programming (ILP) [24] is proposed to solve the routing 
problem in the OTN/DWDM networks context. The application 
involves multiple network scenarios in relation to topology, 
traffic distribution and available transmission formats in order 
to quantify the efficiency benefits of deploying flexible grid 
formats.  

The work of [25] presents a bi-objective modelling using ILP 
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for the coding and routing assignment problem in OTN/WDM 
optical networks with dedicated protection. The objectives are 
to achieve the lowest cost of routing and, at the same time, 
employ a minimum number of coding nodes. The proposed 
formulation uses a weighting method to combine the two 
objectives into an integrated method and also provides a 
rigorous analysis in the configuration of the weight coefficients 
to capture the desired priority of the individual objectives. 

For the Elastic Optical Network (EON) flow allocation 
problem the work [26] proposes two optimization-based 
metaheuristics, one by the particle swarm algorithm and the 
other by the taboo search and is represented by ILP. In the paper 
[27] it is proposed an optimization method based on the 
Artificial Bee Colony algorithm (ABC) modeled by ILP. 

The papers [28–29] present hybrid algorithm proposals, 
based on the firefly algorithm, using the genetic algorithm 
crossover and mutation operators, one for the TSP (Traveling 
Salesman Problem) and another for the CFLP (Capacitated 
Facility Location Problem), respectively. The crossover 
operator is used to help the firefly algorithm explore the search 
for better solutions more efficiently and the mutation operator 
is used to increase the diversity of fireflies in the population. 

This paper aims to develop a decision support system to be 
used in the strategic planning of optical transport networks. As 
in [23][24][25][26][27], it is also considered the use of ILP in 
this work. More specifically, we propose an integer linear 
programming model 0-1 to model the optical transport network, 
which is solved using the exact method, the bio-inspired genetic 
and firefly algorithms and a Hybrid Firefly-Genetic Algorithm.  
The model selects optimal paths from a set of pre-candidate 
paths available for the flow of the predicted traffic matrix. The 
dimensioning of the resources is performed aiming at a 
minimum cost, that is related to the possibilities of transmission 
equipment allocation in the nodes and allocation of optical link 
and regenerators in the network links. Unlike the approaches 
proposed in [23] [25] [26] [27], one of the remarkable 
characteristics of our proposal is the dimensioning of the 
network through a process of efficient resource allocation plus 
the possibility of draining demands considering multiple 
overflow nodes. 

It is worth mentioning that the modelling proposed in this 
work allows us to contemplate the attendance of a particular 
traffic matrix, not yet addressed in the literature. The commonly 
evaluated matrices are made up of pairs of nodes indicating the 
source node and destination node [10–11, 23]. In this work, 
both the developed ILP and the proposed bio-inspired 
algorithms for the resolution contemplate the possibility of 
applying a demand traffic matrix with its source node, but with 
a diversity of destination nodes.  

This approach is intended to cover those OTN/DWDM 
transport network scenarios in which the system operator has 
the possibility to meet several points of long-distance demand 
within its area of operation. Therefore, the proposed approach 
allows the system operator to transfer overflow traffic to 
another network, that can be carried out by more than one 
external interconnection point. 

II. THE PROBLEM 
The problem of planning optical transport networks is 

complex and difficult to solve [30], [31]. The demands of the 
traffic interest matrix must be disposed between the nodes 
through links with an associated capacity. In this context, the 
emphasis of planning lies in determining the optimal strategy to 
accommodate the set of demands. 

In this work, the flow network model (graphs) [24] is used to 
represent the problem of planning the optical transport network. 
Fig. 1 shows an example of a graph, G = (V, LINK, DEM), 
where V indicates the set of nodes, LINK the set of arcs and 
DEM the set of demands to be drained by the network. In this 
work, the arc-path approach is considered [24]. 

The main elements of this representation are: 
Demand nodes: Demand nodes are concentration points and 

demand generators for the service of the system users. These 
nodes must be physically associated with a transmission 
system. Each node is identified by a number [i]. The example 
network of Fig. 1 has five demand nodes and seven links. 

 
Fig. 1.  Transport network representation - arc-path. 

Links (arcs) candidates: each link in the network represents 
the connection between two demand nodes. The demand flow 
drained by the links is used to guarantee the fulfillment of the 
demand requirements between the network's nodes. The 
demand-flow links that connect all the demand nodes to each 
other are identified by a name and an index, such as link2, that 
identifies the link connecting demand nodes 1 and 5. The total 
capacity of each link, represented by the allocated transmission 
equipment capacity, must be able to meet the demand flow 
chosen to be disposed of by that link. The choice of the capacity 
of each link is represented by a binary integer type decision 
variable, for example, X[link2,n], that represents the choice (or 
not) of a transmission system capacity [n] to be allocated in 
link2. 

Predicted demand: One of the network’s design goals is to 
meet demand between the network nodes. Each demand is 
characterized by being our destination and the traffic volume 
that must be routed through the network. This traffic volume 
can be expressed in multiples of some base routing unit or even 
in terms of the required transmission rate. Between the end 
nodes, one node represents the source node of the demand and 
the other node the destination node. In the example network 
depicted by Fig. 1, two profiles of predicted demand are 
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considered: dem1 (from node 1 to node 5) and dem2 (from node 
2 to node 3 or node 5). 

Candidate paths: a path is defined by a sequence of adjacent 
nodes without repetition whereby a demand flow can pass, each 
demand flow being able to use one or more distinct paths. For 
each predicted demand between two nodes of the network, a set 
of paths is specified that can be used to flow the demand from 
its source node to its destination node.  

For the example network of Fig. 1, where two profiles of 
demands are specified, the possible sets of paths to meet the 
demands dem1 and dem2 are indicated in Table I. Note that the 
dem2 demand profile modeling allows the traffic flow to two 
different overflow nodes: N3 (through paths p1, p2, p3) or N5 
(through paths p4, p5, p6). Note that the set of paths in Table 1 
is not complete, being just examples of paths for dem1 and 
dem2 demands. This choice is made through binary type 
decision variables, Y[demand, path], that specifies the choice 
(or not) of the path (e.g. path p1) to flow out the demand (e.g. 
demand dem1). 

 
TABLE I. EXAMPLE OF PATHS FOR DRAINING THE DEMANDS 

Demand Source Destiny Paths Links 

dem1 N1 N5 p1 link2 
p2 link1 à link6 

dem2 N2 

N3 
p1 link3 
p2 link4 à link5 
p3 link4 à link7 à link6 

N5 
p4 link4 à link7 
p5 link3 à link6 
p6 link4 à link5 à link6 

 
In studies of medium and large networks, that is the case of 

the present work, it is essential that the application process of 
the k-paths takes place in an automated way and that it meets 
some performance criteria. Thus, for each demand source node, 
a set of shortest k-paths is identified for each of the possible 
destination nodes for this demand. The metric used for the k-
paths application was the automatic generation using a 
modified version of the k-shortest algorithm [32]. The total 
distance, in km, between the source node and the possible target 
nodes is used as a decisive factor in the k-shortest algorithm. 

