
JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO. 1, 2020 230

An open-source end-to-end ASR system for
Brazilian Portuguese using DNNs built from newly

assembled corpora
Igor M. Quintanilha, Luiz W. P. Biscainho, Senior Member, IEEE, and Sergio L. Netto, Senior Member, IEEE

Abstract—In this work, we present a baseline end-to-end
system based on deep learning for automatic speech recognition
in Brazilian Portuguese. To build such a model, we employ
a speech corpus containing 158 hours of annotated speech
by assembling four individual datasets, three of them publicly
available, and a text corpus containing 10.2 millions of sentences.
We train an acoustic model based on the DeepSpeech 2 network,
with two convolutional and five bidirectional recurrent layers. By
adding a newly trained 15-gram language model at the character
level, we achieve a character error rate of only 10.49% and a
word error rate of 25.45%, which are on a par with other works
in different languages using a similar amount of training data.

Index Terms—speech recognition, deep learning, speech cor-
pus, text corpus, Brazilian Portuguese

I. INTRODUCTION

AUTOMATIC speech recognition (ASR) technology has
been around for over sixty years, and it is embedded

in many products, from automated calls to personal assis-
tants [1], [2]. However, ASR systems are far from perfect: their
performance degrades quickly with background noise or far
speech, and they tend to have a higher error rate if insufficient
annotated training data is available.

Current state-of-the-art ASR systems rely on deep learning
techniques [3]. Such algorithms made possible to train speech
recognizers with different levels of background noise and
microphone distances, moving away from previous approaches
based on Gaussian mixture models and hidden Markov models
systems [4].

Unfortunately, deep-learning-based ASR systems are
strongly data driven, requiring considerable amounts of data
to produce good models. Building a large corpus is time-
consuming and not a trivial task. Open-source efforts, such as
the Common Voice [5] led by Mozilla, were able to gather
more than 1, 000 hours of English speech, far away from
its original 10, 000 goal. For non-English languages, such
as Dutch, only less than 31 hours of annotated speech are
available (from a 1, 200 hours goal). These numbers are orders
of magnitude below the ones that private companies, such as
Baidu and Google, have been reporting with their results [6],
[7].

Igor M. Quintanilha is with the Electrical Engineering Program, Federal
University of Rio de Janeiro, Brazil (e-mail: igor.quintanilha@smt.ufrj.br).

Luiz W. P. Biscainho and Sergio L. Netto are with the Department
of Electronics and Computer Engineering and the Electrical Engineering
Program, Federal University of Rio de Janeiro, Brazil (e-mails: {wagner,
sergioln}@smt.ufrj.br).

Digital Object Identifier: 10.14209/jcis.2020.25

The lack of annotated speech and public corpora makes
it difficult to evaluate ASR systems for several languages,
whose accuracies are, therefore, much worse than the ones
reported for English and Mandarin [8]. This is especially true
for languages with only a few dozen hours of public data
available, such as Brazilian Portuguese (PT-BR). This work
aims to establish a new baseline system for ASR using deep
neural networks for PT-BR. By doing so, this work addresses
the lack of a large annotated speech corpus by studying and
showing how English-trained ASR systems can be beneficial
for under-represented languages by applying transfer learning
techniques. As a result of this work, we make the following
contributions:
• A new PT-BR text corpus, by assembling three text

corpora totalling 10.2 million sentences, among which
the WikiText-PT-BR—built for this work by scraping text
from the Wikipedia;

• An assorted PT-BR speech corpus containing a total of
158 hours of speech, by gathering four smaller datasets
(three of which are free to distribute);

• An open-source pre-trained model with weights fine-
tuned from the DeepSpeech 2-based architecture, so that
anyone can evaluate or further improve the baseline end-
to-end PT-BR speech recognizer;

• New open-source character- and word-level language
models based on deep-learning techniques for PT-BR.

All development code employed in this work will be open-
sourced under the MIT License and available at http://github.
com/igormq/speech2text, as well as the speech and text cor-
pora.

The remaining sections of this paper are organized as
follows. Section II reviews the related works on the field of
deep-learning ASR. Section III details the acoustic model and
the loss function, whereas Section IV details the decoding
strategy and Section V, the language model. Section VI
specifies all speech and text datasets employed in this work.
Sections VII, VIII, and IX describe the experimental results
for the developed language model, acoustic model, and final
ASR system, respectively. Finally, Section X concludes the
paper emphasizing its main contributions.

II. DEVELOPMENT CONTEXT AND GENERAL DIAGRAM OF
THE SYSTEM

Most languages in the world lack the amount of text,
speech, and/or linguistic resources required to build large

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO. 1, 2020 231

models based on deep neural networks. There has been an
increasing research interest on how to build a high-accuracy
ASR system for languages with insufficient annotated data
(using from hours to a few dozen hours of annotated speech),
such as Brazilian Portuguese [8]; Indian languages (Gujarati,
Tamil, and Telugu) [9], [10]; and Seneca (an Indigenous North-
American language) [11].

To overcome data scarsity, Swietojanski et al. [12] did an
unsupervised pretraining on different languages while Dalmia
et al. [13] shared the same weights from the recurrent layers
over different languages and trained additional layers to de-
velop a multilingual ASR system, which improved the final
word error rate by over 6% when compared to monolingual
systems. Renduchintala et al. [14] proposed a multimodal
data augmentation scheme for attention-based models, which
only requires text data. Zhou et al. [15] showed that a single
transformer network performs well on reduced training data
in a multilingual setting. While [14] consists on training an
extra encoder for its augmentation scheme, and [15] uses a
transformer topology with more than 200 million parameters,
our DeepSpeech 2 based model has fewer parameters (42
millions) and does not require extra parameters for pre-
training.

The present paper extends upon [16], [17] by: showing the
advances on adding a newly-trained external language model
based on over 10.2 million sentences scrapped from the Por-
tuguese Wikipedia; considering a transfer-learning approach
to train an acoustic model based on a large English dataset;
showing the impacts of adding more 148 hours of PT-BR
speech in the acoustic-model training stage.

The overall system described in this paper is represented in
Figure 1, and detailed in the next three sections.

Acoustic
model

Decoding Hello, world!

P
rep

ro
cessin

g
Language model

Fig. 1. The overall end-to-end automatic speech recognition system: the
acoustic model is a DeepSpeech-2-based model trained using the connectionist
temporal classification (CTC) loss function; the language model is an =-gram
trained using the Kneser-Ney algorithm; and the decoding is the beam-search
scheme adapted for the CTC algorithm.

III. ACOUSTIC MODEL AND LOSS FUNCTION

This section presents the acoustic model with the corre-
sponding loss function employed in its development, similar
to the work by Amodei et al. [6].

A. Acoustic model

Fig. 2 illustrates the deep-learning neural-network architec-
ture considered in this work, which is based on the Deep-
Speech 2 [6] model, introduced by Baidu, with two convolu-
tional (Conv) and five bidirectional neural-network layers of
the gated-recurrent unit (GRU) type.

Here, as in [6], we use a normalized power spectrogram
calculated over the audio signal with � = 161 frequency bins
as the network input. The first main layers are spatial convo-
lutions, usually found in image-related tasks to increase the
model capacity without exponentially increasing the number
of parameters. In [6], the authors argue that a convolution in
the frequency domain models the speakers’ variability better
than fully connected layers. Moreover, tuning the convolution-
layer parameters, such as strides and kernel sizes, helps to
release redundant information found in the input spectrogram,
as well as to reduce the number of outputs to be fed into
the subsequent and more expensive layers. Table I shows the
parameters used in this work, which yield the best performance
according to [6]. Each convolution layer is followed by a batch
normalization layer [18], which improves the training speed
by allowing higher learning rates, and a clipped ReLU non-
linearity of the form (min(max(G, 0), 20)).

TABLE I
DESCRIPTION OF CONVOLUTIONAL LAYERS IN THE DEEPSPEECH 2

MODEL

channels kernel stride padding # parameters
Conv 1 32 (41, 11) (2, 2) (20, 5) 14,464
Conv 2 32 (21, 11) (2, 1) (10, 5) 236,576
TOTAL 251,040

The output from the convolutional layers is fed to a stack of
five bidirectional recurrent layers. Different from [6], this work
uses gated recurrent unit (GRU) instead of Elman’s recurrent
layer. The GRU is a simplified version of long short-term
memories [19] where the forget and input gates are fused, thus
reducing the overall number of parameters. In the bidirectional
setting, there are two unidirectional GRUs for each layer, one
proceeding forward and the other backward in time. Then, the
two outputs are summed into a single output to be fed into
the next layer.