III. MATHEMATICAL MODEL 
In this section, the mathematical formulation for the optical 

network planning problem is presented. The network is seen as 
a set of nodes and arcs. The optimization model is based on 
integer linear programming and uses the arc-path approach 
[24]. 

The ILP model uses the following notation: 

LINK: set formed by all the arcs of the network used to 
interconnect the demand nodes; 

OLINK: set of OTN/DWDM modules (capacities), [n], of the 
candidate OTN/DWDM transmission systems on the arc [i] ∈ 
LINK; 

TN: set formed by the possible destination nodes (for example, 
the overflow nodes of the network) for each network 
demand. This allows to evaluate scenarios in which each 
source node may have the demand met by more than one 

destination node. For each source node, a set of k-paths is 
generated for each predicted destination node; 

DEM: set formed by all the predicted demands to be met by the 
network. Each element of this set is formed by identifying 
the traffic interest of one source node for the [t] ∈ TN 
possible destination nodes; 

Pd:  set of candidate paths to meet demand [d] ∈ DEM. This set 
should contain paths that allow the demand flow [d] for the 
[t] ∈ TN possible destination nodes; 

Ωi: set consisting of all the paths that need to use the link [i] to 
drain their demand flow; 

Y[j][k]: a binary variable that counts the use of the path [k] ∈ Pj 
to meet demand [j] ∈ DEM; 

X[i][n]: binary variable that represents the choice of the 
OTN/DWDM transmission system of [n] ∈ OLINK capacity, 
candidate in the link [i] ∈ LINK; 

C[i][n]: cost of the OTN/DWDM transmission system capacity 
(in Gbps) [n] ∈ OLINK, candidate in the link [i] ∈ LINK. C[i][n] 

encompass the regenerator cost, if necessary. This fact is 
evaluated during the application process of the k-paths; 

dem[j]: predicted demand [j] ∈ DEM, in Gbps, to be met 
between the source node and the [t] ∈ TN possible 
destination nodes; 

Cap[n]: the capacity of the OTN/DWDM transmission system, 
of modularity [n] ∈ OLINK in Gbps; 

r: average optical network cost per km; 
l[i]: length in km of the link [i] ∈	LINK; 

ILP 0-1 can then be formally formulated as: 

𝑀𝑖𝑛	 % % (𝐶["][$] + 𝑟. 𝑙["])𝑋["][$]
[$]Î%!"#$["]Î&'()

 (1)  

% 𝐶𝑎𝑝[$]𝑋["][$] − % 𝑑𝑒𝑚[*]𝑌[*][+] ≥ 0,
[+]ÎΩ%[$]Î%!"#$

	∀[𝑖]Î	𝐿𝐼𝑁𝐾 (2)  

% 𝑌[*][+] = 1	∀[𝑗]Î	𝐷𝐸𝑀	
[+]Î-&

 (3)  

% 𝑋["][$] ≤ 1,
[$]Î%!"#$

	∀[𝑖]Î	𝐿𝐼𝑁𝐾 (4)  

The objective function (1) accounts for cost of the network. 
The product c[i][n]X[i][n] refers to the transmission equipment 
allocation costs, while r.l[i]X[i][n] notes the costs associated with 
the optical network segment. 

The constraints of technical capacity (2) occur in each link 
provided by the planner for the demands flow. They ensure that 
the capacity of the transmission system allocated to the link is 
sufficient to drain the entire demand flow that uses that link. 
This set of constraints allows adapting the model to address 
some specificities of the used technology in the optical 
transmission system. 

The set of flow constraints (3) ensures that each demand 
predicted to be obeyed uses a single path, which favors the 
network operation. It is worth mentioning the possibility of 
evaluating multiple destinations for each demand. The process 
of generating the DEM set, with each element consisting of a 
source node and TN destination nodes, makes it possible to 
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evaluate this type of scenario. 
The set of exclusivity constraints (4) ensures that only one 

optical transmission system must be allocated on each link. The 
goal is to privilege the gain of scale commonly practiced in the 
market, avoiding unnecessary searches for solutions that use 
parallel links. Naturally, the use of this set of restrictions can be 
done in an optional manner, according to the interests of the 
planner. 

It is worth mentioning that the model proposed here 
efficiently allocates the capacity of the OTN / DWDM system. 
The total flow of demand drained on each link guides this 
decision. The transmission systems are sized simultaneously 
with the process of choosing the best traffic flow solutions on 
each link, the set of restrictions (2) ensures this. This process 
allows the dimensioning of resources in an aggregate way, 
valuing the policies of scale gain opportunely practiced in the 
market. This approach is seen as capable of providing a better 
resource sharing when confronted with the proposals presented 
in [10] [11] [13] [23]. In these works, the transmission capacity 
of the system and the consequent cost accounting are specified 
in the pre-processing stage of the k-paths for each demand. 

The proposed model scalability is compromised by its 
complexity, according to the number of variables and required 
constraints. Assuming a worst-case scenario, where all the 
demands can be met, each via k feasible paths, through links 
that present all candidate OTN/DWDM modules, the number of 
required variables is (|LINK| x |OLINK| + (|DEM| x |TN| x k). The 
amount of constraints is given by (2 x |LINK|+|DEM|). 

IV. GENETIC ALGORITHM 
In the considered problem of this work, the solution must 

include the chosen routes to flow each demand, as well as the 
transmission systems allocated in each link. In order, the 
candidate solution is encoded in a genome, known as 
chromosomes [33]. Each chromosome represents the demand 
to be met, as well as the codification of the possible paths to be 
used to flow the demand. The network cost is not directly 
encoded since its evaluation is performed by the fitness 
function, modeled in (1). 

 
Fig. 2. Chromosome encoding and genome structure. 

Fig. 2 shows the chromosomal representation used in this 
work. Each demand can choose a flow path from a set of 
precalculated paths. The binary variables X[i][n] model the 
possibility of allocating (or not) an OTN/DWDM transmission 
system of capacity [n] (n=3 in Fig. 2). The binary variables 
Y[j][k] represent the choice (or not) of the path pk (k=5, in Fig. 2). 