After the bidirectional GRUs, one fully connected layer is
employed to generate the unnormalized scores over the label
set. At each timestep, the softmax layer predicts an augmented
label given by the loss function. Finally, the predicted tran-
scription is decoded from the given sequences according to the
probability distributions. Given the input-output pair and the
current network coefficients, the loss function and its gradient
with respect to the network parameters can be calculated over
the data batches. The gradient is then backpropagated through
the network in order to update its coefficients.

B. Loss function

To build an ASR system, we need a dataset comprising
audio clips and their corresponding transcriptions. Both input
sequence - = (G1, . . . , G)) of size) , for GC ∈ R� , where � is
the input size, and its transcription . = (H1, . . . , H*) of size
*, for HD ∈ R! , where ! is the number of labels, may vary
in length and ratio and may not have an accurate temporal
alignment, which is not suitable for the usual supervised-
learning setting. Performing manual alignment of the input
sequence and its transcription requires intense human labor
and it is too time-consuming.

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO. 1, 2020 232

C
on

v

B
atch

N
o
rm

clip
p
ed

-R
eL

U

C
on

v

B
atch

N
o
rm

clip
p
ed

-R
eL

U

G
R
U

G
R
U

G
R
U

G
R
U

G
R
U

F
C

C
T
C

Bidirectional + Sequence-wise
BatchNorm

Hello, world!

Fig. 2. DeepSpeech 2 model consisting of two convolutional (Conv) layers, each one followed by a batch normalization and clipped ReLU non-linearity, five
gated-recurrent units (GRU), and one fully-connected (FC) layer, with interleaved batch-norm layers, totalling over 30 million parameters.

The well-known connectionist temporal classification
(CTC) [20] approach is an alignment-free algorithm which
considers all possible alignments between - and . before
opting for the most probable one. To handle repeated char-
acters and regions of speech that do not contain any audio,
the CTC introduces a special blank token n . The alignments
considered by CTC are of the same length as the input
- and must map to the output . after merging character
repetitions and removing n tokens. As an example, a valid
alignment for . = [ℎ, 4, ;, ;, >] with input size of) = 8
can be [ℎ, ℎ, 4, ;, n , ;, >, n], while [n, ℎ, ℎ, 4, ;, ;, >, n] is an
invalid alignment which leads to [ℎ, 4, ;, >]. Therefore, the
CTC alignment approach between - and . is a many-to-one
operation where the length of . cannot be greater than the
length of - .

The CTC approach aims at maximizing the log-likelihood
log ?(. |-) of the label sequence given the inputs, such that

?(. |-) =
∑

�∈A-,.

)∏
C=1

?C (0C |-), (1)

where A-,. is the set of all possible alignments � =

(01, . . . , 0C) between - and . and the output probabilities
?C (0C) at each time step C are assumed to be independent
given - . The probability ?C (0C |-) can be estimated using
any learning algorithm which produces a distribution over
output classes (e.g., number of characters plus blank label)
given a fixed-size slice of the input. Usually, as considered in
this work, a recurrent neural network (RNN) is employed to
estimate ?C (0C |-) [21].

Summing over all possible CTC alignments is computa-
tionally impractical. Fortunately, the likelihood evaluation can
be efficiently computed via dynamic programming [4]. The
overall CTC loss function is the colog probability of correctly
labeling the entire training set D, that is

� (D) = −
∑

(-,.) ∈D
log ?(. |-). (2)

The loss � (D) is differentiable with respect to the output prob-
abilities, and can be used by any gradient-based optimization
method to update the network coefficients.

The CTC algorithm can directly map speech into text
without any alignment by considering all possible conversion
paths. To do so, the CTC assumes that the output symbols are
conditionally independent of each other given the input, i.e., no

linguistic information is directly imposed in the process, which
means that the acoustic and language models are separated.
While this separation allows for domain independence and
adaptation or reuse of some of the speech recognition compo-
nents, this independence also brings at least one drawback to
the decoding scheme: the model does not know what a word
is and how the previous and current symbols correlate. This
aspect, despite simplifying the ASR development, reduces the
overall system performance in practice. The CTC decoding
schemes discussed in the next section aim to overcome this
issue.

IV. CTC DECODING WITH A LANGUAGE MODEL

This section describes a decoding procedure aided by an
external language model that can potentially improve the per-
formance of CTC-based ASR systems. We also described thor-
oughly the beam-search decoding algorithm for both character-
level and word-level language models in a same framework,
which has been previously handled separately by different
works [22], [23].

There are several ways of decoding the output, each one
with its pros and cons. The best-path or greedy decoding [24],
for instance, is the fastest decoding scheme. It works by
considering that the highest symbol-probability at each step
yields the best hypothesis, that is,

�∗ = arg max
�

)∏
C=1

?C (0C |-). (3)

Then, it collapses the character duplicates and removes all
blanks to get the final transcription. The best-path decoding is
both fast and straightforward. For many applications, this ap-
proach works quite well, mainly when most of the probability
mass is allocated to a single alignment, such as in handwriting
recognition [24].

In practice, however, the primary goal of the decoding
algorithm is not to find the best instantaneous match, but to
find the final transcription with the highest probability, and a
single transcription can have many paths. More precisely, we
want to solve

. ∗ = arg max
.

?(. |-). (4)

In the example illustrated in Fig. 3, alignments [0, 0],
[0, n], and [n, 0], which lead to the same CTC decoding

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO. 1, 2020 233

. = [0], have lower individual probabilities than [n, n], which
corresponds to . = [] (empty output). However, the sum
of their probabilities is greater than the probability of [n, n]
(0.48 > 0.42). In this situation, the best-path decoding would
incorrectly define . = [] as the most likely hypothesis, while
a good decoding scheme should have chosen . = [0].

a

T = 1

b

ε

T = 2

0.3

0.0

0.7

0.3

0.1

0.6

p(A∗) = p1(ε)× p2(ε) = 0.42

p(Y ∗) = p1(a)× p2(a)

+ p1(a)× p2(ε)

+ p1(ε)× p2(a) = 0.48

Fig. 3. CTC probabilities for time-steps 1 and 2 with an alphabet {0, 1, n }.
The best path algorithm will wrongly decode an empty output . = [] (red
dashed line) while the best output is . ∗ = [0].

As mentioned in the previous section, the standard CTC
algorithm does not include the constraint of either a lexicon
or a language model. Indeed, under lexicon/language model
constraints the best hypothesis is defined as

. ∗ = arg max
.

?(. |-) ?lm (.), (5)

where ?lm (.) is the language-model prior distribution. In
practice, this prior distribution may be too restrictive, and thus
it is down-weighted by a factor of U > 0 and a penalty (or
bonus) ! (.) controlled by V ∈ R is also included into the best
hypothesis, which then becomes

. ∗ = arg max
.

?(. |-) ?lm (.)U! (.)V , (6)

where the hyperparameters U and V are set by cross-validation.
The most famous decoding algorithm, which takes into

account the many-to-one mapping and may include lexi-
con/language model constraints, is the beam-search decod-
ing [22], [23]. This scheme interactively searches for the best
hypothesis in a tree of hypotheses and is flexible enough to
handle both constrained and unconstrained vocabularies.

At each time step, the beam search computes a new set
of hypotheses (beams), generated from the previous set by
extending each hypothesis with all possible output symbols
(labels) and keeping only the top candidates. Given its limited
computation, the beam-search algorithm does not find the
most probable output (Eq. (4)), but it empowers the machine-
learning practitioner to trade-off computation (i.e., a larger
beam size) for an asymptotically better solution.

The vanilla beam search needs some adjustments to handle
the CTC many-to-one mapping. Instead of keeping a list of
alignments in the beam, the CTC beam-decoding algorithm
stores the output prefixes after the mapping (i.e., collapsing
the repeats and removing the blank symbols). At each step,
the algorithm accumulates the score of a given prefix.

By storing the outputs after mapping, a new hypothesis can
now map to two different prefixes if the character is a repeat,
as exemplified in Fig. 4 for) = 3. Both [0] and [0, 0] are valid
outputs for this new hypothesis. To generate [0, 0], a blank
symbol is required between repeated characters; then, we must

only consider in the new score the part of the alignment that
ends with n . Contrarily, to generate [0], we must only consider
the part of the previous score for alignments, which does not
end with n .

Algorithm 1 outlines the employed decoding procedure.
Instead of one score for each beam, the CTC beam-search
algorithm has to keep track of two probabilities for each prefix
in the beam, ?b (.̂ |-1:C) and ?nb (.̂ |-1:C), the probabilities of
the candidate prefix .̂ ending in n or not, respectively, given
the first C time steps of the input - . The final score for a
given prefix .̂ is the sum of these two probabilities, i.e.,
?(.̂ |-1:C) = ?b (.̂ |-1:C)+?nb (.̂ |-1:C). The hypothesis setsHC−1
and HC maintain a list of active prefixes at the previous and
current time steps, respectively, and HC−1 is never larger than
the beam width : . Also, variable .̂ + ; is the concatenation of
the label ; with the prefix .̂ , while .̂C−1 is the last label in the
prefix .̂ .

The language model constraint is only added for a new
prefix .̂+ if the language model is character-based or if ; is
a space in the case of a word-based language model. Finally,
the overall probability of a prefix is a product of a language
model insertion term and the sum of non-blank and blank
probabilities, that is

(?nb (. |-1:C) + ?b (. |-1:C))! (.)V , (7)

where ! (.) is the number of characters in . for a character-
based language model or the number of words for a word-
based language model.

The final decoding scheme is significantly simpler and faster
compared to weighted finite-state transducers [25], can nat-
urally handle out-of-vocabulary words, and uses an arbitrary
language model (i.e., character/word level, rule/neural-network
based).

V. LANGUAGE MODEL

In the previous section, we described the beam-search de-
coding for CTC, which may add linguistic information through
a language model. This section walks through one of the main
approaches to construct a language model ?lm (·) using a non-
parametric model based on counting statistics, the Kneser-Ney
algorithm [26], [27]. In the end, we make a brief discussion
about other language models based on neural networks [28],
[29], [30], [31].

A. Statistical language model

A language model computes the probability over a sequence
, of # words [32], F=, i.e.,

?(,) = ?(F1, F2, . . . , F#), (8)

which can be factorized, using the chain rule, as

?(,) =
#∏
:=1

?(F: |F1, F2, . . . F:−1) =
#∏
:=1

?(F: |,1::−1). (9)

Given a text corpus, each conditional probability in this
equation can be estimated by counting the number of occur-
rences of the sequence of words, � (,1::), normalized by the

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO. 1, 2020 234

T = 1
current
hypothesis

proposed
extensions

T = 2
current
hypothesis

proposed
extensions

T = 3
current
hypothesis

proposed
extensions

∅

ε

a

b

∅

ε

a

b

a

ε

a

b

ε

a

b

b

a

ε

a

b

a

ε

a

b

ε

a

b

b

b

a

a

aa

b a

T = 4
current
hypothesis

Fig. 4. Connectionist temporal classification (CTC) beam search with an alphabet {n , 0, 1} and a beam size of 3: (i) multiple extensions can merge to the
same hypothesis (e.g., in) = 2, n and 0 merge to 0 in) = 3); (ii) an extension can split into two hypotheses (e.g., in) = 3, 0 splits into 0 and [0, 0] in
) = 4); (iii) multiple extensions can merge to the same prefix (e.g., in) = 3, n and 0 merge to [1, 0] in) = 4). Adapted from [21].

Algorithm 1 Connectionist Temporal Classification (CTC) beam-search decoding, a unified approach for both [22], [23].
Input CTC likelihoods ?C (0C |-C), ∀C.
Parameters beam width :
Initialize HC−1 = {∅}, ?b (∅|-1:0) = 1, ?nb (∅|-1:0) = 0

1: for C = 1, . . . ,) do
2: HC ← {}
3: for .̂ in HC−1 do
4: ?b (.̂ |-1:C) ← ?b (.̂ |-1:C) + ?C (n |-C)?(.̂ |-1:C−1) ⊲ Handle blanks
5: ?nb (.̂ |-1:C) ← ?nb (.̂ |-1:C) + ?C (.̂C−1 |-1:C) ?nb (.̂ ; -1:C−1) ⊲ Handle repeated character collapsing
6: Add .̂ to HC
7: for ; in L \ {n} do
8: .̂+ ← .̂ + ; ⊲ Extend the current prefix with character ;
9: if ; is equal .̂C−1 then

10: ?temp (.̂+ |-1:C) ← ?C (; |-C) ?b (.̂ |-1:C−1) ⊲ Repeated labels have “n” between
11: else
12: ?temp (.̂+ |-1:C) ← ?C (; |-C)?(.̂ |-1:C−1)
13: end if
14: if ?lm is character based or (; is space and .̂C−1 is not space) then
15: ?temp (.̂+ |-1:C) ← ?temp (.̂+ |-1:C) ?lm (.̂+)U
16: end if
17: ?nb (.̂+ |-1:C) ← ?nb (.̂+ |-1:C) + ?temp (.̂+ |-1:C)
18: Add .̂+ to HC
19: end for
20: end for
21: HC ← : most probable .̂ by ?(.̂ |-1:C)! (.̂)V in HC
22: end for
Return arg max. ∈HC

?(. |-1:))! (.)V

total times of the sequence of words minus the last word,
� (,1::−1), that is,

?(F: |,1::−1) =
� (,1::)
� (,1::−1)

, (10)

However, computing the conditional probability would require
virtually infinite data. Under a Markov assumption, we can by
approximation condition it to just a few words, that is

?(F: |,1::−1) ≈ ?(F: |,:−=+1::−1), (11)

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO. 1, 2020 235

such that the probability over a sequence of words becomes

%(,) =
∏
:

?(F: |,:−=+1::−1), (12)

which is the definition of a vanilla =-gram model. For the
unigram model (= = 0), the simplest case, the conditional
probability is approximated by the probability of the current
word, whereas in a bigram model (= = 1) the conditional
probability is only conditioned to the previous word.

B. Perplexity

It is expected that a trained language model would assign
higher probabilities to frequently observed sequences than
to rarely observed ones. In practice, however, how can we
evaluate a trained model? One way is using the extrinsic
evaluation, i.e., testing it in the task it was designed for
(e.g., ASR) and comparing the resulting evaluation metrics
(e.g., WER–word error rate). This method is time-consuming;
besides, many factors can impact the performance of the
task, and hide some training problems. An alternative way,
commonly used in the ASR context, is the intrinsic evaluation
using the so-called perplexity measure, which is the inverse
probability of the test set, normalized by the number of words,
that is

%%(,) = ?(F1, F2, . . . , F#)−1/#

=
#

√
1

?(,)

= #

√∏
:

1
?(F: |,:−=+1::−1)

. (13)

In other words, perplexity measures how well the model can
predict the next word. A better text model is one that assigns
a higher probability to the word that actually occurs. Better
models mean minimizing the perplexity or maximizing the
%(,) probability.

C. Generalization

For any =-gram that occurred a significant number of times,
the trained model usually provides a good probability estimate.
As the training data are limited, however, many acceptable =-
grams are bound to be missing, being assigned zero probability
in spite of having non-zero probability in real-world scenarios.
This means that our model is underestimating the probability
of several word sequences, which can hurt its performance, and
that the entire perplexity of the test set cannot be calculated
due to divisions by zero.

One way to overcome the zero probabilities is called
smoothing discounting. The intuition in this approach is to
adjust the probability mass to generalize better. The simplest
algorithm is the 1-add smoothing (or Laplacian smoothing),
which adds one to all =-gram counts. All the counts that
used to be zero will now have a count of one, the counts
of one will be two, and so on. However, there is additional
information that the model can rely on instead of “adding
one”. If an =-gram model does not find a particular =-gram,

the model can instead estimate the probability by using the
(= − 1)-gram. Similarly, if (= − 1)-gram model does not have
a particular (=−1)-gram count, the model can look at (=−2)-
gram and so on down to the unigram model. In this so-called
backoff approach, the =-gram evidence is used when it is
sufficient; otherwise, the language model uses lower-order =-
gram information. For a backoff =-gram model to yield a
correct probability distribution, one has to discount the higher-
order =-grams to save some probability mass for the lower
order =-grams.

One of the most commonly used and best performing
=-gram smoothing methods is the interpolated Kneser-Ney
algorithm, which is based on the absolute discount [33] and
subtracts a fixed (absolute) discount 3 from each count. The
Kneser-Ney discounting augments absolute discounting with
a more sophisticated way to handle the lower-order =-gram
distribution. A standard =-gram model assigns higher probabil-
ities to frequent occurrences, but the Kneser-Ney discounting
estimates the probability of occur the =-gram as a novel
continuation in a new unseen context.