Linked to the choice path (p1,...,pk) to flow the predicted 
demand  [k]  ∈	DEM (variable Y[j][k]) is in dem[j]. With the total 
demand flow at link[i] its capacity Cap[n] (variables X[i][n]) is 
chosen. The structure created for the variables Y[j][k] in Fig. 2 
has TN multiplicity of destination nodes for each demand.  

An interpretation of the chromosome for Fig. 1/Table I is: 

dem1 has TN=1, that is, the possibility of draining the demand 
from the originating node N1 is by 2 paths (p1 and p2) to a single 
destination node N5 and dem2 presents TN=2, that is, it has the 
possibility to drain the demand from node N2 (source) to 2 
destinations, through 3 possible paths (p1, p2 and p3) to 
destination 1 (N3) or through 3 paths (p1, p2 and p3) to 
destination 2 (N5).The choice of each flow path must respect 
this multiplicity. The pseudocode of Genetic Algorithm (GA) is 
presented in Fig. 3. First, the initial parameters of the algorithm 
are declared (Step01) and after the objective function is defined 
(Step02). The evolutionary operators are detailed below. 

Standard Genetic Algorithm 

Step01.  Initialize algorithm parameters 
                     Population number (𝑛𝑃𝑜𝑝) 
                     Generation number (𝑛𝐺𝑒𝑟)  
                     Crossover probability (𝑃𝑐) 
                     Probability of mutation (𝑃𝑚) 
Step02.  Objective function 𝑓(𝑥), 𝑥 = (𝑥., … , 𝑥/)0 
Step03.   Generates initial population P of chromosomes 𝑥"(𝑖 =

				1,2, … , 𝑛) 
Step04.    The fitness function is determined by 𝑓(𝑥") 
Step05.     While (𝑡 < 𝑛𝐺𝑒𝑟)  
                               Fitness calculation - determined by 𝑓(𝑥") 
                               Performs tournament selection 
                               Apply crossover mechanism with probability 𝑃𝑐 
                               Apply mutation mechanism with probability 𝑃𝑚 
Step06.    Rank individuals and find the best global solution 
Step07.      End while 

Fig. 3. Pseudocode of genetic algorithm. 

Initial Population (Step03): the number of individuals that 
will be part of the initial population is defined by the planner. 
The size of this population is maintained throughout the 
iterative process, and each individual of the population is 
created in two steps: 

1. Step of the Y[j][k] variables: It consists of allocating 
randomly, for each demand, one of the available paths 
for flow. Thus, it is possible to check the total flow 
being drained through each link. 

2. Step of the X[i][n] variables: With the flows of each 
link calculated in the previous step, capacity is 
assigned to each arc (variable X[i][n] assume value 1) 
equal to or greater than the total flow. For those cases 
where the link flow is identified as null, the variable 
X[i][n] is set as 0. 

Fitness function (Step04): determined by the objective 
function set in Step03. Solutions Ranking/Selection (Step05): 
the initial population represents a set of feasible solutions to the 
presented problem. Then it is necessary that each element of 
this set be evaluated quantitatively so that the quality of each 
solution can be defined. For the developed genetic algorithm, 
the objective function of ILP 0-1 is used as a fitness function. 
In this way, the solutions have their quality evaluated according 
to the presented cost. So, the lower the cost the better an 
individual.  

Now, for the crossover process, it is necessary to select the 
individuals to be crossed. The tournament selection is 
performed by drawing two sets of solutions taken from the 
current population. In each set, a tournament is held where only 
the best is selected. With the best individual from each set 
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selected, there is a couple of individuals for the crossover. This 
selection process is performed for each crossover that will occur 
in each algorithm generation.  

The number of individuals drawn from the initial population 
is also defined by the planner. However, the larger the set the 
greater the selection pressure since the chances increase that the 
same individuals will be selected, and this fact decreases the 
population diversity. 

Crossover (Step05): The implemented crossing, as well as 
the initial population, happens in two stages, and the step of the 
X[i][n] variables does not change. Thus, a cut-off point in the 
chain of Y[j][k] variables, with the restriction that paths of the 
same demand cannot be separated by this cut-off point. Indeed, 
this process could represent the duplicating of demand within 
the network against the proposed model, and that would make 
the individual inevitably infeasible. Thus, the possibilities of 
cutoff points are limited to the number of demands to be drained 
in the network, respecting the number of candidate paths for 
each demand. 

The cut-off point is responsible for dividing the portion Y[j][k] 
of the individual into two parts. The left part of the first 
individual will be concatenated with the right part of the second, 
and vice versa. In this way two children are generated, that is, 
two possible new network solutions, and these ones tend to be 
better than the previous two.  

After the crossover procedure executed in the solution 
portion Y[j][k] each generated child has its X[i][n] portion created, 
allowing its evaluation. Only one child can remain in the next 
generation. The choice of the individual follows the following 
priority: 

1. two feasible solutions: the lowest cost child individual 
will compose the next generation. 

2. only one feasible solution: the feasible child individual 
is selected. 

3. no feasible solution: the crossover operator is 
performed again with other cutoffs until a feasible 
solution, in other words, a feasible child individual is 
found. 

It is worth remembering that the crossover operator described 
above is controlled by an occurrence probability defined by the 
planner. The crossover operator only happens if the probability 
is met. Therefore, in the event of no crossover occurring, the 
parent individual is simply kept in the next generation. The 
crossover process can alter both the demand destination and the 
used path for its flow. 

Mutation (Step05): the new population module (composed of 
new individuals generated in the crossover process) may 
undergo slight random changes in the chosen paths to flow each 
demand. This procedure is performed to ensure population 
diversity over the generations, reducing the likelihood of 
convergence to a local minimum. 

Mutation does not occur in all individuals. A probability of 
occurrence is also defined to perform this operator control. 
Since a very high probability rate may represent a 
deconstruction of the solution over the generations. 

The mutation also occurs in the portion of the Y[j][k] variables.  
Consequently, the portion X[i][n] needs to be defined again, as 

performed in one of the initial population creation steps. The 
mutation only changes the path but does not modify the demand 
destination. After the mutation mechanism, a ranking of the 
solutions is performed (Step06), finding the best solution, and 
then, the stopping criterion (nGer) is checked. 

V. FIREFLY ALGORITHM  
The Firefly Algorithm (FA) is one of the known swarm-

based algorithms, having different types of applications [34]. 
This algorithm is a metaheuristic inspired by nature to solve 
optimization continuous problems, especially NP-hard 
problems and was motivated by the simulation of the social 
behavior of fireflies. It is possible to use them to formulate 
optimization algorithms because the flashing of the light can be 
used in such a way that it is associated with the objective 
function of the considered problem in order to obtain optimal 
solutions [35]. 