For example, consider that for a training data the word
Francisco is more common than glasses, since San Francisco
is a very frequent word. The Kneser-Ney method captures the
intuition that although Francisco is more frequent, it is mainly
only frequent alongside San, whereas the word glasses has a
much wider distribution. The number of times that a word F
appears as a novel continuation can be expressed as

?CONT (F) =
|{F8 : � (F,F8) > 0}|

|{(F8 , F 9) : � (F8 , F 9) > 0}| , (14)

where the numerator is the cardinality of the set containing
all the non-zero counts, i.e. � (·) > 0, of the sequence , =

[F, F8] for all 8, and the denominator is the normalization
factor.

Then, a frequent word Francisco occurring in only one
context (San) will have a low continuation probability ?CONT.
The final equation for interpolated Kneser-Ney smoothing is
then

?KN (F: |,:−=+1::−1) =
max(�KN (,:−=+1::) − 3, 0)∑

F8
�KN (,:−=+1::−1F8

) +

_(,:−=+1::−1)?CONT (F: |,:−=+2::−1), (15)

where

_(,:−=+1::−1) =
3∑

F8
� (,:−=+1::−1F8)

|{F : � (,:−=+1::−1F) > 0}| (16)

is a normalizing constant that distributes the discounted proba-
bility mass, 3∑

F8
� (,:−=+1::−1F8) is the normalized discount, and

|{F : � (F:−1F) > 0}| is the number of times the normalized
discount was applied. In these expressions, �KN is given by

�KN (·) =
{
� (·), for the highest order,
�CONT (·), for lower orders,

(17)

where �CONT (·) is the number of unique single-word contexts
for “·”.

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO. 1, 2020 236

A modified version of the Kneser-Ney smoothing [27]
employed in this work uses three different discounts 31, 32,
and 33+ for =-grams with counts of one, two, and three or
more, respectively.

Neural language models address both =-gram data sparsity
and limited context issues. Due to their parametric model,
such models require more data and take longer than statistical
language models to train. The =-gram data sparsity problem is
addressed through word embeddings (representing each word
as a real-valued vector instead of a one-hot vector) and using
them as inputs to a neural network [28], [29]. The key idea
behind word embedding is to create semantic relationships
between words in the feature space, i.e., words like “cat” and
“dog” should somehow be close in the embedding space, since
they tend to appear in similar contexts. Many language model
methods use RNNs [29], [34] and, more recently, transformers-
like architectures [35], [36] were proposed in the literature,
achieving state-of-the-art results on many datasets. However,
in this work, a statistical language model using the Kneser-
Ney algorithm is employed, as it leads to comparable results
under data-resource constraints, which are inherent in the PT-
BR scenario, leaving the use of a neural language model as a
future work.

VI. DATASETS

So far, we described how to build, to train, and to evaluate
both the acoustic and language models employed in this work.
As explained in Section I, the key idea of this paper is
to train a backbone acoustic model using an open available
English dataset, and then fine-tune it using our PT-BR speech
dataset. Finally, we use a PT-BR language model to increase
even further the system accuracy. This section describes all
datasets employed to train both the acoustic (backbone and
fine-tuned) and the language models. For the acoustic model,
three datasets were used:

1) LibriSpeech: an English dataset containing nearly 1000
hours of speech and freely available, to train the back-
bone model;

2) Brazilian Portuguese speech dataset (BRSD) v1 [8], with
approximately 14 hours of PT-BR speech;

3) Brazilian Portuguese speech dataset (BRSD) v2, con-
taining the first version (BRSD v1) plus extra 144 hours
of speech data.

The separation of BRSD v1 and v2 is employed in this work
to illustrate the effect of additional training data in the final
performance of the ASR system and how the use of language
models can mitigate the problem of having a few hours of
annotated speech corpus.

For the language model, we built a single PT-BR text dataset
(BRTD) by combining three datasets publicly available: Lap-
sNews [37]; CETENFolha [38]; New WikiText PT-BR, in-
cluding scraped data from the Wikipedia website, retrieving
more than 8 million sentences, which is 71 times larger than
LapsNews and 5.5 times larger than CETENFolha.

A. Acoustic model datasets
1) LibriSpeech: The LibriSpeech [39] is a speech corpus

derived from reading audiobooks from the LibriVox project,

totalling almost 1, 000 hours of reading speech sampled at
16 kHz. Due to its massive amount of data, the LibriSpeech
corpus is a perfect candidate to pre-train end-to-end ASR
models.

2) BRSD v1: This dataset is an ensemble of three publicly
available datasets (Sid, VoxForge, LapsBM) and one paid
(PT-BR Spoltech) [8]. It contains almost 14 hours of non-
conversational speech, totalling 425 different speakers, and
more than 12, 000 utterances sampled at 16 kHz in a non-
controlled environment:
• Sid dataset: kindly provided by Dr. Sidney dos Santos

for research purposes, this dataset contains recordings by
72 speakers (20 women) from 17 to 59 years old with
fields such as place of birth, age, gender, education, and
occupation. Recorded at 22.05 kHz in a non-controlled
environment, its 5, 777 utterances were transcribed at
word level without time alignment. Contents span from
spoken digits, single words, complex sequences, spelling
of name, and local of birth to phonetic covering, and se-
mantically unpredictable sentences. Some excerpts were
discarded due to a systematic transcription error found.

• Voxforge [40] dataset: its intent is distributing transcribed
speech audio under general public license to aid the
development of acoustic models. Everyone can record
and (anonymously or not) send specific utterances, which
makes for the most heterogeneous corpus. Its Brazilian
Portuguese section contains recordings by at least 111
speakers, not always with gender/age information, at
different sample rates ranging from 16 kHz to 44.1 kHz,
many with a low signal-to-noise ratio. Its 4, 130 utter-
ances are transcribed at the word level.

• LapsBM1.4 [41] dataset: the “Fala Brasil” group at the
Federal University of Pará uses this corpus to evaluate
PT-BR ASR systems. It contains recordings of 20 unique
utterances by each of 35 speakers (10 women), totaling
700 excerpts, at a 22.05 kHz sample rate without envi-
ronment control.

• CSLU Spoltech dataset version 1.0 [42]: distributed by
the Linguistic Data Consortium (LDC) under catalog
number LDC2006S16, this corpus includes recordings
by 477 speakers from several regions in Brazil in ei-
ther reading speech (for phonetic coverage) or (sponta-
neous) responses to questions. From its 8, 080 utterances
recorded at a 44.1 kHz sampling rate in a non-controlled
environment, 2, 540 have been transcribed at word level
alignment, and 5, 479 at phoneme level with time align-
ment. As pointed in [43], some audio recordings have
lacking or erroneous transcriptions.

All datasets above were pruned of samples with no/wrong
transcription, too short recordings, and other defects that could
produce wrong results. All audio files were re-sampled at 16
kHz. Recording lengths concentrate around 3 s but can reach
up to 25 s.

3) BRSD v2: This second BRSD version includes its pre-
vious version, BRSD v1, plus the CETUC dataset [44], which
totals almost 145 hours of speech signals performed by 50
male and 50 female speakers, each one pronouncing 1, 000
phonetically balanced sentences selected from the CETEN-

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO. 1, 2020 237

Folha corpus [38]. The CETUC dataset was recorded in a
controlled environment at a sampling rate of 16 kHz.

For the reader’s convenience, a summary of all acoustic
datasets employed in this work is provided in Table II. For the
sake of comparison, the most important datasets employed in
the ASR literature are the 5.4-h TIMIT [45], the 73-h Wall
Street Journal (WSJ) [46], [47], the 300-h Switchboard [48],
and the 1, 000-h Librispeech [39], all in English. For its non-
controlled environmental conditions, multiplicity of acquiring
hardware, and distinct speaker dialects, the 158-h BRSD v2
is far more stringent than the WSJ. In addition, Switchboard
contains conversational speech, which is also not found in
BRSD v2.

TABLE II
SUMMARY OF ALL SPEECH CORPORA USED IN THIS WORK (IN THE THIRD

COLUMN, HH:MM = HOURS:MINUTES; THE LAST COLUMN GIVES THE
NUMBER OF DIFFERENT SPEAKERS IN EACH DATASET.)

Words Speakers

Dataset Subset HH:MM Total Unique M F

Librispeech - 1,000 - - 1,283 1,201

BRSD v1

Sid 7:23 33,189 5,676 52 20
VoxForge 4:14 20,879 729 111
Spoltech 1:35 16,776 558 477
LapsBM 0:54 7,228 2,731 25 10

Total 14:07 78,072 7,772 -

BRSD v2 CETUC 144:39 1,040,278 3,528 50 50

Total 158:47 1,118,350 8,328 -

B. Language model datasets

The Brazilian Portuguese text dataset (BRTD) comprises the
following three text datasets:

• LapsNews [37] is a text corpus dataset consisting of
automatic crawling of the top ten daily Brazilian news-
papers available on the Internet in 2010. It was post-
processed to convert to lowercase letters, to remove tags
and punctuation marks, and to expand numbers and well-
know acronyms to the written form, resulting in a corpus
with approximately 120k sentences.

• CETENFolha [38] dataset is a corpus containing over 24
million Brazilian words crawled from the 1994 editions of
Folha de São Paulo newspaper, resulting in approximately
1.6M sentences.

• New WikiText PT-BR dataset is a collection of over 8
million sentences extracted from the Wikipedia articles
and was built for this work. The dataset is available under
Creative Commons Attribution-ShareAlike1 license. The
dataset was pre-processed to remove all punctuation and
tags and convert numbers into their written form, to be
well suited for ASR models.

A summary of all language model datasets used in this work
is given in Table III.

1https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_
Attribution-ShareAlike_3.0_Unported_License

TABLE III
SUMMARY OF ALL TEXT CORPORA USED IN THIS WORK

Words

Datasets #sentences Total Unique

LapsNews 119k 2.7M 66k
CETENFolha 1.5M 26M 214k
WikiText PT-BR 8.5M 194M 1.1M

Total 10.2M 223M 1.2M

VII. LANGUAGE-MODEL EXPERIMENTS

We consider as a baseline model the LapsLM [37], which is
a word-level 3-gram model trained with the modified Kneser-
Ney smoothing technique and is freely available to use.

When training the PT-BR language model, we used the
BRTD, keeping all words with at least three occurrences in
the dataset, totalling almost 512k words. Words not in the
vocabulary were replaced by ‘unknown’. We also removed
sentences that were in common with the LapsBM and CETUC
datasets so as not to bias our result. We split the text corpus
into two sets: the training set, containing 90% of all sentences,
and the test set with the remaining ones. We evaluate the
word perplexity in both test sets and the LapsBM dataset (by
extracting the utterances).

All =-gram models were trained with the KenLM [49]
algorithm, and differently from [6], the use of word- and
character-level language models is studied in the context of a
much smaller speech corpus. Two =-gram word models, with
= = 3 and = = 5, were trained using the same parameters
as the LapsLM. For the character-level language models, we
study how the context influences perplexity by training =-
grams with = = 5, 10, 15, 20 following the same procedure
as in [50]. In the = = 15 and = = 20 cases, rare sequences
were pruned according to: 6, 7, 8-grams appearing only once,
9-grams appearing once or twice, and for = ≥ 10 all =-grams
with less than 4 appearances were dropped.

In order to compare word-level and character-level models,
one may estimate the word-level perplexity in all cases. In this
strategy, following [50], given a previous context C, the word
probability can be estimated:

?(w|C) = ?(;1 |C)
=∏
8=2

?(;8 |C, ;1, . . . , ;8−1), (18)

where ;1, . . . , ;= are the letters in a word, F. This approach,
used by [50], does not take into account that word-level models
are constrained to a fixed-size lexicon, while character-based
models have virtually an infinite vocabulary size. Therefore,
Eq. (18) shall be used only as an upper bound for the true
word-level perplexity in the character-level models.

The word-level perplexity results attained by different lan-
guage models, along with their respective receptive fields
(average characters seen in all =-grams) and storage size, are
shown in Table IV. As one can see, the LapsLM presents
the best perplexity results over the LapsBM dataset, but it
does not generalize over the BRTD test set as well as some
of the other models. The LapsLM model might have been
trained on a smaller dataset probable in a similar text domain

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO. 1, 2020 238

of the LapsBM test set, which may explain the difference
in perplexity between the two test sets (138 PP gap), while
ours was trained on more text, exhibiting better generalization
over different test sets. As expected, increasing the context
increases the model complexity and decreases the perplexity,
indicating a better performance. For = = 15, 20 both character-
level models exhibit competitive performances against the
trained word-level models while having virtually infinite vo-
cabulary.

TABLE IV
GENERAL CHARACTERISTICS FOR SEVERAL LANGUAGE MODELS:
RECEPTIVE FIELD (RP, MEASURED IN CHARACTERS), NUMBER OF

PARAMETERS, AND PERPLEXITY RESULTS OVER THE LAPS BENCHMARK
(LAPSBM) AND THE NEWLY BRAZILIAN TEXT DATASET (BRTD) TEST
SET (MODELS MARKED WITH * WERE PRUNED DURING TRAINING, AS

EXPLAINED IN THE MAIN TEXT. THE FOUR LAST LINES GIVE UPPER
BOUNDS FOR THE TRUE PERPLEXITY VALUE.)

Language model RP Size LapsBM BRTD

LapsLM (3-gram) 25 124M 103.54 297.20
word 3-gram 25 1.9G 173.79 161.29
word 5-gram 42 7.8G 136.50 135.12
char 5-gram 5 41M ≤ 2,334.48 ≤ 2,694.51
char 10-gram 10 4.7G ≤ 271.86 ≤ 323.71
char 15-gram* 15 5.4G ≤ 239.59 ≤ 198.49
char 20-gram* 20 8.8G ≤ 227.84 ≤ 189.53

In Section IX, we investigate how these newly-trained
language models may improve the ASR performance when
combined to the proposed acoustic model.

VIII. ACOUSTIC-MODEL EXPERIMENTS

In this section, we develop new acoustic models based
on the DeepSpeech 2 deep neural-network architecture. All
hyperparameter tuning was performed on validation sets, and
the final performance was evaluated on the test sets. We
use tempo and gain perturbation as data augmentation in all
experiments [51]. We randomly modified the tempo in about
85% to 115% of the original rate, while the gain was randomly
altered from −6 dB to 8 dB from the original one. System
performances are evaluated with respect to their final word
error rate (WER) and character error rate (CER), which are
the edit distances at word and character levels, respectively. In
each case, we consider as the best model the one that achieves
the lowest WER in the validation set.

Over the next sections, we show the results for ASR models
trained on BSRD v1 and v2, discuss how using a well-trained
language model can further improve the results and even
reduce the gap between the speech recognition systems trained
on a smaller and a bigger speech corpora, respectively.

A. Backbone model training

When training the backbone acoustic model for English,
we employed the same training, validation, and test sets as
provided in the original publication [39]. In particular, there
are two versions for each of the validation and test sets,
containing either clean or noisy speech, respectively.

Table V summarizes the backbone model architecture and
related hyperparameters. The network input is the normalized

spectrogram, as described in Section III, calculated using a
Hamming window of 320 samples and a hop size of 160
samples, resulting in � = 161 frequency bins. Each recurrent
layer has � = 800 hidden units, and the output alphabet
contains � = 29 labels corresponding to the {A, B, . . ., Z}
letters plus the apostrophe, space, and blank characters.

Network training was carried out using the stochastic
gradient-descent method with momentum [3] with a learning
rate of 4.8×10−4, a momentum of 0.9, an annealing rate of
0.9091, and a gradient norm clipping [52] of 400 for over 20
epochs with a batch size of 16. In the first epoch, we sort
out the utterances by their lengths, accelerating the network
training, as proposed in [6]. After the first epoch, the batches
are randomly organized. The predicted sequence is decoded
using the greedy search [20]. Table VI shows the results of
the backbone model, which are comparable to the ones found
in the literature without a proper language model for decoding
and extra data. The Paddle Paddle [53] implementation differs
from others by adopting larger recurrent layers (with 2, 048
hidden units each) and a different activation function, while
Sean Naren’s implementation [54] employs a different padding
scheme in the convolutional layers.

B. PT-BR model training

For the PT-BR acoustic model, two experiments were per-
formed, using v1 and using v2 of the BRSD dataset (see
Subsection VI-A), in order to evaluate the impact of their
sizes (approximately 14 and 159 hours, respectively) in the
final results.

For the BRSD v1 experiment, we follow the previ-
ous work [16], [17] by using same validation set (termed
v1-val), containing 21 speakers from LapsBM dataset,
whereas the training set (v1-train) comprised the Sid,
VoxForge, and CSLU datasets. It is worth mentioning that
both LapsBM and CETUC datasets were built using sentences
gathered from the CETENFolha dataset, so they are not
utterance independent, which may bias our results.

To mitigate such utterance contamination in the BRSD v2
experiment, we considered a new test set (v2-test) using
20 speakers from the CETUC dataset, each one speaking only
200 sentences out of the possible 1000 ones instead of the
remaining speakers of the LapsBM, as used in [16], [17].
We use the v2-test in both BRSD v1 and v2 experiments
to report the final results. The other 80 speakers in the
CETUC set were used to expand the v1-train set into the
v2-train set with the remaining 800 sentences not included
in the test set. We made three different 200 : 800 random
splits, and the results are reported in the form of mean and
variance. Finally, the validation set (v2-val) in the BRSD v2
experiment remained the same as in the v1 case.