For maximization problems, the brightness can be 
proportional to the objective function value. For minimization 
problems, the brightness may be the inverse of the objective 
function value.  

In the firefly algorithm, there are two important issues: the 
light intensity variation and the attractiveness formulation. For 
simplicity, it can be assumed that the firefly attractiveness is 
determined by its brightness, which in turn is associated with 
the encoded objective function. 

The attractiveness function  𝛽(𝑟) can be any monotonically 
decreasing function, as the following generalized form given 
by: 

𝛽(𝑟) = 𝛽!𝑒"#$
! , 𝑚 ≥ 1 

   
(5) 

 
where 𝛽!	is the attractiveness at 𝑟 = 0 and 𝑟 is the distance 
between two fireflies. 

Since it is generally faster to calculate 1/(1 + 𝑟%) than the 
exponential function [10] equation (5) can be approximated as 
equation (6). 

𝛽(𝑟) =
𝛽!

1 + 𝛾𝑟%    (6)  

The distance between any two fireflies 𝑖 and 𝑗, in the position 
𝑥& and 𝑥', respectively, can be defined as a cartesian distance, 
according to (7), where 𝑥&( is the component 𝑘 of the spatial 
coordinate 𝑥& of the firefly 𝑖 and 𝑑 denotes the number of 
dimensions. 

𝑟&' = 6𝑥& − 𝑥'6 = 89(𝑥&( − 𝑥'()%
)

(*+

    (7) 
 

The random move of a firefly 𝑖 to another brightest firefly 𝑗 is 
determined by (8), where the second term considers the firefly 
attractiveness, the third term is random with 𝛼 being a random 
parameter, and 𝜖& is a vector of random numbers drawn from a 
Gaussian distribution or a uniform distribution. 

𝑥& = 𝑥& + 𝛽!𝑒"#$"#
$<𝑥& − 𝑥'= + 𝛼	𝜖&    (8)  
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In a simpler way, 𝜖& can be replaced by 𝑟𝑎𝑛𝑑 − 1 2⁄ , where 
𝑟𝑎𝑛𝑑 s a random number generator evenly distributed in [0,1]. 
For most applications 𝛽 = 1 and 𝛼	 ∈ [0,1].  In practice, the 
light absorption coefficient 𝛾 ranges from 0,1 to 10. This 
parameter describes the variation in attractiveness and its value 
is responsible for the convergence speed of the algorithm [11]. 

The firefly was originally developed to solve continuous 
optimization problems and cannot be applied directly to solve 
discrete problems. The main challenges of using firefly to solve 
discrete problems are in calculating the distance between two 
discrete fireflies and how they will move [36]. 

The distance between two fireflies is defined by the distance 
between the permutation of their sequences. There are two 
possible ways to measure the distance between any two fireflies 
i and j, in the positions 𝑥& and 𝑥': (a) the Hamming distance [37] 
and (b) the Swap distance [38]. The Hamming distance between 
two permutations is the number of non-matching elements in 
the sequence. The Swap distance is the number of minimum 
exchanges required for one permutation to obtain the other. 

The attraction and movement must be implemented and 
interpreted for the discrete firefly in the same way that is done 
in the continuous firefly algorithm. Thus, the move given in (8) 
is divided into two sub-steps: β-step and α-step as shown in (9) 
and (10), respectively. 

𝑥& = 𝛽(𝑟)<𝑥& − 𝑥'= (9)  

𝑥& = 𝑥& + 𝛼(𝑟𝑎𝑛𝑑 − 1 2⁄ ) (10)  

The parameters 𝛽 and 𝛼 used in (8) are the same used in (9) 
and (10). The attraction steps 𝛽 and 𝛼 are not interchangeable, 
so the β-step must be calculated before the α-step while the new 
position is found. The β-step always brings the firefly j closer to 
the firefly i. In other words, after applying the β-step in a firefly 
towards the other firefly, its distance is always diminished, and 
the decrease is proportional to its previous distance. For this, 
Hamming distance is used as the distance function. This means 
that for the permutation to get closer to the other permutation, 
the amount of its common elements has to increase. Firstly, in 
the β-step process, what is common in both fireflies is extracted. 

Secondly, there is a need to fill in the gaps in relation to the 
previous distance from the permutations. This can be achieved 
with the probability 𝛽 = +

+,#.)",#
$ where 𝑑&,' is the Hamming 

distance between fireflies 𝑖 and 𝑗. Through probability 𝛽 a firefly 
element 𝑖 or 𝑗 will be inserted into the new firefly. After 
calculating 𝛽 a random number 𝑟𝑎𝑛𝑑	(	) is generated in the 
[0,1] range. If 𝑟𝑎𝑛𝑑	(	)	£	𝛽 then the insertion is performed with 
the element of	𝑖, otherwise than 𝑗. This process is carried out 
until all the gaps in the new firefly are filled. It is worth 
mentioning that after each filling, the new distance must be 
checked for the next gap insertion. 

After filling all the gaps, the α-step is performed, which is 
simpler than β-step. This step will change the elements of this 
new formation to the neighboring elements. The smallest change 
corresponds to two elements. 

There are two ways to apply the α-step: make a 
𝛼. 𝑅𝑎𝑛𝑑𝑜𝑚(	) to perform many exchanges of two randomly 
chosen elements, or choose many elements through 

𝛼. 𝑅𝑎𝑛𝑑𝑜𝑚(	) and shuffle their positions. The first option is 
easier to implement, but the results are not as good as the second 
[39].  

The a parameter represents a maximum allowed step for the 
permutation, which consists of 𝑛 elements. To accomplish this 
there is a need for a to be from the set {1, … , 𝑛}. Then a	 = 1 
means that no step is done and  a	 = 𝑛 means to shuffle all 
elements of the permutation. Fig. 4 presents the basic steps of 
the firefly algorithm. 

Standard Firefly Algorithm 

Step01.  Initialize algorithm parameters 
                     Number of fireflies (𝑛) 
                     Generation number (𝑛𝐺𝑒𝑟)  
                     Light absorption coefficient (𝛾) 
                     Attractiveness (𝛽1) 
                     Alpha value (𝛼) 
Step02.  Objective function 𝑓(𝑥), 𝑥 = (𝑥., … , 𝑥/)0 
Step03.   Generates initial population P of fireflies 𝑥"(𝑖 = 				1,2, … , 𝑛) 
Step04.    Light intensity𝐼" in 𝑥" is determined by 𝑓(𝑥") 
Step05.     While (𝑡 < 𝑛𝐺𝑒𝑟)  
                                For each 𝑥" ∈ 𝑃  
                                               For each 𝑥* ∈ 𝑃  

                                                    If (𝐼" < 𝐼*) then move 𝑥" for 𝑥* End if  
                                                        Vary β with the distance 𝑟 via exp	[−𝛾𝑟] 

                                                      Evaluate solutions and update light intensity 
                                               End for 𝑗 
                                End for 𝑖 
Step06.  Rank the fireflies and find the best global solution 
Step07.      End while 

Fig. 4. Pseudocode of firefly algorithm. 