We conduct an experiment to compare the performances
attained without pre-training (i.e., training from scratch) and
with pre-training (i.e., fine-tuning the model obtained in Sub-
section VIII-A).

The PT-BR model has a broader character set to include
Brazilian Portuguese accents, so the number of characters is
� = 43. Since the number of characters is different in the

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO. 1, 2020 239

TABLE V
DEEPSPEECH 2 BACKBONE ARCHITECTURE AND HYPERPARAMETERS (THE NETWORK INPUT IS THE NORMALIZED SPECTROGRAM USING A HAMMING
WINDOW OF 320 SAMPLES AND A HOP SIZE OF 160 SAMPLES, RESULTING IN 161 BINS. EACH RECURRENT LAYER HAS 800 HIDDEN UNITS, AND THE
OUTPUT CONTAINS � = 29 LABELS. FOR TRAINING, WE USE THE STOCHASTIC GRADIENT-DESCENT METHOD WITH MOMENTUM OF 0.9, A LEARNING

RATE OF 4.8 × 10−4 , AN ANNEALING RATE OF 0.9091, AND GRADIENT NORM CLIPPING OF 400 FOR 20 EPOCHS WITH A BATCH SIZE OF 16. VIEW
OPERATION IS A RESHAPE OVER THE INPUTS.)

Operation Kernel size Stride Feature maps Padding Nonlinearity
Network - Input � × 1 × 161 ×)

Convolution 41 × 11 2 × 2 32 20 × 5 BN-clippedReLU
Convolution 21 × 11 2 × 1 32 10 × 5 BN-clippedReLu

View � × 32 × 41 ×)out →)out × � × 32 ∗ 41
x 5 BatchRNN hidden size: 800

BN
View) × � × 800→ � ×) × 800

FC output size: � ×) × 29 softmax + CTC
BatchRNN Module

Sequence-wise BN
Bidirectional GRU tanh

Sequence-wise BN Module t, b, d
View C × 1 × 3 → C ∗ 1 × 3

BN
View C ∗ 1 × 3 → C × 1 × 3

Preprocessing Normalized linear spectrogram (window size = 320, hop size = 160)
Optimizer SGD with momentum (lr= 4.8 × 10−4, momentum= 0.9), SortaGrad enabled

Max gradient norm 400
Learning rate annealing 0.9091

Batch size 16
Epochs 20

Decoding Greedy search decoder

TABLE VI
BACKBONE MODEL WORD ERROR RATE (WER) COMPARED WITH OTHER
IMPLEMENTATIONS FOUND IN THE RELATED LITERATURE (THE PADDLE

PADDLE [53] IMPLEMENTATION DIFFERS FROM OURS BY ADOPTING
LARGER RECURRENT LAYERS, THEREFORE MORE PARAMETERS, AND A

DIFFERENT ACTIVATION FUNCTION. TEST-CLEAN CONTAINS A CLEANER,
WHEREAS TEST-OTHER CONTAINS A MORE CHALLENGING SPEECH TEST

SET [39].)

Ours Sean Naren [54] Paddle Paddle [53]
test-clean 14.41% 11.27% 6.85%
test-other 35.18% 30.74% 21.18%

backbone and in the fine-tuned models, the last fully-connected
weights must be initialized from scratch.

The PT-BR acoustic models are trained using the same
procedure as the backbone model, except for a batch size of
32 and a learning rate decay of 0.99. We trained the model
from scratch for 100 epochs and the fine-tuned model for 50
epochs. The training curves are depicted in Fig. 5, where one
notices how the model performances in both cases did not
improve after only 20 epochs. As one can see, using a pre-
trained model accelerates training and reaches a better WER,
besides a lower bias.

The final comparison between the acoustic PT-BR models
is shown in Table VII for both BRSD v1 and v2 experiments.
From these results, it is clear that fine-tuning is advantageous,
reducing the final CER by 11.51% and 1.41% for the v1 and
v2 cases, respectively. Also, it is noteworthy that increasing
the dataset size was quite beneficial, significantly reducing the
CER by 8.21%.

IX. COMPLETE ASR EXPERIMENTS

In this section, we combine the language and acoustic
models using the beam search decoder discussed in Section IV

1 5 10 15 20
Epoch

100

150

200

Lo
ss

80%

85%

90%

95%

100%

W
ER

Scratch
Fine-tune
Loss
WER

(a) BRSD v1

5 10 15 20
Epoch

20

40

60

80

100

Lo
ss

10%

20%

30%

40%

50%

60%

70%

W
ER

Scratch
Fine-tune
Loss
WER

(b) BRSD v2

Fig. 5. Loss and WER comparison over the epochs, for both fine tuned and
from scratch settings. The pre-trained model accelerates training and reaches
a better WER, besides a lower bias.

and the fine-tuned models from the previous experiment.

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO. 1, 2020 240

TABLE VII
PT-BR MODEL COMPARISON BETWEEN TRAINING FROM RANDOM INITIALIZATION (SCRATCH) AND TRAINING FROM A PRE-TRAINED BACKBONE MODEL

(THE NUMBER BETWEEN PARENTHESES IS THE STANDARD DEVIATION CALCULATED OVER DIFFERENT V2-TEST SPLITS. IT IS CLEAR THAT
FINE-TUNING IS ADVANTAGEOUS, REDUCING THE FINAL CER FOR BOTH V1 AND V2 CASES.)

BRSD v1 BRSD v2

scratch fine-tuning scratch fine-tuning

CER 34.65% (0.52%) 23.14% (0.54%) 16.34% (0.81%) 14.93% (0.54%)
WER 87.65% (0.42%) 71.74% (1.49%) 52.55% (2.42%) 47.41% (1.73%)

The beam search hyperparameters were selected using a grid
search. We set a beam size of 100 for all experiments. The
language-model parameters in Eq. (6) were selected among 25
linearly spaced points within the interval (0, 3) for U, and 4
linearly spaced values within (0, 0.5) for V. Hyperparameter
values that lead to the best WER in the v1-val set were
chosen for the final evaluation on the test sets.

The resulting WER and CER values for the trained models
are reported in Tables VIII and IX for the BRSD v1 and
v2 datasets, respectively. The best ASR system, trained with
the BSRD v2 dataset and using a 15-gram character-based
language model, achieved a CER and a WER of 10.49% and
25.45%, respectively. This is similar to the result found in [9]
(15.2% of WER) for Tamil language, and comparable to the
improvement reported by [13] and [14] using a multilingual
setting training and multimodal data augmentation, respec-
tively. From these tables, one clearly verifies the advantage
of incorporating the language model onto the acoustic models
obtained in Section VIII, with the WER dropping from 71.62%
to 30.50% for the BRSD v1 set, and a 21.96% improvement
for the BRSD v2 set. Comparing the v1 and v2 results,
one concludes that more training data makes the final ASR
system less dependent on an external language model, as
also observed in [6]. The ASR system based on the =-gram
character-level language models with = ≥ 10 achieves better
performance than the ones using word-level language models,
most probably due to the former virtually infinite vocabulary.
It is worth mentioning that the use of a well-trained language
model greatly reduces the gap between the BRSD v1 and v2.
This is due to the U parameter in the language model. In
our experiments, a worse acoustic model (i.e., trained on v1
data) has a higher U, indicating that the overall ASR system
is relying more on the language model to transcribe the audio
than on the audio itself.

Some of the transcriptions provided by our best ASR system
are shown in Table X. As one can see, some errors arise from
grammatical mistakes (example 1), have phonetic similarities
with the expected transcriptions (examples 2 and 3), or are
due to proper names (example 4). Overall, most of the tran-
scriptions are plausible and can be easily understandable by
human readers.