Initially, the parameters of the algorithm are declared 
(Step01) and next, the objective function is defined (Step02). 
The coding routines, initial population generation (Step03), and 
ranking (Step04) follow the process described in Section IV.  
Next, we describe the firefly movement routine. 

Firefly movement (Step05): after the creation of the firefly 
population, the light intensity (cost) value, that is obtained by 
evaluating the objective function of the ILP 0-1. With this, it is 
possible to evaluate the quality of the solution (ranking) 
according to the presented cost. Hence, the lower the cost the 
better the individual (greater light intensity). 

 
Fig. 5. Firefly movement. 

From this set of solutions containing the lowest cost fireflies 
to the highest cost a copy is created and in which the fireflies are 
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positioned from the highest to the lowest cost (performed to 
obtain greater diversity), to enter the movement stage. The first 
firefly i1 is compared with all fireflies j (copy). This procedure 
is performed with the firefly i2 up to firefly in. If the selected 
firefly j has a lower intensity, i.e. higher implementation cost, it 
will be moved towards the firefly i, which has the highest 
intensity and this firefly will be placed in the firefly i position. 

To perform the movement, first there is a need to calculate the 
distance between the fireflies. For this calculation, the Hamming 
distance will be used. The movement is applied to the firefly’s 
binary variables (Y[j][k]). An example with a transmission system 
with capacity equals to 3 (n=3) and five candidate paths to flow 
each demand (k=5) each TN destination is shown in Fig. 5. 

In the example, the Hamming distance between firefly i and 
firefly j is 2 (demands flowed by different paths in dem2 and 
dem4). To perform the movement, the β-step is executed, that is, 
a new firefly β-step (1) is created, maintaining the demands with 
identical paths (dem1 and dem3). After the gaps are filled in, the 
probability β is calculated or each gap and compares this value 
with the random number 𝑟𝑎𝑛𝑑	(	) generated in the [0,1] 
interval. Note that β is controlled by the light absorption 
coefficient (𝛾), defined by the user, and Hamming distance. If 
𝑟𝑎𝑛𝑑	(	)	£	𝛽 then the insertion is performed with the firefly i 
element, otherwise the firefly j. In the β-step (2) it can be verified 
that dem2 was selected from firefly j, and for dem4 firefly, i was 
chosen. 

Then, the α-step will be performed. The maximum amount of 
(α-step) permutations is controlled by α parameter, previously 
defined. Thus, the permutations quantity is arbitrarily 
determined by choosing an integer random value generated in 
the [1, 𝛼] interval and after, the demands for performing the 
permutation are chosen, also randomly. In the example, the α 
value was 2. In α-step (1) of Fig. 5 the permutations quantity 
was equal to 1 and the chosen demands for the exchange were 
dem1 and dem4. What will be changed is the demand path to 
flow and not the demands values, so that dem1 that was flowing 
its demand of 9 Gbps by the path p5, is now drained by p3, which 
was the path that drained dem1 demand of 5 Gbps. And in dem4 
the exchange was performed from p3 to p5.  

Once the β-step and α-step procedures are performed, the 
total flow of each link can be calculated and thus allocate its 
capacity (X[i][n] variables step). If the firefly is infeasible, the 
movement process is performed again, until the creation of a 
feasible firefly. After the completion of the 
comparison/movement of all fireflies, a new ranking (Step06) is 
performed.  

VI. HYBRID FIREFLY-GENETIC ALGORITHM 
The optimization algorithm performance can be improved by 

transforming the current solution into one or more enhanced 
solutions. To perform this improvement, the method proposed 
in [28] is used. The category of this hybrid metaheuristic is the 
integrative [40], in which an algorithm is considered a 
subordinate component and incorporated into that of a master 
metaheuristic, which governs the search process. In this work, 
the master meta-heuristic is the firefly algorithm and the genetic 
algorithm is subordinate to it. Fig. 6 presents the steps of the 
hybrid discrete Firefly-Genetic Algorithm (HFA).  

The firefly algorithm (shown in Fig. 4) was extended by 
inserting crossing and mutation mechanisms. This extension 
corresponds to the Improvement method (Step06) in Fig. 6. 

Two solutions are used at each iteration, the first and second 
ranking solutions (highest light intensity) provided by the 
firefly algorithm. The selected fireflies are always submitted to 
the genetic algorithm crossover and mutation operators, i.e., the 
probabilities of crossover and mutation are both 100%. The two 
best possible fireflies between parents and children are kept in 
the first and second position of the population and the rest are 
eliminated.  

Hybrid Firefly-Genetic Algorithm 

Step01.  Initialize algorithm parameters 
                     Number of fireflies (𝑛) 
                     Generation number (𝑛𝐺𝑒𝑟)  
                     Light absorption coefficient (𝛾) 
                     Attractiveness (𝛽1) 
                     Alpha value (𝛼) 
Step02.  Objective function 𝑓(𝑥), 𝑥 = (𝑥., … , 𝑥/)0 
Step03.   Generates initial population P of fireflies 𝑥"(𝑖 = 				1,2, … , 𝑛) 
Step04.    Light intensity𝐼" in 𝑥" is determined by 𝑓(𝑥") 
Step05.     While (𝑡 < 𝑛𝐺𝑒𝑟)  
                                For each 𝑥" ∈ 𝑃  
                                               For each 𝑥* ∈ 𝑃  

                                                    If (𝐼" < 𝐼*) then move 𝑥" for 𝑥* End if  
                                                        Vary β with the distance 𝑟 via exp	[−𝛾𝑟] 

                                                      Evaluate solutions and update light intensity 
                                               End for 𝑗 
                                End for 𝑖 
Step06.   Improvement Method 
                   Rank the fireflies and find the current bests 
                   Apply crossover mechanism in the two best current solutions 
                   Apply mutation mechanism 
Step07.      End while 

Fig. 6. Pseudocode of hybrid-firefly algorithm. 

VII. EVALUATED SCENARIO 
The methodology can be applied to different scenarios of the 

optical transport network, different types of transmission 
technologies and different traffic matrices. Naturally, for the 
same input variables, if the data parameters are different, for 
example, the precomputed paths for each demand, the reached 
solutions will also change. 

With the goal of evaluating an application scenario similar to 
reality, the methodology used to elaborate the network data was 
the integration of the team with a telecommunications company 
in Brazil. In this partnership, relevant information was 
collected, such as demand points location, distances between 
locations, network topology, equipment costs, and optical 
network.  

The studied OTN/DWDM network can assume three 
hierarchical models, with a transmission capacity of 40, 100 and 
400 Gbps. The actual network is composed of 27 individual 
nodes and 50 links. Fig. 7 shows the network topology (without 
considering the actual scale), including possible links to be 
allocated and dimensioned. 

Traffic interest is defined from cities where the carrier 
attends, merging concession and expansion areas. Each city 
(demand node) has a service forecast for the clients of that 
region. A particularity of this network is that the traffic 
generated at each demand node (source node) needs to be 
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drained to the communication (or overflow) points with another 
WAN (Wide Area Network). In Fig. 7 network, nodes N26 and 
N27 are the destination nodes. 

 
Fig. 7. Backbone OTN/DWDM – Network 1. 

The network presents a total of 27 predicted demands that 
must fully met and directed to the destination nodes. Table II 
lists an example of a randomly generated traffic matrix in the 
[0.5, 50] Gbps range. The 27 demands in Table II have N26 or 
N27 as destination nodes (TN). 

TABLE II. OTN/DWDM NETWORK DEMANDS – NETWORK 1 
Demand/ 

Source Node (Gbps) Demand/ Source 
Node (Gbps) 

dem1/N1 13 dem15/N15 4 
dem2/N2 0.5 dem16/N16 10 
dem3/N3 1 dem17/N17 22.5 
dem4/N4 5 dem18/N18 11.5 
dem5/N5 0.5 dem19/N19 12.5 
dem6/N6 37.5 dem20/N20 7.5 
dem7/N7 1.5 dem21/N21 19 
dem8/N8 2.5 dem22/N22 3.5 
dem9/N9 12 dem23/N23 25 

dem10/N10 2.5 dem24/N24 30 
dem11/N11 7.5 dem25/N25 15 
dem12/N12 4 dem26/N26 13 
dem13/N13 20 dem27/N27 30 dem14/N14 50 

 
Some modeling characteristics that are obeyed in Fig. 7 

network evaluation: the demands and the links obey the same 
form of routing, being bidirectional; the capacity of the links is 
explicit; all existing paths can be used and the predicted demand 
cannot be drained by more than one path. 

The network cost was determined from a detailed survey of 
each service and assets used to implement a link. After 
collecting the separated costs of each item, the total deploying 
cost of each link with the three OTN / DWDM modules being 

evaluated (40, 100, 400 Gbps) was calculated. The costs of 
regenerators have also been specified according to the capacity 
of transmission and its range (used for distances greater than 80 
km). Table III presents these values. The used values are 
relative. The cost of the 40 Gbps capacity OTN/DWDM system 
($ 89000.00) is used as a basis. The considered optical network 
cost represents a consolidated calculation of the average 
network cost per kilometer, which is 0.012. 

TABLE III. COSTS OF OTN/DWDM SYSTEMS 
Capacity (Gbps) Distance  Cost 

 
40 

Up to 80km  1.00 
Greater than 80km 1.32 

 
100 

Up to 80km  1.90 
Greater than 80km 2.22 

 
400 

Up to 80km  3.92 
Greater than 80km 4.24 

 
The genetic algorithm and the firefly algorithm are 

implemented in MATLAB® software, running in a 
microcomputer with macOS® environment, Intel Core i5 
2.3GHz processor and 8GB RAM. The performance of the 
presented approach was verified computationally, and the 
results were compared with the exact method, where the 
intlinprog solver was used, which makes use of the branch-and-
bound solution method (B&B) [41].  

The initial experiment was performed on the exact ILP model 
to verify the influence of the number of candidate paths for each 
demand. The quality of the obtained solution, as well as the 
required computational effort, are evaluated.  

Table IV presents the results (cost) according to the number 
of candidate paths for each demand between k = 10 (5 paths for 
each destination) and k = 20 (10 paths for each destination). It 
is also shown in Table IV: the total network capacity (sum of 
capacities (40, 100 or 400 Gbps) of all links allocated in the 
network), the processing time and the capacity used which 
represents the percentage of the total flow drained in the 
network in relation to the total capacity, that is, it represents the 
average network occupation. 

TABLE IV. EXACT METHOD COMPARISON – NETWORK 1 
Number of 
Candidate 
Paths (k) 

Cost Total 
Capacity 
 (Gbps) 

Capacity 
Used (%) 

Execution 
Time (s) 

10 559.63 3340 47.40 2460 
12 537.75 3040 52.20 56077 
14 531.67 3340 49.70 35566 
16 530.96 3340 50.30 64376 
18 530.96 3340 50.30 290739 
20 530.96 3340 50.30 318140 

 
The ILP model obtained the optimal solution in all cases. It 

can be observed in Table IV that the optimal solution and the 
execution time are strongly influenced by the precomputed 
paths. This demonstrates that the large network solution 
obtained with exact methods requires a great computational 
effort and consequently a high value in time processing. For 16, 
18 and 20 candidate paths the solution is the same, however, the 
processing time increases considerably.  

The network topology with the optimal solution (exact 
method) for k = 16, 18 and 20 can be checked in Fig. 8. Each 
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chosen link indicates the flows drained and the capacity 
allocated (flow/capacity) in Gbps. 

The solution network prioritized the flow of demands 
through node N26. In the obtained result of the 50 links that 
were candidates, 25 were installed, being 16 links of 40 Gbps, 
3 links of 100 Gbps and 6 links of 400 Gbps. The utilized 
capacity of the network solution is 50.30%. 

 
Fig. 8. Solution network for k= 16, 18 and 20. 

 
Table V and VI describe the five configurations of the FA, 

HFA, and GA algorithms used to evaluate the network. The 
parameters 𝛽	and	𝛾 of the firefly algorithm are fixed at 𝛽 = 1 
and 𝛾 = 0.1 [12]. These configurations were chosen in order to 
evaluate the performance of the methodology by privileging 
some of its parameters, besides the main objective that is to 
dimension the network at minimum cost. 

TABLE V 
CONFIGURATIONS FA AND HFA 

Configurations Parameters 
Fireflies Generation a 

1 100 50 4 
2 100 50 8 
3 100 100 8 
4 200 100 4 
5 500 500 8 

 
For each value of k 10 replicates were performed (each 

algorithm was executed 10 times). The execution time presented 
is the sum of the 10 replicas made. The stopping criterion is the 
number of generations. 

TABLE VI 
CONFIGURATIONS OF AG 

Configuration Parameters 
Population Generation Prob. 