X. CONCLUSIONS

Through this work, we described all steps necessary to
build an end-to-end ASR system for Brazilian Portuguese. Our
proposal employs a DeepSpeech-2-based architecture and a
transfer-learning approach from a backbone model trained on

TABLE VIII
CHARACTER AND WORD ERROR RATES (%) ON BRSD V1 DATA (ONE CAN

SEE THAT INCOPORATING A LANGUAGE MODEL ONTO THE ACOUSTIC
MODELS IS CLEARLY ADVANTAGEOUS, BY DROPPING THE WER FROM

71.62% IN TABLE VII TO 30.50% WITH A 20-GRAM CHAR LM.)

v2-test

Lexicon CER WER

LapsLM Yes 16.11% (0.42%) 35.53% (1.58%)
word 3-gram Yes 18.36% (0.46%) 41.25% (1.43%)
word 5-gram Yes 17.92% (0.48%) 40.96% (1.58%)

char 5-gram No 19.08% (0.52%) 50.84% (1.64%)
char 10-gram No 14.13% (0.39%) 33.03% (0.80%)
char 15-gram No 13.34% (0.41%) 30.88% (1.01%)
char 20-gram No 13.25% (0.34%) 30.50% (0.91%)

TABLE IX
CHARACTER AND WORD ERROR RATES (%) ON BRSD V2 DATA (WE CAN

SEE THE SAME BEHAVIOUR AS IN V1 DATA, BY DROPPING THE WER FROM
47.41% IN TABLE VII TO 25.45% FOR A 15-GRAM CHAR LM.

DIFFERENTLY FROM TABLE VIII, THE OVERALL IMPROVEMENT IS LOWER
DUE TO THE BETTER ACOUSTIC MODEL. THE FIRST ROW REPORTS THE
RESULT ON THE LAPS LANGUAGE MODEL (LAPSLM) DATASET, FREELY

DISTRIBUTED BY ITS OWNERS.)

v2-test

Lexicon CER WER

LapsLM Yes 11.50% (0.30%) 26.18% (0.74%)
word 3-gram Yes 12.31% (0.54%) 28.92% (0.84%)
word 5-gram Yes 12.17% (0.55%) 28.65% (0.93%)

char 5-gram No 13.02% (0.46%) 37.14% (1.38%)
char 10-gram No 10.91% (0.21%) 27.03% (0.39%)
char 15-gram No 10.49% (0.13%) 25.45% (0.75%)
char 20-gram No 10.46% (0.18%) 25.50% (1.08%)

the English LibriSpeech dataset. To do so, we introduced a new
version of the Brazilian Portuguese speech dataset and we built
a new text corpus comprising 10.2 million sentences scraped
from the Wikipedia Portuguese website. We showed the ad-
vantages of combining the language model with the acoustic
model using the beam search decoder, significantly improving
the performance of the overall system, which achieved CER
and WER values of 10.49% and 25.45%, respectively.

Future works include testing the BRSD v2 on other deep
neural networks, such as transformers, seq2seq with attention,
and recurrent neural network transducers, as well as testing
the BRTD on neural language models.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Na-

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO. 1, 2020 241

TABLE X
TRANSCRIPTION ANALYSIS FOR BEST ASR SYSTEM, TRAINED WITH THE BSRD V2 DATASET AND USING A 15-GRAM CHARACTER-BASED LANGUAGE
MODEL (SOME OF THE TRANSCRIPTIONS ERRORS FOUND WERE DUE TO GRAMMATICAL ERRORS (1); PHONETIC PLAUSIBLE ERRORS (2 AND 3); AND

PROPER NAMES (2 AND 4).)

1 Reference: apenas nove por cento afirmam que vão recorrer a empréstimos
Transcript: apenas nove por cento afirma que vai recorrer a empréstimos

2 Reference: mariz está na segunda metade do seu primeiro mandato de senador
Transcript: maris está na segunda metade do seu primeiro mandato de senador

3 Reference: depois a conta é encerrada por falta de movimentação
Transcript: depois acontecerrada por falta de movimentação

4 Reference: o acusado do crime é o ator guilherme de pádua
Transcript: o acusado do crime o ator guilherme de fado

tional Council for Scientific and Technological Development
(CNPq), and Fundação de Amparo à Pesquisa do Estado do
Rio de Janeiro (FAPERJ).

The authors would like to thank Roberto de Moura Estevão
Filho, Matheus Araújo Marins, Lucas Pinheiro Cinelli, and
many others for their support, assistance, and fruitful discus-
sions.

REFERENCES

[1] Y. Leviathan and Y. Matias, “Google duplex: An AI system for ac-
complishing real-world tasks over the phone,” http://bit.ly/2keb5Om,
accessed: 2020-03-19.

[2] G. Anders, “Alexa, understand me,” http://bit.ly/2x2Yx5F, accessed:
2020-03-19.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge,
UK: MIT Press, 2016.

[4] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, February 1989, doi:10.1109/5.18626.

[5] Mozilla, “Common voice,” https://voice.mozilla.org, 2018, accessed:
2020-03-19.

[6] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro,
J. Chen, M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel,
L. Fan, C. Fougner, A. Y. Hannun, B. Jun, T. Han, P. LeGresley, X. Li,
L. Lin, S. Narang, A. Y. Ng, S. Ozair, R. Prenger, S. Qian, J. Raiman,
S. Satheesh, D. Seetapun, S. Sengupta, C. Wang, Y. Wang, Z. Wang,
B. Xiao, Y. Xie, D. Yogatama, J. Zhan, and Z. Zhu, “Deep speech 2: end-
to-end speech recognition in English and Mandarin,” in International
Conference on Machine Learning, vol. 48, New York, USA, June 2016,
pp. 1–10.

[7] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez, D. Zhao,
D. Rybach, A. Kannan, Y. Wu, R. Pang, Q. Liang, D. Bhatia,
Y. Shangguan, B. Li, G. Pundak, K. C. Sim, T. Bagby, S. Chang,
K. Rao, and A. Gruenstein, “Streaming end-to-end speech recognition
for mobile devices,” in IEEE International Conference on Acoustics,
Speech and Signal Processing, Brighton, UK, May 2019, pp. 6381–
6385, doi:10.1109/ICASSP.2019.8682336.

[8] I. M. Quintanilha, “End-to-end speech recognition applied to Brazil-
ian Portuguese using deep learning,” M.Sc. Dissertation, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2017.

[9] B. Pulugundla, M. K. Baskara, S. Kesiraju, E. Egorova, and J. C.
Martin Karafiát, Lukás Burget, “BUT system for low resource Indian
language ASR,” in Interspeech, Hyderabad, India, September 2018, pp.
3182–3186, doi:10.21437/Interspeech.2018-1302.

[10] J. Billa, “ISI ASR system for the low resource speech recognition
challenge for Indian languages,” in Interspeech, Hyderabad, India,
September 2018, pp. 3207–3211, doi:10.21437/Interspeech.2018-2473.

[11] R. Jimerson and E. Prud’hommeaux, “ASR for documenting acutely
under-resourced indigenous languages,” in Language Resources and
Evaluation Conference, Miyazaki, Japan, May 2018, pp. 4161–4166.

[12] P. Swietojanski, A. Ghoshal, and S. Renals, “Unsupervised cross-lingual
knowledge transfer in DNN-based LVCSR,” in IEEE Spoken Language
Technology Workshop, Miami, USA, December 2012, pp. 246–251,
doi:10.1109/SLT.2012.6424230.

[13] S. Dalmia, R. Sanabria, F. Metze, and A. W. Black, “Sequence-
based multi-lingual low resource speech recognition,” in IEEE
International Conference on Acoustics, Speech and Signal
Processing, Calgary, Canada, April 2018, pp. 4909–4913,
doi:10.1109/ICASSP.2018.8461802.

[14] A. Renduchintala, S. Ding, M. Wiesner, and S. Watanabe, “Multi-modal
data augmentation for end-to-end ASR,” in Interspeech, Hyderabad,
India, September 2018, pp. 2394–2398, doi:10.21437/Interspeech.2018-
2456.

[15] S. Zhou, S. Xu, and B. Xu, “Multilingual end-to-end speech recognition
with a single transformer on low-resource languages,” June 2018, eprint
arXiv:1806.05059.

[16] I. M. Quintanilha, L. W. P. Biscainho, and S. L. Netto, “Towards
an end-to-end speech recognizer for Portuguese using deep neural
networks,” in XXXV Brazilian Symposium on Telecommunications and
Signal Processing, São Pedro, Brazil, September 2017.

[17] ——, “A new automatic speech recognizer for Brazilian Portuguese
based on deep neural networks and transfer learning.” in AES Latin-
American Conference on Audio, Montevideo, Uruguay, September 2018.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, vol. 37, Lille, France, July 2015, pp.
1–9.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neu-
ral Computation, vol. 9, no. 8, pp. 1735–1780, November 1997,
doi:10.1162/neco.1997.9.8.1735.

[20] A. Graves, Supervised Sequence Labelling with Recurrent Neural Net-
works. Heidelberg, Germany: Springer Verlag, 2012, doi:10.1007/978-
3-642-24797-2.

[21] A. Hannun, “Sequence modeling with CTC,” Distill, November 2017,
doi:10.23915/distill.00008.