Crossover 
Prob. 

Mutation 
1 100 50 0.6 0.05 
2 100 50 0.9 0.10 
3 100 100 0.9 0.10 
4 200 100 0.6 0.05 
5 500 500 0.9 0.10 

Table VII presents the performance comparison, bringing the 
best solutions of the exact, GA, FA and HFA methods. The Gap 
represents how many percent the solution is above the optimal 
value found by the exact method. The Config. shows in which 
configurations the lowest deployment cost values were found. 

The HFA algorithm proved to be effective in all cases, as its 
solutions reached the same value as the exact method (branch-
and-bound), while the FA reached the value in only 2 cases 
(k=14 and k=20). The HFA, in configuration 5 (Table IV), 
reached the optimal value in all scenarios evaluated.  

TABLE VII 
ALGORITHM COMPARATIVES – NETWORK 1 

Number 
of 

Candidate 
Paths (k) 

Exact 
Method 
(Cost) 

Method Cost Gap Config. 

10 559.63 
GA 578.12 03.30% 3 to 5 
FA 577.41 03.17% 2 to 5 

HFA 559.63 00.00% 4, 5 

12 537.75 
GA 556.63 03.51% 4, 5 
FA 538.78 00.19% 5 

HFA 537.75 00.00% 3, 5 

14 531.67 
GA 549.44 03.34% 5 
FA 531.67 00.00% 5 

HFA 531.67 00.00% 5 

16 530.96 
GA 548.73 03.34% 4, 5 
FA 532.85 00.35% 4, 5 

HFA 530.96 00.00% 4, 5 

18 530.96 
GA 555.53 04.62% 3 to 5 
FA 538.07 01.34% 5 

HFA 530.96 00.00% 5 

20 530.96 
GA 548.50 03.30% 5 
FA 530.96 00.00% 3, 5 

HFA 530.96 00.00% 4, 5 
 

The performance in terms of computational time (Table VIII) 
required to find the solution with the exact method was high and 
it is strongly influenced by the value of k. Based on all k values 
and configuration 5 of the bio-inspired algorithms, the genetic 
algorithm, despite having excellent results in terms of time, 
presented the highest cost values. HFA had slightly higher 
processing time values than FA but achieved better cost results 
(Table VII). 

TABLE VIII 
COMPARISONS OF PROCESSING TIME BETWEEN METHODS – NETWORK 1 

Number of 
Candidate Paths 

(k) 

Execution Time (s) 
Exact 

Method  
GA  FA HFA 

10 2460 7060 29651 29874 
12 56077 7342 28746 29965 
14 35566 8608 30987 31675 
16 64376 8923 32287 33934 
18 290739 10006 33178 34365 
20 318140 9466 35971 37537 

 
Fig. 9, 10 and 11 show the comparative for the cases of k=10, 

k=14 and k=20 of Table VII, for the three methods, GA, FA and 
HFA, in configuration 5, of cost as a function of number of 
generations. 

It is worth noting that in the three cases, that the increase in 
computational effort (around 3.7% on average) caused by the 
solution improvement method proposed in pseudocode of 
hybrid-firefly algorithm (Step06), is compensated by faster 
convergence to the optimal solution. 
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Fig. 9. Convergence of methods for k=10. 

 
Fig. 10. Convergence of methods for k=14. 

 
Fig. 11. Convergence of methods for k=20. 

Table IX presents the comparison between method 
performances considering change in the number of candidate 
paths and assuming as stopping criterion, the execution time of 
3600 seconds. The configuration used for the bio-inspired 
algorithms is 5 (Table V and VI). 

TABLE IX 
COMPARISONS OF COST BETWEEN METHODS – NETWORK 1 

Number of 
Candidate Paths 

(k)   

Cost 
Exact 

Method  
GA  FA HFA 

10 559.63 625.20 559.63 559.63 
12 631.37 617.46 555.53 537.75 
14 620.54 582.94 531.67 531.67 
16 622.75 622.83 548.73 538.79 
18 566.43 637.53 549.44 549.44 
20 553.63 622.91 551.81 548.50 

 
Considering all k values, HFA provided the best cost values, 

with an average of 544.39, followed by the FA method, with an 
average of 549.44. The exact method reached an average of 
592.34 and GA achieved the highest implementation costs, with 
an average of 618.10. It is worth noting that the exact method 
searches for the best solution in a space less adequate than that 
considered by HFA, being less efficient for the available time 
of 3600 seconds. Considering the stopping criteria of the 
algorithms, the generation number and the processing time 
(3600 seconds), the HFA performance can be highlighted once 
it provided the lowest cost values in all cases. 

The variability between the solutions obtained by each 
method, taking into account all configurations, can be seen in 
Table X. Listed are: Lowest Cost (Best Solution), Worst Cost, 
Average Cost, and Average Gap. In all scenarios the HFA 
hybrid method proposed in this work achieved the best results 
also in terms of little variability between the obtained solutions. 

TABLE X  
COMPARISONS BETWEEN METHODS – NETWORK 1 

k=10 

Method Best Cost Worst 
Cost 

Average 
Cost 

Average 
Gap 

Exact 559.63 - - - 
GA 578.12 629.79 598.35 06.91% 
FA 577.41 578.12 577.49 03.19% 

HFA 559.63 577.41 568.96 01.67% 
k=14 

Exact 531.67 - - - 
GA 549.44 616.12 566.59 06.56% 
FA 531.67 556.63 545.65 02.63% 

HFA 531.67 549.44 543.52 02.22% 
k=20 

Exact 530.96 - - - 
GA 548.50 576.15 563.07 06.05% 
FA 530.96 568.33 550.47 03.67% 

HFA 530.96 568.33 543.44 02.35% 
 

In order to better verify and compare the performance of the 
methods, it was also considered a smaller network, that is, 
the OTN/DWDM network shown in Fig. 12. This network is 
contained in the SNDlib repository [42]. The network is made 
up of 11 nodes, 34 links and 11 demands that can be drained by 
destination nodes (TN) N2 or N8, with the possibility of 
allocating 40, 100, or 400 Gbps transmission systems capacity. 

 
Fig. 12. Backbone OTN/DWDM – Network 2. 

Fig. 12 shows the network topology (without considering the 
real scale), including possible links to be allocated and 
dimensioned and also the distance of the links in km. Table XI 
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shows the demands generated randomly in the [0.5, 50] Gbps 
range. 