[22] A. L. Maas, A. Y. Hannun, D. Jurafsky, and A. Y. Ng, “First-pass large
vocabulary continuous speech recognition using bi-directional recurrent
DNNs,” December 2014, eprint arXiv:1408.2873.

[23] A. L. Maas, Z. Xie, D. Jurafsky, and A. Y. Ng, “Lexicon-free conversa-
tional speech recognition with neural networks,” in Annual Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Denver, USA, May 2015,
pp. 345–354, doi:10.3115/v1/N15-1038.

[24] A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: Labelling unsegmented sequence
data with recurrent neural networks,” in International Conference
on Machine Learning, Pittsburgh, USA, June 2006, pp. 369–376,
doi:10.1145/1143844.1143891.

[25] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state transducers
in speech recognition,” Computer Speech & Language, vol. 16, no. 1,
pp. 69–88, October 2002, doi:10.1006/csla.2001.0184.

[26] R. Kneser and H. Ney, “Improved backing-off for m-gram language
modeling,” in International Conference on Acoustics, Speech, and
Signal Processing, vol. 1, Miami, USA, May 1995, pp. 181–184,
doi:10.1109/ICASSP.1995.479394.

[27] S. F. Chen and J. Goodman, “An empirical study of smooth-
ing techniques for language modeling,” in Association for Com-
putational Linguistics, California, USA, June 1996, pp. 310–318,
doi:10.3115/981863.981904.

[28] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” Journal of Machine Learning Research, vol. 3,
pp. 1137–1155, March 2003.

[29] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur,

JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO. 1, 2020 242

“Recurrent neural network based language model,” in Interspeech,
Makuhari, Japan, September 2010, pp. 1045–1048.

[30] R. Józefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu,
“Exploring the limits of language modeling,” February 2016, eprint
arXiv:1602.02410v2.

[31] J. G. Zilly, R. K. Srivastava, J. Koutník, and J. Schmidhuber, “Recurrent
highway networks,” in International Conference on Machine Learning,
vol. 70, Sydney, Australia, August 2017, pp. 4189–4198.

[32] L. R. Bahl, F. Jelinek, and R. L. Mercer, “A maximum likelihood
approach to continuous speech recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 5, no. 2, pp. 179–190,
February 1983, doi:10.1109/TPAMI.1983.4767370.

[33] H. Ney, U. Essen, and R. Kneser, “On structuring proba-
bilistic dependences in stochastic language modelling,” Computer
Speech & Language, vol. 8, no. 1, pp. 1– 38, January 1994,
doi:10.1006/csla.1994.1001.

[34] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural networks for
language modeling,” in Interspeech, Portland, USA, September 2012,
pp. 194–197.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, California, USA, December
2017, pp. 5998–6008.

[36] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” October
2018, eprint arXiv:abs/1810.04805.

[37] N. Neto, C. Patrick, A. Klautau, and I. Trancoso, “Free tools and
resources for brazilian portuguese speech recognition,” Journal of the
Brazilian Computer Society, vol. 17, no. 1, pp. 53–68, November 2011,
doi:10.1007/s13173-010-0023-1.

[38] Linguateca, “CETENFolha,” https://www.linguateca.pt/cetenfolha/
index_info.htmll, accessed: 2020-03-19.

[39] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “LibriSpeech: An
ASR corpus based on public domain audio books,” in IEEE International
Conference on Acoustics, Speech and Signal Processing, Brisbane, Aus-
tralia, April 2015, pp. 5206–5210, doi:10.1109/ICASSP.2015.7178964.

[40] “Voxforge,” https://http://www.voxforge.org, accessed: 2020-03-19.
[41] “Falabrasil - UFPA,” https://github.com/falabrasil/gitlab-resources, ac-

cessed: 2020-03-19.
[42] M. Schramm, L. F. Freitas, A. Zanuz, and D. Barone, “CSLU: Spoltech

Brazilian Portuguese version 1.0 LDC2006S16,” Philadelphia, 2006,
Linguistic Data Consortium.

[43] N. Neto, P. Silva, A. Klautau, and A. Adami, “Spoltech and OGI-22
baseline systems for speech recognition in Brazilian Portuguese,” in
International Conference on Computational Processing of Portuguese
Language, vol. 5190, Aveiro, Portugal, September 2008, pp. 256–259,
doi:10.1007/978-3-540-85980-2_33.

[44] V. F. S. Alencar and A. Alcaim, “LSF and LPC - derived features for
large vocabulary distributed continuous speech recognition in Brazilian
Portuguese,” in Asilomar Conference on Signals, Systems and Comput-
ers, October 2008, pp. 1237–1241, doi:10.1109/ACSSC.2008.5074614.

[45] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett,
N. L. Dahlgren, and V. Zue, “Timit acoustic-phonetic continuous speech
corpus LDC93S1,” Philadelphia, 1993, Linguistic Data Consortium.

[46] J. Garofolo, D. Graff, D. Paul, and D. Pallett, “CSR-I (WSJ0) Sennheiser
LDC93S6B,” Philadelphia, 1993, Linguistic Data Consortium.

[47] “CSR-II (WSJ1) Sennheiser LDC94S13B,” Philadelphia, 1994, Linguis-
tic Data Consortium.

[48] J. Godfrey and E. Holliman, “Switchboard-1 release 2 LDC97S62,”
Philadelphia, 1993, Linguistic Data Consortium.

[49] K. Heafield, “KenLM: Faster and smaller language model queries,” in
Sixth Workshop on Statistical Machine Translation, Edinburgh, UK, July
2011, pp. 187–197.

[50] T. Likhomanenko, G. Synnaeve, and R. Collobert, “Who needs
words? Lexicon-free speech recognition,” April 2019, eprint
arXiv:1904.04479v1.

[51] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation
for speech recognition,” in Annual Conference of the International
Speech Communication Association, Dresden, Germany, September
2015, pp. 3586–3589.

[52] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in International Conference on Machine
Learning, vol. 28, Atlanta, USA, June 2013, pp. 1310–1318.

[53] “A PaddlePaddle implementation of DeepSpeech2 architecture for ASR,”
https://github.com/PaddlePaddle/DeepSpeech, accessed: 2020-03-19.

[54] S. Naren, “Speech recognition using DeepSpeech2,” https://github.com/
SeanNaren/deepspeech.pytorch, accessed: 2020-03-19.

Igor M. Quintanilha was born in Rio de Janeiro,
Brazil, in 1991. He received the B.Sc. degree of
electronic and computing engineer from the Federal
University of Rio de Janeiro (UFRJ), Brazil, in
2015, and the M.Sc. degree in electrical engineering
from the COPPE/UFRJ, in 2017. He is currently
pursuing the D.Sc. degree in electrical engineering at
COPPE/UFRJ. His research interests are deep learn-
ing, machine learning, speech processing, computer
vision, and signal processing.

Luiz W. P. Biscainho was born in Rio de Janeiro,
Brazil, in 1962. He received the diploma of elec-
tronic engineer (magna cum laude) from the EE
(now Poli) at Universidade Federal do Rio de Janeiro
(UFRJ), Brazil, in 1985, and the M.Sc. and D.Sc.
degrees in electrical engineering from the COPPE
at UFRJ in 1990 and 2000, respectively. Having
worked in the telecommunication industry between
1985 and 1993, Dr. Biscainho is now Associate Pro-
fessor at DEL/Poli and PEE/COPPE, at UFRJ. His
research area is digital signal processing, particularly

audio processing. He is currently a member of IEEE (Institute of Electrical and
Electronics Engineers), AES (Audio Engineering Society), SBrT (Brazilian
Telecommunications Society), and SBC (Brazilian Computer Society).

Sergio L. Netto was born in Rio de Janeiro, Brazil.
He received the B.Sc. (cum laude) degree from the
Federal University of Rio de Janeiro (UFRJ), Brazil,
in 1991, the M.Sc. degree from COPPE/UFRJ in
1992, and the Ph.D. degree from the University
of Victoria, BC, Canada, in 1996, all in electrical
engineering. Since 1997, he has been with the De-
partment of Electronics and Computer Engineering,
Poli/UFRJ, and since 1998, he has been with the
Program of Electrical Engineering, COPPE/UFRJ.
He is the Co-Author (with P. S. R. Diniz and E.

A. B. da Silva) of Digital Signal Processing: System Analysis and Design
(Cambridge University Press, second edition, 2010). His research and teaching
interests lie in the areas of digital signal processing, adaptive filtering, speech
processing, information theory, computer vision, and machine learning.