TABLE XI. OTN/DWDM NETWORK DEMANDS – NETWORK 2 

Demand/Source Node (Gbps) 

dem1/N1 19 
dem2/N2 42 
dem3/N3 25 
dem4/N4 46 
dem5/N5 21 
dem6/N6 33 
dem7/N7 36 
dem8/N8 08 
dem9/N9 44 

dem10/N10 06 
dem11/N11 47 

 
Table XII presents the performance comparison, bringing the 

best solutions of the exact method, GA, FA and HFA, to the 
network of Fig. 12. The configurations used in the bio-inspired 
algorithms are those of Table V and VI. 

TABLE XII 
ALGORITHM COMPARATIVES – NETWORK 2 

Number of 
Candidate 
Paths (k) 

Exact 
Method 
(Cost) 

Method Cost Gap Config. 

10 98.44 
GA 102.93 04.56% 4, 5 
FA 102.93 04.56% 1 to 5 

HFA 102.93 04.56% 1 to 5 

12 98.44 
GA 102.93 04.56% 3 to 5 
FA 98.44 00.00% 3, 5 

HFA 102.93 04.56% 1 to 5 

14 98.44 
GA 102.93 04.56% 1 to 5 
FA 102.93 04.56% 1 to 5 

HFA 98.44 00.00% 3, 5 

16 97.24 
GA 102.93 05.85% 4, 5 
FA 98.44 01.23% 3, 5 

HFA 97.24 00.00% 3, 5 

18 97.24 
GA 102.93 05.85% 4, 5 
FA 97.24 00.00% 3, 5  

HFA 97.24 00.00% 3, 5 

20 97.24 
GA 102.93 05.85% 1 to 5 
FA 98.44 01.23% 3, 5 

HFA 97.24 00.00% 3, 5 
 

In terms of response performance, the HFA algorithm also 
proved to be effective, as its solutions matched the exact 
method in 4 cases (k=14 to k=20 - Config. 3 and 5), while the 
FA reached the value in only 2 cases, for (k=12 and k=18 - 
Config. 3 and 5). It is worth mentioning that for configurations 
3 and 5, HFA reached the optimum solution. In the large 
network, the optimal solution was achieved only 
for configuration 5. These results show that for smaller 
networks, HFA does not need to have its parameters intensely 
or excessively adjusted to obtain a good solution. 

Table XIII shows the comparison of the processing time 
between the exact methods, GA, FA and HFA for the network 
of Fig. 12. The execution times are presented in terms of the 
number of candidate paths (k) in Table XIII. The configurations 
used to present the processing times of the bio-inspired 
algorithms are 3 and 5 (Table V and VI). 

TABLE XIII 
COMPARISONS OF PROCESSING TIME – NETWORK 2 

 
 
k 

Execution Time (s) 
 

Exact 
GA  FA HFA 

Config. Config. Config. 
3 5 3 5 3 5 

10 04 267 12904 1996 23299 1959 23830 
12 08 554 13600 2144 24178 2019 25257 
14 12 573 13910 2172 24814 2130 25781 
16 14 609 14825 2128 25219 2168 26579 
18 20 631 10294 2138 29809 2194 25699 
20 28 664 11828 2208 27779 2270 25791 

 
The exact method proved to be more effective than the other 

methods (GA, FA and HFA) in terms of processing time for the 
smaller network, as the search space of the algorithm is small. 
This method for the largest network in Fig. 7, which has a larger 
volume of data, showed a high processing time (large search 
space). It is worth noting that the processing time of the exact 
method is less influenced by the number of candidate paths 
when considering the network in Fig. 12 than for the larger 
network. 

The parameters of the bio-inspired algorithms influence their 
performance, mainly the number of individuals and 
generations. This can be seen in Table XIII, because even for a 
small network the algorithms obtained a high value in the 
processing time. This is due to the fact that even though the 
network has a lower volume of information, the algorithms 
have to process all individuals up to the established generation 
number. It is worth noting that, while observing a great increase 
in computational time for the exact method (from 28 to 318140 
seconds), the proposed HFA processing time increases by only 
45.5% in the worst case, when tuning the parameter values of 
the algorithm for the configuration 5 and k=20, in both 
networks. 

TABLE XIV 
COMPARISONS BETWEEN METHODS – NETWORK 2 

k=10 

Method Best Cost Worst 
Cost 

Average 
Cost 

Average 
Gap 

Exact 98.44 - - - 
GA 102.93 113.20 109.09 10.82% 
FA 102.93 102.93 102.93 04.56% 

HFA 102.93 102.93 102.93 04.56% 
k=14 

Exact 98.44 - - - 
GA 102.93 102.93 102.93 04.56% 
FA 102.93 102.93 102.93 04.56% 

HFA 98.44 102.93 101.12 02.72% 
k=20 

Exact 97.24 - - - 
GA 102.93 102.93 102.93 05.85% 
FA 98.44 102.93 102.38 05.28% 

HFA 97.24 98.44 97.96 00.74% 
 

The variability between the solutions obtained by each 
method, taking into account all configurations, can be seen in 
Table XIV. In all scenarios, the hybrid method proposed in this 
work obtained good results with little variability between the 
solutions obtained for the two evaluated networks. As with the 
large network, the convergence of HFA to the optimal 
solution is faster than the GA and FA algorithms for the smaller 
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network. 

VIII. CONCLUSION 
This work presented a strategic planning proposal oriented 

towards minimizing the costs for the OTN/DWDM optical 
transport network infrastructure. The network is seen as a graph 
and, following the arc-path approach, the modeling has been 
translated as a whole linear programming problem with binary 
variables, which obeys the demand constraints, technical 
equipment capacity, and attendance exclusivity requirements. 
The resolution techniques used to solve the ILP 0-1 
optimization model were the genetic algorithm, firefly 
algorithm and the hybrid firefly algorithm.  

The preliminary obtained results regarding the developed 
computational tool performance are encouraging, highlighting 
the model ease of adaptation to meet new requirements and/or 
network and technology specificities to be evaluated. The 
modeling proposed in this work presents the following most 
relevant differences from others in the literature: (1) optical 
network design with demand matrix with multiple destinations; 
and (2) determination of capacities of transmission systems 
with more efficient traffic aggregation. 

The solution quality and computational time are strongly 
influenced by the number of candidate paths and the parameters 
of the bio-inspired algorithms. The genetic algorithm, even with 
the shortest processing times, presented the costliest solutions. 
Regarding the hybrid firefly-genetic algorithm, it stands out for 
the outstanding results for a smaller network, and mainly for 
large network once in this case it reached the optimal value with 
computational time lower than that of the exact method for all 
considered configurations. 

The activities that can be pointed out as extensions of this 
work are: analysis using fuzzy modeling to represent inaccurate 
data, including more optimistic demand scenarios; and studies 
on the possibility of multi-objective modeling, comparing 
minimum cost and maximum network capacity. 
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